The present invention relates to a building construction. In one form of the present invention there is provided a prefabricated building unit for transport as an ISO standard shipping container.
There is a need for affordable and sustainable mass produced buildings, and dwellings. The current techniques of building houses, for example, are typically very manual and expensive. Most of a typical house is constructed on site. Skilled labour is required to build the house and connect the required services. Furthermore, it takes a considerable amount of time, typically many months, to build a house.
It is against this background and the problems and difficulties associated therewith that the present invention has been developed.
According to the present invention, there is provided a building having internal flooring and a central roof section between two butterfly roof sections, wherein:
The present invention also provides a method of forming a building having internal flooring and a central roof section between two butterfly roof sections, the method including:
The present invention further provides a kit of parts for forming a building having internal flooring and a central roof section between two butterfly roof sections, the kit of parts including:
According to a first aspect of preferred embodiments herein described there is provided a building construction comprising a body portion having a floor extension adapted to extend from the body portion and provide a floor area wherein the floor extension includes a fitting facility for receiving a building module.
According to a second aspect of preferred embodiments herein described there is provided a building construction having a body portion of a box configuration suitable for transportation as a transport container wherein the body portion has an upper structure having at least two elongate upper external edge portions with a gutter arrangement disposed inwardly of and along at least one of the two elongate upper edge portions.
According to a third aspect of preferred embodiments herein described there is provided a building construction comprising: a body portion and a gutter arrangement wherein the gutter arrangement includes a moveable hinge portion and a gutter portion, the moveable hinge portion being adapted to mount a roof extension to the body portion, the moveable hinge portion being movable to allow the roof extension to be inclined at angle relative to the body portion in a position adjacent the gutter portion such that when water falls onto the roof extension the water will flow downwardly along the roof extension into the gutter portion.
According to a fourth aspect of preferred embodiments herein described there is provided a building construction comprising: a body portion having an upper structure and a lower structure, the lower structure being adapted to provide at least one water compartment, the at least one water compartment being adapted to be emptied and provide the lower structure with sufficient buoyancy to lift the body portion in flood conditions.
According to a fifth aspect of preferred embodiments herein described there is provided a building construction comprising: at least one module, the or each module being adapted to be provided as ISO shipping container, when in a transport condition; the at least one module being adapted to provide a building body which has a floor area at least 2.5 times the combined horizontal area of the modules, when in the transport condition; and a panel system comprising a plurality of interchangeable panels allowing the building to be provided with different facade layouts suited to different site orientations and other conditions.
According to a sixth aspect of preferred embodiments herein described there is provided a building construction comprising: a body portion; and panel system; wherein the panel system comprises a number of interchangeable panels that can be arranged to provide the body portion with different facade layouts so as to adapt building to different site orientations and conditions.
According to a seventh aspect of preferred embodiments herein described there is provided a building construction for providing a building, the building construction comprising a body portion, a floor extension and a moveable hinge portion, the hinge portion mounting the floor extension to the lower end of the body portion such that the floor extension is moveable between collapsed and extended conditions; wherein in the collapsed condition the floor extension provides side walls of the building construction at least in part providing the building construction with ISO shipping certification; further wherein the building construction comprises a roof extension that is put onto the building after the floor extension has been moved to the extended condition, the floor extension being of a heavy weight in comparison to the roof extension.
According to an eighth aspect of preferred embodiments herein described there is provided a method of construction comprising: providing a building construction; swinging out floor extensions provided as side walls that at least in part provide the building constructions as an ISO shipping container wherein the floor extensions are of a substantial weight; and then attaching roof extensions to the building construction where the roof extension are of a relatively light weight.
According to a ninth aspect of preferred embodiments herein described there is provided a method of construction comprising: providing a building construction, positioning roof and flooring extensions relative to a body of the building construction; and providing a flotation arrangement beneath the floor extensions to assist with lifting the building construction during flood conditions.
According to a tenth aspect of preferred embodiments herein described there is provided a method of construction comprising: providing a building construction; extending floor extensions to provide an extended floor area; using a facility of the floor extensions to receive a building module; positioning the building module such that the building module provides a portion of the floor area of the building construction.
