The present disclosure relates to building blocks, and more particularly to building blocks adapted for forming into a building structure including an assembly of sidewise interconnected building blocks. The present disclosure also relates to a panel assembly formed from a plurality of building blocks in sidewise interconnection relationship and a building structure comprising such an assembly.
Many structures are constructed from modular building blocks though locked interconnection of the modular building blocks. Examples of such structures include, for example, buildings, vehicles, machinery, toys, models, furniture and stationery. The modular building blocks usually comprise integrally formed interconnection means for making mated interconnection with adjacent building blocks in order to enhance structural robustness. The interconnection means typically comprises complementary mating members on counterpart building blocks to facilitate the mated interconnection.
Modular building blocks comprising complementary mating members on opposite end and side surfaces are usually stacked and then interlocked both vertically and horizontally to attain a desirable height from a base of a desirable form. To facilitate constructions of 3-dimensional structures, building blocks are required to have connection means on their sides as well as their ends.
U.S. Pat. No. 6,050,044 discloses building blocks having connectors on its opposite and side walls. The connectors on the side walls comprising interlocking male and female dovetails for connecting blocks side by side in addition to connectors on its upper and lower ends for connecting the blocks vertically. The building blocks also have mating ribs and grooves on the side walls to minimize twisting movement between horizontally attached blocks.
It is noted that building blocks having conventional interconnection means are not entire satisfactory for many applications.
Accordingly, there is provided a building block comprising a panel member having a forward (or upper) panel surface and a rearward (or lower) panel surface, and a peripheral skirt extending rearward from the rearward panel surface and defining a receptacle; wherein an interconnection means adapted for making sidewise locked interconnection with an adjacent building block having a complementary or counterpart interconnection means is formed on the peripheral shirt, the interconnection means being a female connection member or a male connection member complementary to the female member; wherein the female member is shaped or adapted to permit a male connection member of the adjacent building block to enter into sidewise locked interconnection by entering at the free end of the peripheral skirt which is distal from the panel member, to move towards the forward panel surface, and to stop before reaching the forward panel surface.
A building block comprising a female connection member which is adapted to cooperate with a male connection member of a counterpart building block to facilitate sidewise locked interconnection while preventing the male connection member to reach the forward panel surface is advantageous. For example, such an arrangement protects the interconnection means from direct external access to mitigate damage due to vandalism or weathering, as the forward panel surface is usually adapted for outward or external facing. In addition, as the free end of the peripheral skirt is located on the rearward side, an adjacent building block can be mounted and removed from the rearward side. Moreover, as advancement of the connection member will be stopped by the panel member, and the resistance will be distributed on the panel member, thereby reducing local tension on a small portion on the peripheral skirt for enhanced reliability. Furthermore, as the interconnection means to facilitate sidewise interconnection of building blocks are behind the panel member, the risk of a building block coming out from the forward side, for example, due to damage of some of the interconnection means, are mitigated.
In an example, the entirety of the interconnection means is located rearward of the forward panel surface, such that the interconnection means is blocked from forward access by the forward panel surface when the interconnection means is engaged in sidewise locked interconnection with the adjacent building block.
For example, the panel member may form a stop portion of the female connection member which is adapted to stop movement of the male connection member of the adjacent building block to reach the forward panel surface on entering into the sidewise locked interconnection. Use of the panel member as a stop portion means there is no need to form a separate stop portion to restrict axial movement of the male member when in locked interconnection.
The boundary of the panel member defining the forward panel surface may include no sidewise indentation and no sidewise protrusion. This is beneficial as the boundary can be made to a preferred outline without being limited by the shape of the interconnection means. For example, the boundary of the panel member defining the forward panel surface may defines a circle, an oval or a convex polygon, and such a possibility is not available
For example, the female connection member may be adapted such that when the male connection member on the adjacent building block is blocked or stopped by the female connection member on advancing towards the forward panel surface, the forward panel surface of the adjacent building block is flush with the forward panel surface. This facilitates automatic alignment of the forward surfaces for expeditious assembly of building blocks.
An elongate aperture may be formed on the peripheral surface to define the female connection member, the elongate aperture being a cut-through on the peripheral skirt which extends from the free end of the peripheral skirt towards the panel member. A female connection member defined by a cut-through portion on the peripheral skirt is advantageous because it would be simpler to form and different forms of male connection member can operate with such a female connection member.
The female connection may have a wedge shaped profile in the sidewise direction to formed sidewise wedged engagement with the male connection member.
In an example, the male connection member projects orthogonally away from the peripheral skirt and comprises an elongate member which extends in a direction orthogonally to the forward panel surface, the elongate member terminates before reaching the forward panel surface.
For example, the male connection member may comprise a T-shaped portion projecting from the peripheral skirt, the end of the T-shaped portion most distal from the peripheral skirt is adapted to protrude into the receptacle of that adjacent building block to formed the side wise locked interconnection. The T-shaped member may comprise an elongate neck portion which connects the distal end of the T-shaped member to the peripheral skirt. The neck portion will pass through the peripheral skirt when making sidewise interconnection with an adjacent building block.
