This disclosure generally relates to a carbonation route for carbon dioxide (CO2) sequestration.
Mineralization is a safe, long-term, stable, and environmentally friendly method for CO2 sequestration. However, economically viable mineralization is challenging due to the large amounts of chemicals included for pH swing and energy consumed during the process. Therefore, sustainable processes featuring streamlined operation, high yield, and reduced chemical use, and from which valuable products can be derived—hence offsetting operational costs—are highly desired for CO2 capture and storage.
It is against this background that a need arose to develop the embodiments described herein.
In some embodiments, a method includes: (1) using a chelating agent, extracting divalent ions from a brine solution as complexes of the chelating agent and the divalent ions; (2) using a weak acid, regenerating the chelating agent and producing a divalent ion salt solution; and (3) introducing carbon dioxide to the divalent ion salt solution to induce precipitation of the divalent ions as a carbonate salt.
In additional embodiments, a method includes: (1) combining water with carbon dioxide to produce a carbon dioxide solution; (2) introducing an ion exchanger to the carbon dioxide solution to induce exchange of alkali metal cations included in the ion exchanger with protons included in the carbon dioxide solution and to produce a bicarbonate salt solution of the alkali metal cations; and (3) introducing a brine solution to the bicarbonate salt solution to induce precipitation of divalent ions from the brine solution as a carbonate salt.
Other aspects and embodiments of this disclosure are also contemplated. The foregoing summary and the following detailed description are not meant to restrict this disclosure to any particular embodiment but are merely meant to describe some embodiments of this disclosure.
For a better understanding of the nature and objects of some embodiments of this disclosure, reference should be made to the following detailed description taken in conjunction with the accompanying drawings.
Brine waste streams can be an excellent medium and reactant for CO2 mineralization because of the amount of wastewater available and the concentrations (e.g., about 100,000 ppm or more) of the divalent ions (e.g., Ca2+ and Mg2+) in these streams. For example, shale gas production is accompanied by the generation of a brine waste stream called “produced water” during hydraulic fracking. In 2014, the quantity of such waste brine is more than about 22 billion barrels in the United States, offering substantial storage capacity for CO2. Although treatment and reuse of produced water is constrained by its high salinity (e.g., about 400,000 ppm), selective extraction of divalent ions like Ca2+ and Mg2+ contained in the waste stream can allow subsequent CO2 mineralization and production of carbonate salts (e.g., CaCO3, MgCO3, and their related forms). However, the carbonation process is challenged by the relatively low concentrations of divalent ions (e.g., Ca2+ and Mg2+) in the brine. Therefore, an operationally stable and environmentally acceptable method of enrichment of such divalent ions is desired to improve the carbonation process. One method of divalent metal extraction entails the use of recyclable materials (e.g., chelating agents, metal oxide sorbents, and polymers with ion exchanging groups) that can effectively uptake the desired ions from produced water and be readily regenerated or recovered. In this cyclic protocol, waste stream generation is reduced, potentially allowing for the realization of a zero-liquid-discharge system. As such, developing reliable methods to enrich divalent ions from brine waste streams while recovering and recycling the reaction precursors is desired in the practice of CO2 mineralization.
