Machine translation (MT) concerns the automatic translation of natural language sentences from a first language (e.g., French) into another language (e.g., English). Systems that perform MT techniques are said to “decode” the source language into the target language.
Roughly speaking, statistical machine translation (SMT) divides the task of translation into two steps: a word-level translation model and a model for word reordering during the translation process. The statistical models may be trained on parallel corpora. Parallel corpora contain large amounts of text in one language along with their translation in another. Unfortunately, such corpora are available only in limited amounts and cover only in specific genres (Canadian politics, Hong Kong laws, etc). However, monolingual texts exist in higher quantities and in many domains and languages. The availability of monolingual corpora has been enhanced greatly due to the digital revolution and widespread use of the World Wide Web. Methods for processing such resources can therefore greatly benefit the field.
In an embodiment, a system may be able to build a translation lexicon from comparable, non-parallel corpora. The system may identify all identically spelled words in the corpora and use these as a seed lexicon for other processes based on clues indicating possible translations.
In another embodiment, a system may align text segments in comparable, non-parallel corpora, matching strings in the corpora, and using the matched strings to build a parallel corpus. The system may build a Bilingual Suffix Tree (BST) and traverse edges of the BST to identify matched strings. The BST may also identify potential translations based on words in the corpora between matched strings.
The two monolingual corpora should be in a fairly comparable domain. For example, in an implementation, an English-German translation lexicon was generated from a 1990-1992 Wall Street Journal corpus on the English side and a 1995-1996 German news wire (DPA) on the German side. Both corpora are news sources in the general sense. However, they span different time periods and have a different orientation: the World Street Journal covers mostly business news, the German news wire mostly German politics.
The system 100 may use clues to find translations of words in the monolingual corpora. The first clue considered may be the existence of identical words in the two corpora. Due to cultural exchange, a large number of words that originate in one language may be adopted by others. Recently, this phenomenon can be seen with words such as “Internet U or “Aids u.” These terms may be adopted verbatim or changed by well-established rules. For instance, “immigration” (German and English) has the Portuguese translation “immigraç{tilde under (a)}o,” as many words ending in -tion have translations with the same spelling except for the ending changed to ç{tilde under (a)}o.
The correctness of word mappings acquired in this fashion may depend highly on word length. While identical three-letter words were only translations of each other 60% of the time, this was true for 98% of ten-letter words. Clearly, for shorter words, the accidental existence of an identically spelled word in the other language word is much higher. Accordingly, the word comparator 120 may restrict the word length to be able to increase the accuracy of the collected word pairs. For instance, by relying only on words at least of length six, 622 word pairs were collected with 96% accuracy.
The identified identically spelled word pairs may be used as a seed lexicon 130 (block 210). A lexicon builder 125 may expand the seed lexicon into the larger translation lexicon 105 by applying rules based on clues which indicate probable translations. The lexicon builder 125 may use seed lexicon to bootstrap these methods, using the word pairs in the seed lexicon as correct translations.
As already mentioned, there are some well established transformation rules for the adoption of words from a foreign language. For German to English, this includes replacing the letters k and z by c and changing the ending -tät to -ty. Both these rules can be observed in the word pair Elektrizitat and electricity. The lexicon builder 125 may utilize these rules to expand the seed lexicon. In the English-German implementation, 363 additional word pairs were collected, with an accuracy of 91%.
The lexicon builder 125 extracts potential translation word pairs based on one or more clues. These clues may include similar spelling, similar context, preserving word similarity, and word frequency.
When words are adopted into another language, their spelling might change slightly in a manner that cannot be simply generalized in a rule, e.g., “website” and “Webseite.” This is even more the case for words that can be traced back to common language roots, such as “friend” and “Freund,” or “president” and “Präsident.” Still, these words, often called “cognates,” maintain a very similar spelling. This can be defined as differing in very few letters. This measurement can be formalized as the number of letters common in sequence between the two words, divided by the length of the longer word.
The example word pair “friend” and “freund” shares 5 letters (fr-e-nd), and both words have length 6, hence their spelling similarity is ⅚, or 0.83. This measurement may be referred to as the “longest common subsequence ratio.” The lexicon builder 125 may measure the spelling similarity between every German and English word, and sort possible word pairs accordingly. This may be done in a greedy fashion, i.e., once a word is assigned to a word pair, the lexicon builder 125 does not look for another match.