To enhance secured interconnection between adjacent building blocks, the interconnection means may be adapted for making mated interconnection with a counterpart complementary interconnection means in that adjacent building block.
Each interconnection means may comprise a mating member which extends in a longitudinal direction that is orthogonally to the forward panel surface and has its longitudinal ends retracted from the forward panel surface. In other words, the mating member is located below the forward panel surface and retracted therefrom. This provides distributed locked interconnection in the axial direction while concealing the interconnection means from the forward side of building block when in interconnection.
The mating member may comprise a wedging member for making locked interconnection with a counterpart complementary mating member on that adjacent building block. The wedging member is shaped to act to tighten the locked interconnection on reacting to a movement in a direction to separate the building block from that adjacent building block in a direction orthogonal to the peripheral surface or in a direction parallel to the forward panel surface.
For example, the interconnection means may comprise a male mating member, the male mating member projecting orthogonally away from the peripheral surface and extending as an elongate member in a direction orthogonally to the forward panel surface, and the male member stops before reaching the forward panel surface.
The male mating member may comprises a T-shaped member having a transversely extending end portion adapted to protrude into the receptacle of that adjacent building block to formed the locked interconnection.
The interconnection means may comprise a female connection member which defines an elongate indentation on the peripheral surface which is wedge shaped and which extends orthogonal to the forward panel surface. The indentation may stop before reaching the forward panel surface to providing blocking to prevent forward movement of a counterpart male mating member to move beyond the panel member.
The receptacle may be adapted for making mated engagement with a protruding portion of a counterpart building block.
As an example, the forward panel surface may be a top panel surface of a panel member, the panel member having a top panel surface and a bottom panel surface, and the peripheral surface defines a peripheral skirt which is downwardly dependent from the panel member and surrounds the bottom panel surface.
The interconnection means may be located at a level below the top panel surface and is adapted to be hidden by that adjacent building block when in locked interconnection therewith. Such an arrangement facilitates the construction of panels from interconnecting building block modules while mitigating unsightly joints of interconnection means as well as risks of removal of a building block through outside access.
The plurality of interconnection means may comprise at least one male mating member and at least one female connection member complementary to the male mating member.
The interconnection means may be located on a centerline on one side of the peripheral surface, the centerline being orthogonal to the forward panel surface.
The panel member may have a polygonal shaped top panel surface and peripheral surface, and the interconnection means may be located on each side of the polygonal peripheral surface.
Where the panel member has a circular or oval forward panel surface, the plurality of interconnection means may be distributed on the perimeter.
The forward panel surface may be a flat, leveled or textured surface.
The building block may be integrally formed of plastics.
A plurality of mating protrusions for making mated engagement with a counterpart building block may be distributed on the forward panel surface, the protrusions extending orthogonally to the forward panel surface.
In an example, there is described a panel assembly comprising a plurality of the building blocks described herein in locked interconnection.
The panel assembly may comprise a leveled or flat panel surface formed collectively from a plurality of the forward panel surfaces of the building blocks.
The above and other features of the building blocks will be described in more detail below.
Embodiments of building blocks and panels built therefrom will be explained below by way of example and with reference to the accompanying drawings or figures, in which:
The building block 100 of
The peripheral wall defines a compartment having an outline shape which substantially follows that of the panel member, and the second surface is an entry surface into the compartment. For an exemplary building block having a square panel member such as that of the first example, the peripheral skirt defines a square or substantially square compartment. In the exemplary building block, the thickness of the panel member and that of the peripheral wall are about the same. The compartment typically defines a receptacle for making mated interconnection with mating protrusions distributed on a building block underneath to form a vertically stacked assembly of building blocks. Building blocks in a vertical stack may be further interlocked to enhance structural robustness. In general, the receptacle is defined collectively by the panel member, the second surface and the peripheral wall. The example building block is integrally moulded of hard plastics to promote structural integrity, reliability and cost reduction.