Some embodiments of this disclosure are directed to a process cycle to separate and enrich divalent cations such as Ca2+ and Mg2+ from high salinity brine solutions for CO2 mineralization without requiring the use of an alkaline buffer. The process cycle includes three interlinked stages (shown in
1) Divalent Ion Extraction from Brines
In this stage, divalent ions (or other multivalent ions) with potential for carbonation (e.g., those that can form carbonate solids by reacting with CO2) in a brine solution are enriched and then separated from the solution. This is achieved by adding or introducing a chelating agent, such as ethylenediaminetetraacetic acid (EDTA) or nitrilotriacetic acid (NTA), into the brine solution under ambient conditions to promote their complexation with the target ions (e.g., Ca2+ and Mg2+), as given by:
M2++EDTA→M2+−EDTA (1)
where M denotes divalent ions, and EDTA is given as an example reagent. Other chelating agents that can form aqueous complexes via coordination bonds with divalent ions, such as other polydentate chelating agents, can also be used. It is desired to select an appropriate chelating agent to selectively extract target divalent ions from high salinity brines because of the high concentrations of alkali metal chlorides presented in the high salinity brines. For instance, brines obtained from desalination of sea water and treatment of produced water are rich in sodium chloride (NaCl). When EDTA is used, Ca2+ and Mg2+ can be selectively extracted because of EDTA's stronger preference for complexation with divalent ions compared to monovalent ions (e.g., Na+), as shown in
2) Regeneration of Chelating Agent with Weak Acid
In the next stage, the chelating agent is recycled from the enriched divalent ion solution by acidification. In the case of EDTA, the mechanism is described by the following reaction:
M2+−EDTA+HA→H22+−EDTA(s)+MA2 (2)
In this reaction, a weak acid (HA) is added or introduced into, or otherwise combined with, the solution to precipitate EDTA as solid particles (EDTA(s)) while the divalent ions remain in an aqueous form as dissolved salts (MA2). As shown in
3) Carbonation Process and Acid Recovery
In this stage, the concentrated divalent ion salt solution (MA2) from stage (2) is first diluted with a mixture of treated brine in stage (1) and fresh water to a predetermined concentration based on the type of weak acid used in stage (2) and the CO2 concentration in a gas stream. The starting concentration of MA2 in the diluted solution is adjusted so that the solution pH is above the value (above about 3.6) of a carbonic acid solution in equilibrium with the CO2-containing gas stream. To further increase the pH for favorable precipitation of carbonates, the weak acid (e.g., acetic acid) can be separated from the concentrated divalent ion salt solution via distillation. The gas stream is then injected or introduced into the carbonation reactor (e.g., a stirred-tank reactor) containing the diluted solution to precipitate carbonates, as given by:
MA2+CO2+H2O→MCO3(s)+2HA (3)
As an example, acetic acid can be used in stage (2) as it is a weaker acid (acid dissociation constant pKa of about 4.76 at 298 K) than carbonic acid (pKa of about 3.6 at 298 K). Thus, carbonates of the divalent ions (MCO3(s)) are precipitated while the weak acid (HA) is regenerated in the solution. Higher conversion of MCO3 can be achieved by increasing the CO2 partial pressure to increase the concentration of dissolved carbon in the liquid, for example, through CO2 enrichment or application of elevated pressure (e.g., above ambient pressure and up to about 30 bar to about 40 bar) to the gas stream. In addition, when co-located with a thermal power plant as the CO2 source, waste heat from the power plant can be harvested to increase the temperature of the carbonation process to above about 45° C., at which condition the precipitation of carbonates becomes strongly stimulated by both thermodynamics and kinetics. Under such conditions, carbonate conversion can reach to about 70% to about 80%. As the injected CO2 is mineralized, the produced carbonates can be collected by separating the precipitates from the liquid using filtration. It should be noted that the pH of the weak acid solution (e.g., about 4 to about 5) at the end of this stage should be above the pH of the carbonic acid solution. The acid solution remaining in the reactor is then concentrated and reused in stage (2). The concentration can be performed by a process such as distillation and solvent extraction, although nanofiltration is desirable to reduce the operating cost.