Another clue is context. If the monolingual corpora are somewhat comparable, it can be assumed that a word that occurs in a certain context should have a translation that occurs in a similar context. The context may be defined by the frequencies of context words in surrounding positions. This context has to be translated into the other language, and the lexicon builder 125 can search the word with the most similar context.
The lexicon builder 125 may collect counts over words occurring in an n-word window, e.g., four words (n=4), around the target word. For each occurrence of a target word, the counts may be collected over how often certain context words occur in the two positions directly ahead of the target word and the two following positions. The counts may be collected separately for each position and then entered into a context vector with a dimension for each context word in each position. Finally, the raw counts are normalized. Vector comparison is done by adding all absolute differences of all components.
Alternatively, the lexicon builder 125 may count how often another word occurs in the same sentence as the target word. The counts may then be normalized by a using the tf/idf method, which is often used in information retrieval.
The seed lexicon may be used to construct context vectors that contain information about how a new unmapped word co-occurs with the seed words. This vector can be translated into the other language, since we already know the translations of the seed words are already known. The lexicon builder 125 can search for the best matching context vector in the target language, and decide upon the corresponding word to construct a word mapping. The lexicon builder 125 may compute all possible word, or context vector, matches. The best word matches may be collected in a greedy fashion.
Another clue is based on the assumption that pairs of words that are similar in one language should have translations that are similar in the other language. For instance, Wednesday is similar to Thursday as Mittwoch is similar to Donnerstag. Two words may be defined as similar if they occur in a similar context, which is the case for Wednesday and Thursday.
In one approach, the context vector for each word in the lexicon may consist of co-occurrence counts in respect to a number of peripheral tokens (basically, the most frequent words). These counts may be collected for each position in an n-word window around the word in focus.
Instead of comparing the co-occurrence counts directly, the Spearman rank order correlation may be applied. For each position, the tokens are compared in frequency and the frequency count is replaced by the frequency rank, e.g., the most frequent token count is replaced with 1 and the least frequent by n. The similarity of the two context vectors a=(ai) and b=(bi) is then defined by:
The result is a matrix with similarity scores between all German words, and a second matrix with similarity scores between all English words. For a new word, the lexicon builder 125 may look up its similarity scores to seed words, thus creating a similarity vector. Such a vector can be translated into the other language. The translated vector can be compared to other vectors in the second language.
The lexicon builder 125 may perform a greedy search for the best matching similarity vectors and add the corresponding words to the lexicon.
Another clue is based on the assumption that in comparable corpora, the same concepts should occur with similar frequencies. Frequency may be defined as a ratio of the word frequencies normalized by the corpus sizes.
Each of the clues provides a matching score between two words (block 220), e.g., a German word and an English word. The likelihood of these two words being actual translations of each other may correlate to these scores. The lexicon builder 125 may employ a greedy search to determine the best set of lexicon entries based on these scores (block 225). First, the lexicon builder 125 searches for the highest score for any word pair. This is added to the lexicon (block 230), and word pairs that include either the German and English word are dropped from further search. This may be performed iteratively until all words are used up.
The lexicon builder 125 may combine different clues by adding up the matching scores. The scores can be weighted. For example, when using the spelling clue in combination with others, it may be useful to define a cutoff. If two words agree in 30% of their letters, this is generally as bad as if they do not agree in any, i.e., the agreements are purely coincidental.
The English-German implementation was restricted to nouns. Verbs, adjectives, adverbs and other part of speech may be handled in a similar way. They might also provide useful context information that is beneficial to building a noun lexicon. These methods may be also useful given a different starting point. For example, when building machine translation systems, some small parallel text should be available. From these, some high-quality lexical entries can be learned, but there will always be many words that are missing. These may be learned using the described methods.
For example, consider the following two sentences where the only unknown French word is “raison”:
“Ce est pour cette raison que le initiative de le ministre . . . ;” and
“It is for this reason that the party has proposed . . . ”
Since “Ce est pour cette” can be aligned with “It is for this” and “que le” with “that the,” it is a reasonable assumption that “raison” can be translated by “reason.” The system 400 may search the corpora for cases similar to this example.