According to an eleventh aspect of preferred embodiments herein described there is provided a method of construction comprising: providing a building construction; positioning roof and flooring extensions relative to a body of the building construction; using a hinge of a gutter arrangement to dispose the roof extension in an inclined condition relative to the body of the building construction such that when water falls onto the roof extension the water flows flow downwardly along the roof extension into the a gutter portion of the gutter arrangement.
According to a twelfth aspect of preferred embodiments herein described there is provided a unit for a building, the unit comprising: a base; and a roof supported above the base.
According to a thirteenth aspect of preferred embodiments herein described there is provided a building construction providing a transportable module, the transportable module providing kitchen or bathroom facilities for installation within a larger building construction.
As will be discussed there are considered to be a number of preferred arrangements of the present invention that advantageously:
Further aspects, advantages and preferred features will be apparent from the drawings, claims and a reading of the specification as a whole.
It is to be appreciated that each of the embodiments is specifically described and that the present invention is not to be construed as being limited to any specific feature or element of any one of the embodiments. Neither is the present invention to be construed as being limited to any feature of a number of the embodiments or variations described in relation to the embodiments. The term building construction is to be understood as embracing transportable modules and building assemblies.
In order to facilitate a better understanding of the present invention, several preferred embodiments will now be described with reference to the accompanying drawings, in which:
a to 20f illustrate a further system and method according to a further embodiment;
Referring to
As shown in
The first side footings 16 and the opposite side footings 20 form a plurality of rows 26 comprising a first row 28, a second row 30, a third row 32, and a fourth row 34. Advantageously the slide structure 22 provides a first intermediate footing 36 and a second intermediate footing 38 that form part of the first row 28.
Of the intermediate footings 18, an intermediate footing 40 forms part of the second row 30, an intermediate footing 42 forms part of the third row 32 and an intermediate footing 44 forms part of the fourth row 34.
As shown in
The second building construction 12 is placed on: (i) the opposite side footings 20 of the first row 28 and the second row 30; as well as on (ii) the intermediate footing 36 and the intermediate footing 40. The intermediate footing 36 and intermediate footing 40 are provided as “T” footings to advantageously support both of the building constructions 12. In the method 10 the building constructions 12 are secured to the footings.
The two building constructions 12 are each provided as a standard container module 46 certified to meet ISO shipping standards. Each of the standard modules 46 comprises a body portion 48 having an advantageous gutter arrangement 50.
As shown in
The floor extensions 56 are provided in the form of outer panels and, in the method 10, are unfolded to form a floor area 62 as shown in
Advantageously in the embodiment, the floor extensions 56 are of a relatively heavy weight in comparison to the roof extension 66 so as to provide weight to base of the final building. Advantageously, the floor extensions 56 provide a floor area that feels similar to a house having a concrete floor in terms of the stability provided. By folding down the floor extensions 56 first the heaviest part is folded down. The roof extension 66 can then be advantageously provided by lighter roof components that are subsequently connected in the intermediate position 72 shown. Assembly in this vertical-type position allows the person assembling the building to advantageously assess the quality of the water proofing of the completed roof extension 66. Six roof components 68 are provided within each of the constructions 12 during transport to provide the overall roof extensions on either side.
Returning to
In the method 10, as shown in
The form and arrangement of the building structure 86 is considered to be advantageous given that the hinge portions 52 are moveable from a vertical position shown in
The provision of the gutter arrangement 50 as described and shown in the drawing is considered to serve to advantageously protect the body portions 48 for water seepage and to provide advantageous water capture in a prefabricated two module container system.
Referring to
The gutter arrangement 94 is provided as an elongate channel 102 having a first lateral side portion 104 and a second lateral side portion 106. The first lateral side portion 104 is configured for extending along the length of the body portion 92 and the second lateral side portion 106 is configured for extending along an edge portion 108 of the roof extension 100.
In the embodiment the gutter arrangement 94 is provided on a first side 110 of the building construction 90 and a ‘mirror image’ gutter arrangement 112 is provided on an opposite side 114. The gutter arrangement 94 and the gutter arrangement 112 form an overall gutter arrangement 116.
When in a condition for transport, both the gutter arrangement 94 and the gutter arrangement 112 are advantageously protected by lateral elongate side panels of the body portion 92 in the form of two floor extensions 118. The two floor extensions 118, in the transport condition, extend upwardly to protect the gutter arrangement 94 and the gutter arrangement 112 from sideways damage which could be caused by say a forklift.
