Additive manufacturing devices, sometimes called 3D printers, produce print parts by adding successive layers of material from a series of cross sections which are joined together to create the final part. In some additive manufacturing machines, a build material spreading apparatus forms layers all along a build area. Heat may be used to selectively fuse together the particles in each of the successive layers to form the cross sections of the final part. Manufacturing may proceed layer by layer until the object is complete.
Various examples will be described below by referring to the following figures, in which:
In one example, a build material dispenser is to provide build material to spread so as to form a layer. In order to ensure that each layer of build material is formed correctly, more material than needed is generally provided to be spread to form each layer, the material remaining after formation of the layer being generally directed into an overflow chamber.
In one example, a controller calibrates the amount of build material needed to form a subsequent layer taking into account an excess amount of build material dispensed to form a layer already spread over the build area. This may decrease overflows of build material, in such a way that the additive manufacturing machines may become able to do larger jobs with the same supply chamber size and smaller overflow chambers.
In one example, a camera allows taking a picture of the layer on the build area. Analysis of the picture taken by the camera allows translating it into an amount of material needed for a subsequent layer.
In one example, which is depicted on
In this example, a direct orthonormal vector basis 16 is attached to the printing structure 14. The vector basis 16 may include a vector X, a vector Y and a vector Z. When the printing structure 14 is arranged on a plane horizontal surface, the vector Z is vertically, upwards oriented.
The additive manufacturing device 10 may include a heat source 18 located within the printing chamber 12. In this example, the heat source 18 is able to move with respect to the printing structure 14 along several, e.g. three, translation degrees of freedom and several, e.g. three, rotation degrees of freedom. To do so, the additive manufacturing device 10 may include a rod 20 extending along the direction of the vector Y, a box 22 movable with respect to the rod 20 in translation along the direction of the vector Y, an arm 24 holding the heat source 18 and movable with respect to the box 22 in rotation in the plane perpendicular to the vector X.
The additive manufacturing device 10 may include a build material spreading apparatus 26.
Referring to
By virtue of this arrangement, prior to the formation of a layer on the build area 28, the build material dispenser 30 may provide the movable spreader 32 with a predetermined volume of build material. The movable spreader 32 may move in translation above the build area 28 so as to form a first layer on the build area 28. Then, the controller 34 may determine an excess amount of build material dispensed to form the first layer, that is, an amount of build material remaining after the spreading operation. The controller 34 may calculate an amount of build material needed to form a second layer taking into account the excess amount of build material dispensed to form the first layer, and may pilot the build material dispenser 30 to provide the movable spreader 32 with a modified amount of build material. Hence, the controller 34 may calibrate the predetermined amount of build material needed to form the second layer.
In another example, which is depicted on
In the example of
Unless indicated otherwise, the words “upwards”, “downwards”, “upper” and “lower” shall be understood as referring to the direction of the vertical, upwards oriented vector Z and the word “horizontal” means perpendicular to the vector Z.
The housing 38 may include a platform chamber 44, a first supply chamber 46, a second supply chamber 48, a first overflow chamber 50 and a second overflow chamber 52. In this example, the platform chamber 44 is located between the chambers 46 and 48, the first supply chamber 46 is located between the chambers 50 and 44, and the second supply chamber 48 is located between the chambers 44 and 52.
In the example of
The build material spreading apparatus 36 may include a spreader 66. The spreader 66 can include a casing 68 and a roller 70 accommodated within the casing 68. The roller 70 may be a cylinder rotatable about an axis parallel to the vector X. The spreader 66 may be movable with respect to the housing 38 in horizontal translation above the chambers 46, 44 and 48. The spreader 66 may be movable in translation about the direction of the vectors X and Y between the first and second overflow chambers 50 and 52. The roller 70 may be movable in rotation about its own axis with respect to the casing 68.
In this example, the build material spreading apparatus 36 includes a camera 76. The camera 76 may be attached to a printing structure of an additive manufacturing device, for instance to the wall 42. The camera 76 may be located in one corner of the printing chamber 40. Hence, there is no need of a lens and the risk of collision with other subsystems of the additive manufacturing device is decreased. The scope of the camera 76 is indicated on
The build material spreading apparatus 36 may include a controller 78. The controller 78 may be in data communication with the camera 76, with the jack 62 and with the jack 64.
In one example, which is depicted on
The example method may include, at block 80, controlling the jack 62 to move the piston 58 upwards. As a result, an amount, e.g. 12 grams, of build material is provided from the first supply chamber 46 to an area being between the spreader 66 and the platform chamber 44. The build material used in the example method of
The example method may include, at block 82, controlling the spreader 66 to move into the second overflow chamber 52. By doing so, a layer is formed over the platform chamber 44 and the second supply chamber 48. Meanwhile, extra build material may be spread over the second supply chamber 48.
The example method may include, at block 84, taking an image of the layer formed at block 82. Extra build material spread at block 82 may form a portion 89 of the layer which is adjacent to the position of the spreader 66 at the end of the displacement of the spreader 66 at block 82. A portion 89 of an example image taken is depicted on
The example method may include, at block 86, analyzing one side of the overflow powder as captured shown on the image taken at block 84. The side which is analyzed may be the side of the layer formed at block 82 which is adjacent to the spreader 66 in its position at the end of its displacement at block 82. In other words, when the spreader 66 moves from the chamber 50 to the chamber 52, the side which is analyzed may be the side of the layer formed at block 82 which is adjacent to the second overflow chamber 52.
The example method may include, at block 88, calculating an excess amount aexcess of build material dispensed.
To calculate the amount aexcess, the example method may use a portion of the image taken at block 84. In one example, depicted on
According to an example of a geometrical construction, which is depicted on
In the example method, the controller 78 may calculate the excess volume Vexcess of build material as the product of the surface area Aexcess by a predetermined height, which could be the height hpredetermined.
In the example method, the controller 78 may calculate the excess amount aexcess by multiplying the calculated volume Vexcess by the volumetric mass density p of the build material.
Referring to
The example method may further include, at block 108, lowering the platform 54. To do so, the jack 56 may be actuated in such a way that it lowers the platform 54 of the height hpredetermined.
The example method may include, at block 110, calculating the amount anext_layer of build material needed to form the next layer. To do so, the controller 78 may calculate the amount anext_layer by subtracting the excess amount aexcess from a predetermined constant amount A. For example, the amount A may be within a range 9 grams to 15 grams.
In the example method of
In another example of a geometrical construction of the portion 89, which is shown on
With the geometrical construction of
In the geometrical construction of
Each feature disclosed in this specification (including any accompanying claims, abstract and drawings), may be replaced by alternative features serving the same, equivalent or similar purpose, unless expressly stated otherwise. Thus, unless expressly stated otherwise, each feature disclosed is one example only of a generic series of equivalent or similar features.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2019/029878 | 4/30/2019 | WO | 00 |