The system 400 may use a suffix tree data structure in order to identify the alignments. The suffix tree of a string uniquely encodes all the suffixes of that string (and thus, implicitly, all its substrings too). The system 400 may first build such a tree of the target language corpus, and then add to each substrings all the substrings from the source language corpus that align to it. The next step is to identify unknown target language words that are surrounded by aligned substrings. The source language word that corresponds to the “well-aligned” unknown is considered to be a possible translation.
A suffix tree stores in linear space all suffixes of a given string. Such succinct encoding exposes the internal structure of the string, providing efficient (usually linear-time) solutions for many complex string problems, such as exact and approximate string matching, finding the longest common substring of multiple strings, and string compression. Formally, a suffix tree for a string S of length N has the following properties: each edge of the tree is labeled by a nonempty substring of S; each internal node other than the root has at least two children; no two edges out of a node can have edge-labels beginning with the same character/word; and (the key feature of the tree) there is a one-to-one correspondence between all suffixes of S and paths in the tree from the root to the leaves.
Each monolingual corpus given as input to the system 400 may be divided into a set of sentences. The system 400 may use a variant of suffix trees that works with sets of strings, namely Generalized Suffix Trees (GST). In a GST of a set of strings, each path from the root to a leaf represents a suffix in one or more strings from the set. A conceptually easy way to build such a tree is to start by building a regular suffix tree for the first sentence in the corpus, and then for each of the other sentences to take their suffixes one by one and add them to the tree (if they are not already in it).
Building the suffix tree of a string takes time and space linear in the length of the string. Building a GST for a set of strings takes time and space linear in the sum of the lengths of all strings in the set.
A Bilingual Suffix Tree (BST) is the result of matching a source language GST against a target language GST. Two strings (i.e., sequences of words) match if the corresponding words are translations of each other according to a bilingual lexicon. In order to perform the matching operation, all paths that correspond to an exhaustive traversal of one of the trees (the source tree) are traversed in the other (the target tree), until a mismatch occurs. In the process, the target tree is augmented with information about the alignments between its paths and those of the source, thus becoming a bilingual suffix tree.
Since there is a one-to-one correspondence between the substrings in the text and the paths in the suffix trees, the operation described above will yield all pairs of substrings in the two corpora given as input and discover all partial monotone alignments defined by the lexicon.
If the lexicon is probabilistic, each matching between two words will be weighted by the corresponding translation probability. The paths in the resulting bilingual tree will also have weights associated with them, defined as the product of the matching probabilities of the words along the path.
BSTs are constructed to encode alignment information, therefore the extraction of parallel phrases amounts to a simple depth-first traversal of the tree.
As can be seen in
The heuristic by which the system 400 discovers new word translations is shown graphically in
For a pair of words from the two corpora, we use the terms “right alignment” and “left alignment” to refer to the aligned sequences that precede and respectively succeed the two words in each corpus. The left and right alignments and the two words delimited by them make up a context alignment. For example, the left alignment xyzabc, the right alignment xzy-acb and the words y and d in
Given a comparable corpus, this procedure will yield many context alignments which correspond to incorrect translations, such as that between the words “canadien” and “previous”:
tout canadien serieux
any previous serious
In order to filter out such cases, the system 400 uses two simple heuristics: length and word content. Thus, for a context alignment to be valid, the left and right context together must contain at least three words, one of which must be an open-class word, e.g., a noun, verb, adjective, or adverb, classes which can have new words added to them. The translation candidate must also be an open-class word. The algorithm 1000 for learning translations of unknown words is summarized in
The system 400 was tested on an English-French comparable corpus, of approximately 1.3 million words −50.000 sentences for each language. It was obtained by taking two non-parallel, nonaligned segments from the Hansard corpus. The Hansard Corpus includes parallel texts in English and Canadian French, drawn from official records of the proceedings of the Canadian Parliament. A small bilingual lexicon of 6,900 entries was built using 5,000 sentences pairs (150,000 words for each language). The parallel corpus was taken from the Proceedings of the European Parliament (EuroParl) Note that the parallel corpus belongs to a different domain than the comparable corpus. Also the parallel corpus is extremely small. For low density languages, such a corpus can be built manually.