As shown in
In the gutter arrangement 94, the hinge portion 96 comprises an elongate butt hinge 122 having a first leaf 124 for connection to the gutter portion 98 and a second leaf 126 for connection to the roof extension 100 as shown. Various hinge and connection arrangements are of course possible.
The body portion 92 has a slightly inclined upper portion 128 for causing water falling on the included upper portion 128 to flow into the gutter arrangement 94. In the embodiment the upper portion 128 is inclined by being slightly convexly shaped.
As discussed each lateral side of the building construction 90 is provided by an elongate floor extension 118 adapted to extend from the lower portion of the body portion 92 and provide a floor area. The floor extensions 130 are latched in position for transport purposes. The floor extensions extend slightly beyond the central main portion 132 of the body portion 92 to provide strength during transport. The width of each elongate floor extension 130 (vertical height) is only slightly greater than the height of the main portion 132 of the body portion 92.
Advantageously, the hinge portion 96 of the gutter arrangement 94 allows for the roof extension 100 to be substantially wider than the height of the body portion 92 such that when the building is assembled there is provided a desirable feeling of spaciousness and comfort.
The embodiment is considered to provide a building construction 90 having a body portion 92 of a box configuration suitable for transportation as a transport container. The floor extension 130 provides an upper structure having at least two elongate upper external edge portions 134 provided by the floor extensions 118 with the gutter arrangement 94 and the gutter arrangement 112 being disposed inwardly thereof. The gutter arrangements extend along the external edge portions 134 and provide a channel 120 on the upper portion for the flow of water. The building construction 90 is considered to be advantageous for reasons discussed above.
Turning to
Each of the modular building constructions 138 includes a body portion 140 having a floor extension 142 pivotally attached to a lower portion of the respective body portion 140. In other embodiments a pivotal attachment may not be provided, and the floor extensions 142 may be positioned manually with say straps and chains that are used to constrain the lower edge of each floor extension 142 during lowering. Notably, with a manual positioning system, without an integral pivot, it is also preferred that the floor extensions are mounted vertically on the sides of the main chassis of the building construction 138 during transport. This may be advantageously achieved with a bolting system as is discussed in further detail below with reference to
Returning to the embodiment of
Moreover, each floor extension 142 includes a fitting facility 146 for receiving a building module 148 in the form of a kitchen or bathroom module 150 (See
Referring to
As shown in the Figures, the recesses 154 are together positioned on a lateral outer edge of the building construction 136, and are centrally positioned. Whilst each of the building constructions 138 provides a recess that receives only half of the horizontal cross-section of the building module 148, the recess 156 of the overall building construction 136 receives the full cross-section of the building module (in the horizontal plane). This is illustrated in
Before the building module 148 is installed, a number of water tanks 158 are provided in the centre of the building construction 136. This is illustrated in
As shown in
As shown in
In the embodiment the building module comprises a kitchen/bathroom module. Each floor extension is adapted to be mounted vertically when in a transport condition and then to be position horizontally to provide the floor area. The removable portions are provided adjacent a top corner of the floor extensions so that when removed a recess is relatively centrally provided to accommodate the floor of a rectangularly configured recess/fitting facility. Whilst the removable portions are preferred other mounting arrangements allowing the incorporation of a kitchen/bathroom module are of course possible. The overall recess provided receives the full floor area of the building module.
Referring to
Additionally
After unbolting, the floor extensions are moved from a vertically mounted position and are then positioned horizontally to form an extended floor area. This can be achieved by several methods including say manually with straps, chains or brackets that constrain the lower edge during assembly. The floor extensions 141 span the full height to the main chassis 143. This is considered to be advantageous.
The building unit 139, in this embodiment, comprises a single/unitary 40′ft reinforced container rather than two 20′ containers placed end to end. This is considered to significantly reduce the number of components required and therefore cost, as well as to simplify transportation and installation in several cases. The fixing arrangement comprises the floor extensions 141 being bolted by extending the bolts 151 through the main peripheral frame 155 of each floor extension 141. This is also considered to be advantageous for the reason that the bolts are able to advantageously transfer impact loads and maintain the floor extensions 141 in a desirable position during transportation.
