BUILD-UP WELDING METHOD

Information

  • Patent Application
  • 20190111510
  • Publication Number
    20190111510
  • Date Filed
    November 07, 2016
    8 years ago
  • Date Published
    April 18, 2019
    5 years ago
Abstract
A build-up welding method (100) is disclosed in which a welding torch (1) is guided along a metallic workpiece (2) and at least one melting wire (5) serving as a build-up material (6) is fed at an infeed speed (9) into the arc (4) between at least one non-melting electrode (3) of the welding torch (1) and the workpiece (2). In order to achieve a build-up welding method (100) with higher build-up speeds in comparison to the prior art, it is proposed for the non-melting electrode (3) positioned normal to the workpiece (2) to be guided along the workpiece (2) and for the fed wire (5) to also be moved back and forth along its infeed direction (9).
Description
TECHNICAL FIELD

The invention relates to a build-up welding method in which a welding torch is guided along a metallic workpiece and at least one melting wire serving as a build-up material is fed at an infeed speed into the arc between at least one non-melting electrode of the welding torch and the workpiece.


PRIOR ART

In the prior art, there are known build-up welding methods in the DIN EN ISO 6947-specified PC welding position (ASME: 2G) in which a welding torch (e.g.: WIG torch) is guided horizontally along a vertically oriented, fixed metallic workpiece (e.g.: a pipe). In this case, a wire (e.g.: hot wire) is fed at a continuous infeed speed into an arc, which is produced by a non-melting electrode (e.g.: tungsten electrode) positioned obliquely to the guidance direction of the welding torch, and is melted in order to achieve a welding build-up on the material. The guidance speed of such build-up welding methods, however, is sharply limited since an increase in the guidance speed results in a breakage of the welding bead. A simultaneous increase in the infeed speed of the wire likewise does not result in an improvement. On the other hand, an increase in the diameter of the non-melting electrode results in a more pronounced melting of the workpiece (a higher penetration depth) and thus in an undesirable mixing between the build-up material and the workpiece, which has a negative impact on the material properties of the build-up material. On the other hand, a guidance speed that is too slow results in the formation of a large molten puddle and accompanying formation of droplets.


DESCRIPTION OF THE INVENTION

The stated object of the invention is to increase the speed of the build-up welding method while simultaneously achieving a low penetration depth.


The invention attains the stated object in that the non-melting electrode, positioned normal to the workpiece, is guided along the workpiece and the fed wire is additionally moved back and forth along its infeed direction.


If the non-melting electrode, positioned normal to the workpiece, is guided along the workpiece, then it is possible to achieve a particularly homogeneous arc, which enables an improved, namely uniform, melting of the wire. In addition, through the placement of the non-melting electrode normal to the workpiece in a PC welding position, a capillary action on the melt can be achieved, advantageously making it possible to avoid a formation of droplets from the melt. If the fed wire is additionally moved back and forth along its infeed direction, then the penetration depth into the workpiece can be reduced in a controlled fashion. This achieves a reduced melting of the base material of the workpiece in comparison to the prior art, thus enabling particularly favorable prevention of an undesirable mixing of the base material with the build-up material. It is therefore possible to achieve a durable material build-up with a particularly good connection to the base material—with the least possible change in material properties of the build-up material. In addition, by means of the amplitude and frequency of the back-and-forth movement of the wire along its infeed direction, it is possible to regulate the temperature conditions in the melt in such a way that the ideal desired penetration depth is always achieved. The combination of the electrode positioned normal to the workpiece and the back-and-forth movement of the in-fed wire make it surprisingly possible to achieve outstandingly high build-up speeds in comparison to the prior art, with which it is possible to significantly outperform not only known build-up welding methods in the PC welding position, but also those in the PA welding position. In addition, the material properties of the build-up material can be retained despite the high guidance speed of the welding torch. It is thus possible to achieve a quicker, more reproducible build-up welding method.


In general, it should be noted that the build-up welding according to the invention can be particularly suitable for use in the DIN EN ISO 6947-specified PC welding position (ASME: 2G). In this case, the non-melting electrode of the welding torch is guided horizontally relative to a vertical workpiece. The primary guidance direction of the welding torch in this case is horizontal relative to the vertical workpiece. To apply a plurality of layers that are provided one on top of another, a secondary vertical guidance is also provided. In general, it is also noted that a build-up welding method (cladding) is understood to be a method for single-layer or multi-layer material build-up with overlapping welding beads on a workpiece with the aid of a welding torch. For example, a workpiece with a low-alloy base material can have a higher alloy build-up material applied onto it.