When given as input the comparable corpora described above and the bilingual lexicon of 6,900 entries, the algorithm 1000 found 33,926 parallel sequences, with length between three and seven words. Out of 100 randomly selected sequences, 95% were judged to be correct.
The system also found translations for thirty unknown French words. Of these, nine were correct, which means a precision of 30%.
For each of the two corpora, building the monolingual GST took only 1.5 minutes. The matching operation that yields the BST is the most time-consuming: it lasted 38 hours for the forward BST and 60 hours for the reverse BST. The extractions of all parallel phrases and of the translations took about 2 hours each. The experiments were run on a Linux® system 400 with an Intel® Pentium® 3 processor of 866 Mhz.
A number of embodiments have been described. Nevertheless, it will be understood that various modifications may be made without departing from the spirit and scope of the invention. For example, blocks in the flowcharts may be skipped or performed out of order and still produce desirable results. Also, the heuristics described herein may be combined with the alignment method described herein. Accordingly, other embodiments are within the scope of the following claims.
This application is a Continuation of U.S. patent application Ser. No. 10/401,124, filed on Mar. 26, 2003, now U.S. Pat. No. 7,620,538, which claims priority to U.S. Provisional Application Ser. No. 60/368,070, filed on Mar. 26, 2002, and U.S. Provisional Application Ser. No. 60/368,447, filed on Mar. 27, 2002, the disclosures of which are incorporated by reference.
The research and development described in this application were supported by Defense Advanced Research Project Agency (DARPA) under grant number N66001-00-1-8914. The U.S. Government may have certain rights in the claimed inventions.
Number | Name | Date | Kind |
---|---|---|---|
4502128 | Okajima et al. | Feb 1985 | A |
4599691 | Sakaki et al. | Jul 1986 | A |
4615002 | Innes | Sep 1986 | A |
4661924 | Okamoto et al. | Apr 1987 | A |
4787038 | Doi et al. | Nov 1988 | A |
4791587 | Doi | Dec 1988 | A |
4800522 | Miyao et al. | Jan 1989 | A |
4814987 | Miyao et al. | Mar 1989 | A |
4942526 | Okajima et al. | Jul 1990 | A |
4980829 | Okajima et al. | Dec 1990 | A |
5020112 | Chou | May 1991 | A |
5088038 | Tanaka et al. | Feb 1992 | A |
5091876 | Kumano et al. | Feb 1992 | A |
5146405 | Church | Sep 1992 | A |
5167504 | Mann | Dec 1992 | A |
5181163 | Nakajima et al. | Jan 1993 | A |
5212730 | Wheatley et al. | May 1993 | A |
5218537 | Hemphill et al. | Jun 1993 | A |
5220503 | Suzuki et al. | Jun 1993 | A |
5267156 | Nomiyama | Nov 1993 | A |
5268839 | Kaji | Dec 1993 | A |
5295068 | Nishino et al. | Mar 1994 | A |
5311429 | Tominaga | May 1994 | A |
5387104 | Corder | Feb 1995 | A |
5432948 | Davis et al. | Jul 1995 | A |