A variation of the buffer-free process cycle involves the use of a regenerable natural or synthetic ion exchanger. In particular, a CO2-enriched solution is produced by, for example, injecting or introducing a CO2-containing gas stream into water (or a brine solution or another solution), and increasing the concentration of dissolved carbon in the solution through CO2 enrichment or application of elevated pressure (e.g., above ambient pressure and up to about 30 bar to about 40 bar) to the gas stream. An ion exchanger is then added or introduced into, or otherwise combined with, the CO2-enriched solution to promote ion exchange, in which protons (W) included in the CO2-enriched solution are exchanged with alkali metal cations (e.g., N+, where N+ is Na+, K+, and so forth) included within the ion exchanger, producing a bicarbonate salt solution (NHCO32−). Examples of suitable ion exchangers include heterogeneous ion exchangers, such as polymer-supported ion exchangers in a particulate form of ion exchange polymer beads including functional groups that can form complexes with exchangeable cations. Additional examples of heterogeneous ion exchangers include silicate minerals (e.g., a clay or a zeolite) supporting ion exchange reactions. Next, a divalent ion solution (e.g., a brine solution) is added or introduced into, or otherwise combined with, the bicarbonate salt solution, inducing precipitation of carbonates of the divalent ions (MCO3(s)). The divalent ion solution can be an untreated brine solution or can be a concentrated divalent ion solution (e.g., the concentrated divalent ion salt solution (MA2) from stage (2)). The heterogeneous ion exchanger can be removed from the solution by filtration and then regenerated effectively by its subsequent exposure to an alkali metal cation solution (e.g., a brine solution).
Embodiments of this disclosure provide a sustainable process cycle for CO2 sequestration and production of carbonates using brines. The brines can be obtained as waste streams from industrial operations such as desalination or treatment of produced water generated from oil and gas extractions. The process cycle can be operated as a CO2 capture method in post-combustion flue gas treatment to reduce the carbon emissions of coal-fired power plants. In addition, the process cycle also produces carbonates that can be used in construction, chemical, paper, sealants/adhesives, cosmetics, pharmaceutical, and food industries.
Advantages of the Process Cycle of Some Embodiments Include:
In summary, the proposed process cycle treats waste streams (e.g., both CO2 and brines) sustainably at a reduced chemical or energy use and while deriving valuable carbonate products. As such, operational costs can be significantly reduced. Furthermore, the treated water exhibits a high potential for reuse in agriculture, irrigation, and animal consumption.
The following are example embodiments of this disclosure.
First Aspect
In an aspect according to some embodiments, a method includes: (1) using a chelating agent, extracting divalent ions from a brine solution as complexes of the chelating agent and the divalent ions; (2) using a weak acid, regenerating the chelating agent and producing a divalent ion salt solution; and (3) introducing carbon dioxide to the divalent ion salt solution to induce precipitation of the divalent ions as a carbonate salt.
In some embodiments, extracting the divalent ions includes introducing the chelating agent to the brine solution, followed by subjecting the brine solution to filtration.
In some embodiments, subjecting the brine solution to filtration is performed by at least one of ultrafiltration, nanofiltration, or reverse osmosis.
In some embodiments, subjecting the brine solution to filtration includes producing a retentate solution including the complexes of the chelating agent and the divalent ions.
In some embodiments, a concentration of the divalent ions in the retentate solution is about 1.5 times or greater than a concentration of the divalent ions in the brine solution, such as about 2 times or greater, about 5 times or greater, about 10 times or greater, about 20 times or greater, about 50 times or greater, and up to about 100 times or greater.
In some embodiments, regenerating the chelating agent includes introducing the weak acid to the retentate solution to induce precipitation of the chelating agent and to produce the divalent ion salt solution.
In some embodiments, the weak acid has a pKa greater than about 3.6 at 298 K, such as about 3.7 or greater, about 3.8 or greater, about 3.9 or greater, about 4 or greater, about 4.3 or greater, about 4.5 or greater, or about 4.7 or greater, and up to about 8 or greater, up to about 10 or greater, or up to about 12.
In some embodiments, regenerating the chelating agent includes adjusting the pH of the retentate solution to about 4 or below, such as about 3.9 or below, about 3.7 or below, about 3.5 or below, about 3.3 or below, about 3.1 or below, about 2.9 or below, about 2.7 or below, about 2.5 or below, about 2.3 or below, about 2.1 or below, about 2 or below, or about 1 to about 3.