Referring to the Figures it is also shown that the floor extensions 141 each advantageously form a complete side of the container vertically and horizontally with respect to the chassis 143. The floor extensions 141 provide ISO standard corners 157 as part of their outer frame 155. The ISO standard corner castings 157 are separate, as shown, from the centre chassis 143 to which the floor extensions 141 are bolted. By bolting in this manner, the floor extensions 141 are advantageously secured in a steadfast manner.
The floor extensions 141 each provide a structural frame of a similar structural reinforcement to the chassis 143 to which they are bolted.
During installation the floor extensions 141 are detached from the centre chassis 143 of the container, are lowered in to position using a pivoting motion (but without an integral pivot) and then are re-attached by bolting.
In addition, one of the floor extensions 141 of the unitary 40′ft building unit 139 advantageously provides a fitting facility. The fitting facility is advantageously adapted to receive a separate building construction in the form of a kitchen or bathroom module. It is considered that allowing a separate building unit to be inserted into the container, enables the advantageous provision of relatively full sized rooms. In comparison to other container building units the kitchen and bathroom is not positioned in the relatively narrow central spine of the 40′ container. In the embodiment, a kitchen and bathroom module is received within/on one of a floor extensions 141 extending from the base of the chassis 143.
Referring to
A first carrier element 185 is mounted to the first end 179 and a second carrier element 187 (not shown) is mounted to the second end 183. The carrier elements 185 and 187 are removably attached to the chassis 172 and have a relatively flat planar configuration. The removable attachment is provided a number of bolting elements as shown. The carrier elements 185 and 187 are of a shape protecting the periphery of the chassis 173 and substantially span the full width and height of the ends 179, 183.
The carrier elements 185, 187 each include ISO corner elements 189. The modular unit 169 is provided to ISO shopping container standards. Furthermore, the modular unit 169 is designed to provide both kitchen facilities and bathroom facilities for a larger modular. unit of the type described above. By providing the majority of the plumbing and kitchen facilities in the modular unit 169, other material such as roofing can be advantageously transported in the larger modular unit (40 ft). The smaller modular unit 169 containing the kitchen and bathroom facilities is separately transported to the assembly site. The applicant considers that this is advantageous.
The modular unit 169 may include low friction material on its lower surface to assist with being moved on a plurality of bearers mounted to the large modular unit during assembly. This could for example comprise a strip of nylon material. It is preferred that a winch is connected to the inner edge of a recess provided within a floor extension of the larger modular unit, and that the smaller unit 169 in pulled on the bearers using the winch. By bolting to the larger unit the bearers can be advantageously used to provide a guide. The system is preferably able to be installed by two or three relatively unskilled persons.
Another advantage of the approach is considered to be that it allows one to relatively maximise the floor area of the house. The applicant considers that such a design in combination with a modular roof system could possibly give a substantial additional effective floor space in some embodiments. . This is considered to allow for the design of more generous spaces which contribute to the overarching goal of creating a home that looks and feels like a site built house. Kitchen and bathroom facilities are centrally located on a floor extension rather than in the main chassis. During transportation, the relatively empty chassis of the larger unit can be advantageously used to transport other material such as roofing panels. This provides several advantageous assembly aspects on site.
Referring to
The water compartment 170 comprises a symmetrical arrangement adapted to accommodate a plurality of footings 172 extending therethrough and to allow the building to be formed using two ISO certified containers. The water compartment 170 is fitted within the lower structure 168 so as to form part of the lower structure 168 and extend around along the boundary thereof.
The building construction 162 includes a vertical guiding system 174 that is adapted to guide the body portion 164 up and down during flood conditions. The vertical guiding system 174 comprises four guiding members 176 that are adapted to guide the body portion 164 up and down.
The building construction 162 is considered to be particularly advantageous for use in floodplain areas that are subject to flooding. Generally where houses are formed from ISO complaint shipping containers they would otherwise be washed away.
In the embodiment the building construction 162 is provided by positioning the roof and flooring extensions relative to two prefabricated units and providing a flotation arrangement beneath the floor extensions.
Referring to
The building system is considered to be particularly advantageous as it allows the provision of a building formed from ISO certified shipping containers where the building is able to be desirably adapted by builders to suite the site orientations. Owners can also advantageously decide where to position windows, doors as well as internal walls.