5442546 | Kaji et al. | Aug 1995 | A |
5477450 | Takeda et al. | Dec 1995 | A |
5477451 | Brown et al. | Dec 1995 | A |
5495413 | Kutsumi et al. | Feb 1996 | A |
5497319 | Chong et al. | Mar 1996 | A |
5510981 | Berger et al. | Apr 1996 | A |
5528491 | Kuno et al. | Jun 1996 | A |
5535120 | Chong et al. | Jul 1996 | A |
5541836 | Church et al. | Jul 1996 | A |
5541837 | Fushimoto | Jul 1996 | A |
5548508 | Nagami | Aug 1996 | A |
5644774 | Fukumochi et al. | Jul 1997 | A |
5675815 | Yamauchi et al. | Oct 1997 | A |
5687383 | Nakayama et al. | Nov 1997 | A |
5696980 | Brew | Dec 1997 | A |
5724593 | Hargrave, III et al. | Mar 1998 | A |
5752052 | Richardson et al. | May 1998 | A |
5754972 | Baker et al. | May 1998 | A |
5761631 | Nasukawa | Jun 1998 | A |
5761689 | Rayson et al. | Jun 1998 | A |
5768603 | Brown et al. | Jun 1998 | A |
5779486 | Ho et al. | Jul 1998 | A |
5781884 | Pereira et al. | Jul 1998 | A |
5794178 | Caid et al. | Aug 1998 | A |
5805832 | Brown et al. | Sep 1998 | A |
5806032 | Sproat | Sep 1998 | A |
5819265 | Ravin et al. | Oct 1998 | A |
5826219 | Kutsumi | Oct 1998 | A |
5826220 | Takeda et al. | Oct 1998 | A |
5845143 | Yamauchi et al. | Dec 1998 | A |
5848385 | Poznanski et al. | Dec 1998 | A |
5848386 | Motoyama | Dec 1998 | A |
5855015 | Shoham | Dec 1998 | A |
5864788 | Kutsumi | Jan 1999 | A |
5867811 | O'Donoghue | Feb 1999 | A |
5870706 | Alshawi | Feb 1999 | A |
5893134 | O'Donoghue et al. | Apr 1999 | A |
5903858 | Saraki | May 1999 | A |
5907821 | Kaji et al. | May 1999 | A |
5909681 | Passera et al. | Jun 1999 | A |
5966685 | Flanagan et al. | Oct 1999 | A |
5983169 | Kozma | Nov 1999 | A |
5987402 | Murata et al. | Nov 1999 | A |
5987404 | Della Pietra et al. | Nov 1999 | A |
5991710 | Papineni et al. | Nov 1999 | A |
5995922 | Penteroudakis et al. | Nov 1999 | A |
6018617 | Sweitzer et al. | Jan 2000 | A |
6031984 | Walser | Feb 2000 | A |
6032111 | Mohri | Feb 2000 | A |
6064819 | Franssen et al. | May 2000 | A |
6064951 | Park et al. | May 2000 | A |
6073143 | Nishikawa et al. | Jun 2000 | A |
6077085 | Parry et al. | Jun 2000 | A |
6092034 | McCarley et al. | Jul 2000 | A |
6119077 | Shinozaki | Sep 2000 | A |
6131082 | Hargrave, III et al. | Oct 2000 | A |
6161082 | Goldberg et al. | Dec 2000 | A |
6182014 | Kenyon et al. | Jan 2001 | B1 |
6182027 | Nasukawa et al. | Jan 2001 | B1 |
6205456 | Nakao | Mar 2001 | B1 |
6223150 | Duan et al. | Apr 2001 | B1 |
6233544 | Alshawi | May 2001 | B1 |
6233545 | Datig | May 2001 | B1 |
6233546 | Datig | May 2001 | B1 |
6236958 | Lange et al. | May 2001 | B1 |
6269351 | Black | Jul 2001 | B1 |
6275789 | Moser et al. | Aug 2001 | B1 |
6278967 | Akers et al. | Aug 2001 | B1 |
6278969 | King et al. | Aug 2001 | B1 |
6285978 | Bernth et al. | Sep 2001 | B1 |
6289302 | Kuo | Sep 2001 | B1 |
6304841 | Berger et al. | Oct 2001 | B1 |
6311152 | Bai et al. | Oct 2001 | B1 |