In some embodiments, the method further includes adjusting the pH of the divalent ion salt solution to above about 3.6, prior to introducing the carbon dioxide.
In some embodiments, introducing the carbon dioxide includes inducing precipitation of at least one of calcium carbonate or magnesium carbonate, or other carbonates (e.g., barium carbonates) or other related solids.
Second Aspect
In another aspect according to some embodiments, a method includes: (1) combining water with carbon dioxide to produce a carbon dioxide solution; (2) introducing an ion exchanger to the carbon dioxide solution to induce exchange of alkali metal cations included in the ion exchanger with protons included in the carbon dioxide solution and to produce a bicarbonate salt solution of the alkali metal cations; and (3) introducing a brine solution to the bicarbonate salt solution to induce precipitation of divalent ions from the brine solution as a carbonate salt.
In some embodiments, the ion exchanger is a heterogeneous ion exchanger.
In some embodiments, the heterogeneous ion exchanger is a polymer-supported ion exchanger.
In some embodiments, the heterogeneous ion exchanger is a silicate mineral to support ion exchange reaction.
In some embodiments, the method further includes recovering the heterogeneous ion exchanger by filtration.
In some embodiments, the method further includes regenerating the heterogeneous ion exchanger by exposing the heterogeneous ion exchanger to an alkali metal cation solution.
As used herein, the singular terms “a,” “an,” and “the” may include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to an object may include multiple objects unless the context clearly dictates otherwise.
As used herein, the term “set” refers to a collection of one or more objects. Thus, for example, a set of objects can include a single object or multiple objects. Objects of a set also can be referred to as members of the set. Objects of a set can be the same or different. In some instances, objects of a set can share one or more common characteristics.
As used herein, the terms “connect,” “connected,” and “connection” refer to an operational coupling or linking. Connected objects can be directly coupled to one another or can be indirectly coupled to one another, such as via one or more other objects.
As used herein, the terms “substantially” and “about” are used to describe and account for small variations. When used in conjunction with an event or circumstance, the terms can refer to instances in which the event or circumstance occurs precisely as well as instances in which the event or circumstance occurs to a close approximation. For example, when used in conjunction with a numerical value, the terms can refer to a range of variation of less than or equal to ±10% of that numerical value, such as less than or equal to ±5%, less than or equal to ±4%, less than or equal to ±3%, less than or equal to ±2%, less than or equal to ±1%, less than or equal to ±0.5%, less than or equal to ±0.1%, or less than or equal to ±0.05%.
Additionally, concentrations, amounts, ratios, and other numerical values are sometimes presented herein in a range format. It is to be understood that such range format is used for convenience and brevity and should be understood flexibly to include numerical values explicitly specified as limits of a range, but also to include all individual numerical values or sub-ranges encompassed within that range as if each numerical value and sub-range is explicitly specified. For example, a range of about 1 to about 200 should be understood to include the explicitly recited limits of about 1 and about 200, but also to include individual values such as about 2, about 3, and about 4, and sub-ranges such as about 10 to about 50, about 20 to about 100, and so forth.
While the disclosure has been described with reference to the specific embodiments thereof, it should be understood by those skilled in the art that various changes may be made and equivalents may be substituted without departing from the true spirit and scope of the disclosure as defined by the appended claims. In addition, many modifications may be made to adapt a particular situation, material, composition of matter, method, operation or operations, to the objective, spirit and scope of the disclosure. All such modifications are intended to be within the scope of the claims appended hereto. In particular, while certain methods may have been described with reference to particular operations performed in a particular order, it will be understood that these operations may be combined, sub-divided, or re-ordered to form an equivalent method without departing from the teachings of the disclosure. Accordingly, unless specifically indicated herein, the order and grouping of the operations are not a limitation of the disclosure.
This application is a Continuation Application of U.S. application Ser. No. 16/431,300, filed Jun. 4, 2019, which claims the benefit of U.S. Provisional Application No. 62/680,987, filed Jun. 5, 2018, the contents of which are incorporated herein by reference in their entirety.