If the wire is additionally fed into the arc in advance in the guidance direction of the welding torch, a particularly advantageous capillary action of the melt can be produced—thus making it possible to further increase the above-mentioned advantages.


The process parameters in the build-up welding method can also be further improved to a significant degree if the wire is advanced in continuous fashion. In addition, this can also be useful for a homogenization of the molten puddle in connection with its back-and-forth movement. The material properties of the build-up material can thus be retained despite the high guidance speed of the welding torch, which can be used to achieve a high degree of purity of the build-up on the workpiece.


Particularly advantageous welding conditions can be achieved if the non-melting electrode has a diameter of at least 6.4 mm. The comparatively high electrode diameter relative to the prior art makes it possible to achieve particularly high guidance speeds of the welding torch, thus enabling an even more rapid process sequence. The use of such high electrode diameters is only enabled by the back-and-forth movement of the wire in its infeed direction since large electrode diameters usually necessitate high penetration depths. The movement of the wire according to the invention, however, can keep the penetration depth low even with high electrode diameters.


The build-up welding method according to the invention can particularly excel in its simplicity from a process engineering standpoint if the welding torch is guided along an outer cylindrical surface of a pipe.


It is particularly preferable that the build-up welding method according to the invention is suitable for applications in which the welding torch is guided along the inner cylindrical surface of the pipe.


If the welding torch is guided along the workpiece in a circular or serpentine fashion, then the build-up material can be built up in a plurality of layers situated one on top of another. According to the invention, it is thus possible to durably produce a flat material build-up in a simple way from a process engineering standpoint. The additional back-and-forth movement of the wire along its infeed direction according to the invention can also ensure a controlled production of a low penetration depth in the workpiece during the building up of additional layers—while nevertheless achieving a sufficiently high melting of the vertically underlying layer in order to achieve an advantageous connection between the layers. It is therefore possible to achieve a very homogeneous welding build-up with preferable material properties, thus enabling achievement of a particularly reproducible method.


In order to further increase the durability of the build-up welding method, the non-melting electrode can be embodied as a tungsten electrode.


Preferably, the welding torch is embodied as a WIG torch in order to thus achieve a comparatively high weld metal quality in the welded bead. This can further increase the reproducibility of the method.


If the melting wire is a hot wire, then it is possible to further increase the build-up performance in the method and thus the processing speed. The wire, which has a charge applied to it for example by a hot wire current source, can be thus specifically be fed into the arc in a heated fashion, which results in higher melting rates of the wire.


Preferably, the build-up welding method according to the invention is suitable the PC welding position.





BRIEF DESCRIPTION OF THE DRAWINGS

In the figures, the subject of the invention is shown by way of example in one embodiment variant. In the drawings:



FIG. 1 shows a partially cut-away cross-section through a build-up welding method according to the invention, along the x/y plane.



FIG. 2 shows a top view of the method according to the invention.



FIG. 3 shows a partially cut-away cross-section through a build-up welding method according to the invention on an outer cylindrical surface of a pipe.





WAYS TO EMBODY THE INVENTION


FIG. 1 shows a build-up welding method 100 the welding position. Such a build-up welding method 100 is often also referred to as a vertical build-up welding method. Other welding positions according to DIN EN ISO 6947 are also conceivable, for example PA or also H-LO45 (ASME: 6Gu). In this case, a welding torch 1, namely a WIG torch, is guided along a metallic workpiece 2. In addition to a WIG torch, it is also conceivable to use a MAC torch, etc. The coordinate system 50 shows the orientation of the workpiece 2 in space. Build-up welding is understood to mean that the workpiece is embodied in the y/z plane, i.e. a surface standing vertically in space, and the welding torch 1 is guided along the y axis, i.e. essentially in a horizontal direction. In this case, it is generally conceivable for this movement of the welding torch 1 in the guidance direction 11 to be superposed with an oscillating movement parallel to the workpiece 2, which has not been shown in detail.