6317708 | Witbrock et al. | Nov 2001 | B1 |
6327568 | Joost | Dec 2001 | B1 |
6330529 | Ito | Dec 2001 | B1 |
6330530 | Horiguchi et al. | Dec 2001 | B1 |
6356864 | Foltz et al. | Mar 2002 | B1 |
6360196 | Poznanski et al. | Mar 2002 | B1 |
6389387 | Poznanski et al. | May 2002 | B1 |
6393388 | Franz et al. | May 2002 | B1 |
6393389 | Chanod et al. | May 2002 | B1 |
6415250 | van den Akker | Jul 2002 | B1 |
6460015 | Hetherington et al. | Oct 2002 | B1 |
6470306 | Pringle et al. | Oct 2002 | B1 |
6473729 | Gastaldo et al. | Oct 2002 | B1 |
6480698 | Ho et al. | Nov 2002 | B2 |
6490549 | Ulicny et al. | Dec 2002 | B1 |
6498921 | Ho et al. | Dec 2002 | B1 |
6502064 | Miyahira et al. | Dec 2002 | B1 |
6529865 | Duan et al. | Mar 2003 | B1 |
6535842 | Roche et al. | Mar 2003 | B1 |
6587844 | Mohri | Jul 2003 | B1 |
6647364 | Yumura et al. | Nov 2003 | B1 |
6691279 | Yoden et al. | Feb 2004 | B2 |
6745161 | Arnold et al. | Jun 2004 | B1 |
6757646 | Marchisio | Jun 2004 | B2 |
6778949 | Duan et al. | Aug 2004 | B2 |
6782356 | Lopke | Aug 2004 | B1 |
6810374 | Kang | Oct 2004 | B2 |
6848080 | Lee et al. | Jan 2005 | B1 |
6857022 | Scanlan | Feb 2005 | B1 |
6885985 | Hull | Apr 2005 | B2 |
6901361 | Portilla | May 2005 | B1 |
6904402 | Wang et al. | Jun 2005 | B1 |
6952665 | Shimomura et al. | Oct 2005 | B1 |
6983239 | Epstein | Jan 2006 | B1 |
6996520 | Levin | Feb 2006 | B2 |
6999925 | Fischer et al. | Feb 2006 | B2 |
7013262 | Tokuda et al. | Mar 2006 | B2 |
7016827 | Ramaswamy et al. | Mar 2006 | B1 |
7016977 | Dunsmoir et al. | Mar 2006 | B1 |
7024351 | Wang | Apr 2006 | B2 |
7031911 | Zhou et al. | Apr 2006 | B2 |
7050964 | Menzes et al. | May 2006 | B2 |
7085708 | Manson | Aug 2006 | B2 |
7103531 | Moore | Sep 2006 | B2 |
7107204 | Liu et al. | Sep 2006 | B1 |
7107215 | Ghali | Sep 2006 | B2 |
7113903 | Riccardi et al. | Sep 2006 | B1 |
7143036 | Weise | Nov 2006 | B2 |
7146358 | Gravano et al. | Dec 2006 | B1 |
7149688 | Schalkwyk | Dec 2006 | B2 |
7174289 | Sukehiro | Feb 2007 | B2 |
7177792 | Knight et al. | Feb 2007 | B2 |
7191115 | Moore | Mar 2007 | B2 |
7197451 | Carter et al. | Mar 2007 | B1 |
7206736 | Moore | Apr 2007 | B2 |
7209875 | Quirk et al. | Apr 2007 | B2 |
7219051 | Moore | May 2007 | B2 |
7239998 | Xun | Jul 2007 | B2 |
7249012 | Moore | Jul 2007 | B2 |
7249013 | Al-Onaizan et al. | Jul 2007 | B2 |
7283950 | Pournasseh et al. | Oct 2007 | B2 |
7295962 | Marcu | Nov 2007 | B2 |
7302392 | Thenthiruperai et al. | Nov 2007 | B1 |
7319949 | Pinkham | Jan 2008 | B2 |
7340388 | Soricut et al. | Mar 2008 | B2 |
7346487 | Li | Mar 2008 | B2 |
7346493 | Ringger et al. | Mar 2008 | B2 |
7349839 | Moore | Mar 2008 | B2 |
7356457 | Pinkham et al. | Apr 2008 | B2 |
7373291 | Garst | May 2008 | B2 |
7383542 | Richardson et al. | Jun 2008 | B2 |
7389222 | Langmead et al. | Jun 2008 | B1 |
7389234 | Schmid et al. | Jun 2008 | B2 |
7409332 | Moore | Aug 2008 | B2 |