This invention was made with government support under Grant Numbers DE-FE0029825 and DE-FE0031705, awarded by U.S. Department of Energy. The government has certain rights in the invention.
Number | Name | Date | Kind |
---|---|---|---|
2794776 | Briggs | Jun 1957 | A |
3655537 | Russell et al. | Apr 1972 | A |
3725259 | Depree | Apr 1973 | A |
3790464 | Greaves | Feb 1974 | A |
4069117 | Cooper | Jan 1978 | A |
4671863 | Tejeda | Jun 1987 | A |
5043017 | Passaretti | Aug 1991 | A |
5362460 | Laird | Nov 1994 | A |
5543034 | Hilbertz et al. | Aug 1996 | A |
6228161 | Drummond | May 2001 | B1 |
11040898 | Sant et al. | Jun 2021 | B2 |
11413578 | Sant et al. | Aug 2022 | B2 |
20020179435 | Maddan | Dec 2002 | A1 |
20030213937 | Yaniv | Nov 2003 | A1 |
20040253417 | Sekoguchi et al. | Dec 2004 | A1 |
20050180910 | Park | Aug 2005 | A1 |
20050242032 | Sugito et al. | Nov 2005 | A1 |
20090001020 | Constantz | Jan 2009 | A1 |
20090013742 | Zhang | Jan 2009 | A1 |
20090056707 | Foody | Mar 2009 | A1 |
20090214408 | Blake | Aug 2009 | A1 |
20100034724 | Keith et al. | Feb 2010 | A1 |
20100150803 | Lin | Jun 2010 | A1 |
20100260653 | Jones | Oct 2010 | A1 |
20110195017 | Martinez Martinez | Aug 2011 | A1 |
20120090433 | Butler | Apr 2012 | A1 |
20120186492 | Gane et al. | Jul 2012 | A1 |
20130034489 | Gilliam et al. | Feb 2013 | A1 |
20130313199 | Marcin | Nov 2013 | A1 |
20150307400 | Devenney | Oct 2015 | A1 |
20160090656 | Livni et al. | Mar 2016 | A1 |
20160194208 | Lake et al. | Jul 2016 | A1 |
20160362800 | Ren et al. | Dec 2016 | A1 |
20170191173 | Han et al. | Jul 2017 | A1 |
20170291832 | Salama et al. | Oct 2017 | A1 |
20190329176 | Lu et al. | Oct 2019 | A1 |
20190367390 | Sant et al. | Dec 2019 | A1 |
20200122090 | Kitaura et al. | Apr 2020 | A1 |
20200385280 | Dai et al. | Dec 2020 | A1 |
20210123146 | Berlinguette et al. | Apr 2021 | A1 |
20210188671 | Sant et al. | Jun 2021 | A1 |
20210308623 | Sorimachi | Oct 2021 | A1 |
20220040639 | Sant et al. | Feb 2022 | A1 |
20220176311 | Omosebi et al. | Jun 2022 | A1 |
20220267159 | Shi et al. | Aug 2022 | A1 |
20230019754 | Sant et al. | Jan 2023 | A1 |
20230058065 | Sant et al. | Feb 2023 | A1 |
20230124711 | Chen et al. | Apr 2023 | A1 |
20230125242 | Sant et al. | Apr 2023 | A1 |
Number | Date | Country |
---|---|---|
1137575 | Dec 1996 | CN |
101835727 | Aug 2013 | CN |
107268027 | Oct 2017 | CN |
112981428 | Jun 2021 | CN |
4326757 | Feb 1994 | DE |
3673972 | Jul 2020 | EP |
823531 | Nov 1959 | GB |
922650 | Mar 1994 | IE |
WO-8701108 | Feb 1987 | WO |
WO-2009039445 | Mar 2009 | WO |
WO-2012095659 | Jul 2012 | WO |
WO-2016028023 | Feb 2016 | WO |
WO-2021117934 | Jun 2021 | WO |
WO-2023278423 | Jan 2023 | WO |
WO-2023069777 | Apr 2023 | WO |
WO-2023069947 | Apr 2023 | WO |
Entry |
---|
Machine-generated English translation of CN 101835727 B, generated on Mar. 29, 2023. |
U.S. Appl No. 16/431,300, Granted. |
U.S. Appl No. 17/408,236, Granted. |
U.S. Appl No. 17/873,953, Pending. |