Between a non-melting electrode 3, namely a tungsten electrode, of the welding torch 1 and the metallic workpiece 2, an arc 4 is produced, into which is a fed wire 5, namely in the form of a heated hot wire, serving as a build-up material 6 that is to be melted. The wire 5 can also be used in the form of a cold wire. The melted build-up material 8 produces a melt 7 on the workpiece 2 in order to form a welding bead 8. The wire 5 in this case is fed into the arc 4 at a continuous infeed speed. In addition to the continuous infeed speed 9, the wire 5 is moved back and forth along its infeed direction. For example, is conceivable to use a back-and-forth movement of the wire 5 with a superposition amplitude of 4 to 12 mm.


Usually, a penetration depth 12 occurs primarily as a function of the diameter 13 of the non-melting electrode 3 and the guidance speed of the welding torch 1 relative to the workpiece. The back-and-forth movement 10 of the wire 5 regulates the penetration depth 12 in the workpiece 2 in such a way that with a simultaneous use of a non-melting electrode 3 with a large diameter 13 and a fast guidance speed, the penetration depth 12 remains low. As a result, it is possible to avoid an undesirable mixing of the build-up material 6 with the base material 14 of the workpiece 2. According to the invention, in the build-up welding method 1, the non-melting electrode 3 is positioned normal to the workpiece 2 and continuously moved across the workpiece 2 in the infeed direction 11 of the welding torch 1 in order to build up a spread-out welding bead 8 on the workplace. In this case, the non-melting electrode 3 positioned normal to the workpiece 2 ensures production of a particularly homogeneous arc and thus a uniform, controlled melting of the wire 5.



FIG. 2 shows a top view of the workpiece 2. It should be noted here that in the build-up welding method 1, a plurality of welding beads 80, 81 are built up on the workpiece 2 one above the other in the vertical direction and in overlapping fashion. The welding torch 1 is guided in serpentine fashion from bottom to top. Initially, the first welding bead 80 is produced, in particular from left to right, and the second welding bead 81 is produced over the first welding bead 80 in the reverse direction. A two-dimensional application can thus be achieved in a simple way from a process engineering standpoint.


As shown in FIG. 1 and FIG. 2, the wire 5 is additionally fed into the arc 4 in advance in the guidance direction 11 of the welding torch. This ensures a continuous and uniform supply of the build-up material 6 into the melt 7.


It has turned out to be particularly advantageous if the diameter 13 of the non-melting electrode 3 is at least 6.4 mm. It is thus specifically possible to achieve a high guidance speed of the welding torch 1 in the guidance direction 11.



FIG. 3 shows a build-up welding method 1 in which the welding torch 1 is guided in circular fashion around the inner cylindrical surface 21 of a vertical pipe 20. In this case, it is particularly possible to produce a closed annular welding bead 82 on the inner cylindrical surface 21. In addition, the welding torch 1 is likewise suitable for producing a welding bead on the outer cylindrical surface 22 of the pipe 20.

Claims
  • 1. A build-up welding method, comprising: guiding a welding torch along a metallic workpiece;feeding at least one melting wire serving as a build-up material at an infeed speed into an arc between at least one non-melting electrode of the welding torch and the workpiece; andguiding the non-melting electrode, positioned normal to the workpiece, along the workpiece and moving the melting wire back and forth along an infeed direction of the melting wire.
  • 2. The build-up welding method according to claim 1, comprising feeding the melting wire into the arc in advance in guidance direction of the welding torch.
  • 3. The build-up welding method according to claim 1, comprising feeding the melting wire continuously.
  • 4. The build-up welding method according to claim 1, wherein the non-melting electrode has a diameter of at least 6.4 mm.
  • 5. The build-up welding method according to claim 1, comprising guiding the welding torch along an outer cylindrical surface of a pipe.
  • 6. The build-up welding method according to claim 5, comprising guiding the welding torch along an inner cylindrical surface of the pipe.
  • 7. The build-up welding method according to claim 1, comprising guiding the welding torch along the workpiece in a circular or serpentine fashion.
  • 8. The build-up welding method according to claim 1, wherein the non-melting electrode is a tungsten electrode.
  • 9. The build-up welding method according to claim 1, wherein the welding torch is a WIG torch.
  • 10. The build-up welding method according to claim 1, wherein the melting wire is a hot wire.
  • 11. The build-up welding method according to claim 1, carried out in a PC welding position.
Priority Claims (1)
Number Date Country Kind
15193560.8 Nov 2015 EP regional
PCT Information
Filing Document Filing Date Country Kind
PCT/EP2016/076889 11/7/2016 WO 00