7447623 | Appleby | Nov 2008 | B2 |
7454326 | Marcu et al. | Nov 2008 | B2 |
7496497 | Liu | Feb 2009 | B2 |
7533013 | Marcu | May 2009 | B2 |
7536295 | Cancedda et al. | May 2009 | B2 |
7546235 | Brockett et al. | Jun 2009 | B2 |
7565281 | Appleby | Jul 2009 | B2 |
7574347 | Wang | Aug 2009 | B2 |
7580830 | Al-Onaizan et al. | Aug 2009 | B2 |
7620538 | Marcu et al. | Nov 2009 | B2 |
7624005 | Koehn et al. | Nov 2009 | B2 |
7624020 | Yamada et al. | Nov 2009 | B2 |
7680646 | Lux-Pogodalla et al. | Mar 2010 | B2 |
7689405 | Marcu | Mar 2010 | B2 |
7698125 | Graehl et al. | Apr 2010 | B2 |
7707025 | Whitelock | Apr 2010 | B2 |
7711545 | Koehn | May 2010 | B2 |
7716037 | Precoda et al. | May 2010 | B2 |
7813918 | Muslea et al. | Oct 2010 | B2 |
7974833 | Soricut et al. | Jul 2011 | B2 |
20010009009 | Iizuka | Jul 2001 | A1 |
20010029455 | Chin et al. | Oct 2001 | A1 |
20020002451 | Sukehiro | Jan 2002 | A1 |
20020013693 | Fuji | Jan 2002 | A1 |
20020040292 | Marcu | Apr 2002 | A1 |
20020046018 | Marcu et al. | Apr 2002 | A1 |
20020046262 | Heilig et al. | Apr 2002 | A1 |
20020078091 | Vu et al. | Jun 2002 | A1 |
20020099744 | Coden et al. | Jul 2002 | A1 |
20020111788 | Kimpara | Aug 2002 | A1 |
20020111789 | Hull | Aug 2002 | A1 |
20020152063 | Tokieda et al. | Oct 2002 | A1 |
20020169592 | Aityan | Nov 2002 | A1 |
20020188438 | Knight et al. | Dec 2002 | A1 |
20020188439 | Marcu | Dec 2002 | A1 |
20020198699 | Greene et al. | Dec 2002 | A1 |
20020198701 | Moore | Dec 2002 | A1 |
20020198713 | Franz et al. | Dec 2002 | A1 |
20030009322 | Marcu | Jan 2003 | A1 |
20030023423 | Yamada et al. | Jan 2003 | A1 |
20030144832 | Harris | Jul 2003 | A1 |
20030158723 | Masuichi et al. | Aug 2003 | A1 |
20030176995 | Sukehiro | Sep 2003 | A1 |
20030182102 | Corston-Oliver et al. | Sep 2003 | A1 |
20030191626 | Al-Onaizan et al. | Oct 2003 | A1 |
20030204400 | Marcu et al. | Oct 2003 | A1 |
20030217052 | Rubenczyk et al. | Nov 2003 | A1 |
20030233222 | Soricut et al. | Dec 2003 | A1 |
20040015342 | Garst | Jan 2004 | A1 |
20040024581 | Koehn et al. | Feb 2004 | A1 |
20040030551 | Marcu et al. | Feb 2004 | A1 |
20040035055 | Zhu et al. | Feb 2004 | A1 |
20040059708 | Dean et al. | Mar 2004 | A1 |
20040068411 | Scanlan | Apr 2004 | A1 |
20040098247 | Moore | May 2004 | A1 |
20040111253 | Luo et al. | Jun 2004 | A1 |
20040122656 | Abir | Jun 2004 | A1 |
20040167768 | Travieso et al. | Aug 2004 | A1 |
20040167784 | Travieso et al. | Aug 2004 | A1 |
20040193401 | Ringger et al. | Sep 2004 | A1 |
20040230418 | Kitamura | Nov 2004 | A1 |
20040237044 | Travieso et al. | Nov 2004 | A1 |
20040260532 | Richardson et al. | Dec 2004 | A1 |
20050021322 | Richardson et al. | Jan 2005 | A1 |
20050021517 | Marchisio | Jan 2005 | A1 |
20050026131 | Elzinga et al. | Feb 2005 | A1 |
20050033565 | Koehn | Feb 2005 | A1 |
20050038643 | Koehn | Feb 2005 | A1 |
20050060160 | Roh et al. | Mar 2005 | A1 |