U.S. Appl No. 17/968,596, Pending. |
U.S. Appl No. 17/972,392, Pending. |
Mineral Makeup of Seawater, available online at https://web.stanford.edu/group/Urchin/mineral.html, accessed on Feb. 21, 2023. |
Carré et al., “Electrochemical calcerous deposition in seawater.” A review, Environmental Chemistry Letters, vol. 18, Apr. 2020, pp. 1193-1208. |
International Search Report and Written Opinion dated Mar. 25, 2021, from application No. PCT/US2020/037629, 10 pages. |
International Search Report and Written Opinion for International Application No. PCT/US22/35289 dated Oct. 27, 20222. |
Jun-Hwan Bang, et al., “CO2 Mineralization Using Brine Discharged from a Seawater Desalination Plant,” Abstract, Minerals, Vo.7, No. 207, Oct. 30, 2017, pp. 1-12. |
Karoui et al., Electrochemical scaling of stainless steel in artificial seawater: Role of experimental conditions on CaCO3 and Mg(OH) 2 formation, Desalination, vol. 311, Feb. 2013, pp. 234-240. |
Socolow et al. “Direct air capture of CO2 with chemicals: a technology assessment for the APS Panel on Public Affairs”, American Physical Society, (2011). |
Translation of CN-107201443 Date Unknown. |
Translation of CN-113005471 Date Unknown. |
Translation of CN-207699684 Date Unknown. |
van Treeck et al., “Artificial Reefs Created by Electrolysis and Coral Transplantation: An Approach Ensuring the Compatibility of Environmental Protection and Diving Tourism, Estuarine” Coastal and Shelf Science, vol. 49, Supplement 1, Aug. 1999, pp. 75-81. |
Bisercic et al., “Ultrasound and shacking-assisted water-leaching of anions and cations from fly ash” J. Serb. Chem. Soc. 81 (7) 813-827 (2016). |
International Search Report and Written Opinion for Application No. PCT/US2022/0478585 dated Mar. 28, 2023. |
International Search Report and Written Opinion for Application No. PCT/US2022/078300 dated May 23, 2023. |
Khajouei G. et al. “Produced water softening using high-pH catholyte from brine electrolysis: reducing chemical transportation and environmental footprints.” Journal of Water Process Engineering, vol. 40, 2021, Article 101911, pp. 1-9. |
La Plante E.C. et al. “Saline Water-Based Mineralization Pathway for Gigatonne-Scale CO2 Management.” ACS Sustainable Chemistry & Engineering, vol. 9, Issue 3, 2021, pp. 1073-1089. |
Partial Supplementary European Search Report for Application No. EP 20867650.2, dated Jun. 9, 2023. |
Zhang Y. et al. “The use and optimization of stainless steel mesh cathodes in microbial electrolysis cells.” International Journal of Hydrogen Energy, vol. 35, Issue 21, 2010, pp. 12020-12028. |
Non-Final Office Action on U.S. Appl. No. 16/431,300 dated Jan. 25, 2021. |
Number | Date | Country | |
---|---|---|---|
20230058065 A1 | Feb 2023 | US |
Number | Date | Country | |
---|---|---|---|
62680987 | Jun 2018 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17187252 | Feb 2021 | US |
Child | 17888074 | US | |
Parent | 16431300 | Jun 2019 | US |
Child | 17187252 | US |