A plurality of interconnection means is distributedly formed on the peripheral skirt 120. In the exemplary building block of
The male type interconnection member 132 comprises a wedge-shaped portion or a dovetail portion as an example of a wedging means which projects outwardly from the peripheral wall. The wedge-shaped portion comprises a boss or head portion which is distal from the peripheral skirt, and a narrowed neck portion which is intermediate the boss or head portion and the peripheral skirt. The neck portion comprises a stem member which projects orthogonally from the peripheral wall until joining a head or boss portion at an end distal from the peripheral wall. This stem portion also extends in a direction parallel to the upper panel surface. The boss or head portion tapers towards the peripheral skirt to form the wedging portion and the tapering stops before reaching the peripheral skirt so that a length of neck portion of a substantially uniform thickness is maintained immediately adjacent the peripheral skirt to provide adequate neck strength. The projected wedge-shaped portion is recessed from the upper panel surface and extends downwardly from a level below the upper panel surface towards the bottom of the peripheral skirt. The bottom of the wedge-shaped portion is flush with the bottom of the peripheral wall. The wedge-shaped portion has a substantially constant or uniform cross-section extending downwardly from the lower panel surface. As such, the wedge-shaped portion of the building block of
The female type interconnection member 134 comprises a recess which extends from a level below the upper panel surface until the bottom of the peripheral skirt, thereby defining a through elongate recess extending from the free end of the peripheral wall which is distal from the forward panel surface to the forward panel surface. The recess is complementarily shaped to the male interconnection member to facilitate mated interconnection. More specifically, the recess is a wedge shaped recess extending on the peripheral skirt in a direction orthogonally to the upper panel surface. The recess is elongate and has a substantially uniform cross section along its length. In other words, the axis of the recess is orthogonal or substantially orthogonal to the upper panel surface.
By having a pair of complementary interconnection members disposed at a level below the upper panel surface, or more specifically below the lower panel surface, sideway interconnection of building blocks can be facilitated without exposing the interconnection members on the upper panel surface. Such an arrangement mitigates the risk of inadvertent or deliberate removal of a building block from the outside of a structure, as the interconnection means is not directly viewable or accessible from outside. In addition, the interconnection means is disposed on a middle portion of the peripheral wall so that adjacent building blocks can be connected with edges easily aligned without complicated alignment requirements.
The second example building block 200 as shown in
The third example building block 300 as shown in
The fourth example building block 400 as shown in
The fifth example building block 500 as shown in
The sixth example building block 600 as shown in
An example panel assembly 1000 shown in
An example construction of the panel assembly 1000 is by placing all the building blocks on a supporting surface such that the second surfaces are facing upwards and the upper panel surfaces are facing the support surface. The first building block 100 having two male interconnection members on adjacent sides is then mounted onto the second 200 and sixth 600 example building blocks by inserting the male interconnection members of the first building block into the corresponding female interconnection members on the second and the sixth building block until the male interconnection member is stopped by the panel member in which case the upper panel surfaces 112, 212, 612 will be flush with each other. For example, the male connection member 132 of the first building block 100 is inserted into the female connection member of the second example building block 200 by making entry into the elongate recess 234 at the second surface of the second example building block and then advance along the elongate recess towards the panel member in a forward axial direction. Likewise, the male connection member 132 of the first building block 100 is inserted into the female connection member of the second example building block 600 by making entry into the elongate recess 634 at the second surface of the second example building block and then advance along the elongate recess towards the panel member in a forward axial direction. It will be noted that further advancement in the axial forward direction beyond the panel member will be blocked by the panel member. As the limit of forward axial movement is determined by the panel member, a building block can only be removed from the panel assembly in a backward axial direction, that is, in a direction moving from the panel member towards the second surface. As shown in
The other building blocks are assembled in the same or similar manner until all the building blocks are interconnected. It will be appreciated that the engagement, dis-engagement, interconnection or removal of building blocks has to be performed from behind the panel surfaces as the interconnection means are not accessible from the front panel surfaces. This mitigates the risk of vandalism as the location or presence of the interconnection means is not readily viewable from the front side. In addition, the interconnection means which are received behind the front panel surface also facilitate a neat junction pattern in a panel comprising the assembly of building blocks.
The eighth example building block 800 shown in
As this eighth example building block is substantially identical to the other example building blocks, descriptions on the other example building blocks is incorporated herein where appropriate to avoid duplication, except that the numerals are added by 100 or appropriate multiples of 100 without loss of generality.
An example building structure 4000 shown in
The panel assembly 4000 is then mounted onto a structure frame 3000 by moving in a backward axial direction towards the structure frame 3000 upon encountering the male connection members distributed on the structure frame 3000. As shown in
The receptacle on the underside of the panel member 910 may be a plain receptacle such as that of
In a second variation 900B of the ninth example building block as shown in
The third variation 900C of the ninth example building block as shown in
While building block examples have been explained with reference to the examples above, it will be appreciated that the embodiments are non-limiting examples only and should not be used for scope limitation or restriction. For example, while each of the exemplary building blocks includes a square panel member, the panel members could have any appropriate shapes such as polygonal, circular, oval or even irregular without loss of generality. Moreover, as the peripheral skirt follows the outline of the panel member, it follows that the peripheral skirt would be correspondingly shaped. For example, for application as a toy building block, the thickness of the panel member and/or the peripheral skirt may be in the region of 1.5-2.5 mm. While the above features have been explained with reference to plastic moulded exemplary building blocks, it will be appreciated that the building blocks can be moulded from concrete, metal, or other mouldable materials; or made from non-mouldable materials such as wood or metal components without loss of generality.
Number | Date | Country | Kind |
---|---|---|---|
11105900.5 | Jun 2011 | HK | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/IB12/52897 | 6/8/2012 | WO | 00 | 11/29/2012 |