20050075858 | Pournasseh et al. | Apr 2005 | A1 |
20050102130 | Quirk et al. | May 2005 | A1 |
20050125218 | Rajput et al. | Jun 2005 | A1 |
20050149315 | Flanagan et al. | Jul 2005 | A1 |
20050171757 | Appleby | Aug 2005 | A1 |
20050204002 | Friend | Sep 2005 | A1 |
20050228640 | Aue et al. | Oct 2005 | A1 |
20050228642 | Mau et al. | Oct 2005 | A1 |
20050228643 | Munteanu et al. | Oct 2005 | A1 |
20050234701 | Graehl et al. | Oct 2005 | A1 |
20060015320 | Och | Jan 2006 | A1 |
20060015323 | Udupa et al. | Jan 2006 | A1 |
20060018541 | Chelba et al. | Jan 2006 | A1 |
20060020448 | Chelba et al. | Jan 2006 | A1 |
20060095248 | Menezes et al. | May 2006 | A1 |
20060111891 | Menezes et al. | May 2006 | A1 |
20060111892 | Menezes et al. | May 2006 | A1 |
20060111896 | Menezes et al. | May 2006 | A1 |
20060129424 | Chan | Jun 2006 | A1 |
20060142995 | Knight et al. | Jun 2006 | A1 |
20060150069 | Chang | Jul 2006 | A1 |
20060190241 | Goutte et al. | Aug 2006 | A1 |
20070016400 | Soricutt et al. | Jan 2007 | A1 |
20070016401 | Ehsani et al. | Jan 2007 | A1 |
20070033001 | Muslea et al. | Feb 2007 | A1 |
20070094169 | Yamada et al. | Apr 2007 | A1 |
20070112553 | Jacobson | May 2007 | A1 |
20070112555 | Lavi et al. | May 2007 | A1 |
20070112556 | Lavi et al. | May 2007 | A1 |
20070122792 | Galley et al. | May 2007 | A1 |
20070168450 | Prajapat et al. | Jul 2007 | A1 |
20070180373 | Bauman et al. | Aug 2007 | A1 |
20070219774 | Quirk et al. | Sep 2007 | A1 |
20070250306 | Marcu et al. | Oct 2007 | A1 |
20070269775 | Andreev et al. | Nov 2007 | A1 |
20070294076 | Shore et al. | Dec 2007 | A1 |
20080052061 | Kim et al. | Feb 2008 | A1 |
20080114583 | Al-Onaizan et al. | May 2008 | A1 |
20080154581 | Lavi et al. | Jun 2008 | A1 |
20080183555 | Walk | Jul 2008 | A1 |
20080215418 | Kolve et al. | Sep 2008 | A1 |
20080249760 | Marcu et al. | Oct 2008 | A1 |
20080270109 | Och | Oct 2008 | A1 |
20080270112 | Shimohata | Oct 2008 | A1 |
20080281578 | Kumaran et al. | Nov 2008 | A1 |
20080307481 | Panje | Dec 2008 | A1 |
20090076792 | Lawson-Tancred | Mar 2009 | A1 |
20090083023 | Foster et al. | Mar 2009 | A1 |
20090119091 | Sarig | May 2009 | A1 |
20090326912 | Ueffing | Dec 2009 | A1 |
20100017293 | Lung et al. | Jan 2010 | A1 |
20100174524 | Koehn | Jul 2010 | A1 |
20110029300 | Marcu et al. | Feb 2011 | A1 |
20110082684 | Soricut et al. | Apr 2011 | A1 |
Number | Date | Country |
---|---|---|
0469884 | Feb 1992 | EP |
0715265 | Jun 1996 | EP |
0933712 | Aug 1999 | EP |
O933712 | Jan 2001 | EP |
07244666 | Sep 1995 | JP |
10011447 | Jan 1998 | JP |
11272672 | Oct 1999 | JP |
Number | Date | Country | |
---|---|---|---|
20100042398 A1 | Feb 2010 | US |
Number | Date | Country | |
---|---|---|---|
60368070 | Mar 2002 | US | |
60368447 | Mar 2002 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10401124 | Mar 2003 | US |
Child | 12576110 | US |