Similarly to the previous embodiments described, the building body 180 as assembled includes a floor portion 190 that forms part of the sides of the modules 182 when the modules 182 are provided in the transport condition. The floor portion 188 forms at least part of the floor area 184 in the building body. Advantageously the interchangeable panels 188 are arrangeable, around the boundary of the floor area 185 to provide the different facade layouts.
As shown in
Advantageously by providing a modularised construction with the panel system, mass manufactured container type houses are considered to be able to be readily manufactured. Different positions of facade and internal layouts can be readily provided.
As shown in
The wall panels of the panel system 186 are hung at the top and then attached with screws along the sides and the bottom for the pressure seals to be sufficiently watertight.
In addition in the completed unit the are no cables in the exterior wall panels, all the power and plumbing runs through the main floor structures and the centre chassis. Floor boxes are used rather than standard wall mounted outlets) to provide power outlets to each room.
As detailed above, several preferred embodiments are considered to provide a number of systems and methods that advantageously:
In terms of the
As shown in
The building 312 is delivered as one or more units in a collapsed state. In the collapsed state the building 312 has an external form commensurate with a shipping container, such as an ISO shipping container. Another label for a shipping container, in the context of this document, is an intermodal container. For example, the base may have the same footprint as the base of an ISO shipping container, the roof may also have the same width and length as the roof of an ISO shipping container, and the side walls may also have the same width and length as corresponding side walls of an ISO shipping container. The external form of the collapsed unit may, in some alternative embodiments, be commensurate with a non ISO container standard. The United States often uses longer units at 48 ft (14.63 m) and 53 ft (16.15 m). Some European containers are about 2 inches wider at 2.5 m (8 ft 2.4 in) to accommodate Euro-pallets. Australian RACE containers are also slightly wider to accommodate Australia Standard Pallets.
The unit, in this particular embodiment, is not a shipping container but has been constructed to take certain features of a shipping container so that it can be transported over an intermodal freight transport system which may comprise, for example, a container ship, a container train, a truck, and specialized container handling equipment such as a portainer. In another embodiment, however, the unit is a shipping container that has been suitably modified.
In a particular embodiment, the outer form of the unit is commensurate with a high cube shipping container. High cube containers have a width of around 2.44 m (8 feet), and a height of 2.89 m (9.5 feet). High cube containers are available in lengths of, for example, 10, 20, 30 or 40 feet. The length of the unit in this, but not necessarily all embodiments, is 20 feet.
The building 312 is be assembled by extending the unit onsite, typically in a few weeks by an owner/builder, or by an experienced construction crew in a matter of days.
In step 2, caps such as 374 are removed from the ends of the units, and then the units 310,311 are positioned end to end upon the site by, for example, a crane that is a part of the truck. In this case, the units 310,311 are located on a plurality of columns 360 (as shown in
In the following, the method will be explained further with reference to unit 310, although it is to be understood that similar steps may be performed with unit 311.
As shown in step 2, the unit 310 has a rectangular roof extension 18 folded down to form a sidewall but which may be extended to form an extension of the rectangular roof 316 of the unit 310. During transport, the roof extension 318 is fastened down in a collapsed position by clamps, cables, or ties for example. Before the roof is swung up it is released.
When the roof extension 318 is swung up into an elevated mode, as shown in step 3, rectangular base extension 320, which may form an extension of a rectangular base 314 of the unit 310 when folded down, is revealed. The base extension 20 is fastened during transport. When it is to be swung down, the base extension 20 is first released.
As shown in step 4, the base extension 320 is swung down to form a larger floor area than that provided by the base 314 alone.
In step 5, the sub unit 374, which in this example has a form commensurate with a 20 foot ISO container, is disposed within the one or more units. In this example, the sub-unit is not a high cube container. The sub unit 374, in this embodiment, may be a bath and/or a kitchen and may have all of the plumbing and other services in place. The sub-unit may have one or more doors, for example opening into the kitchen and/or bathroom.
In step 6, the roof extension 18 has been swung down from the elevated mode into an extended mode.
In step 7, panels are placed around the periphery of the extended unit 310, the panels being, for example, wall panels, doors and exterior windows. The panels may be all of the same width, typically but not necessarily 1.2 m, and so the panels are interchangeable. Generally, the use of panels is greatly simplified when the roof extension is extended before the floor extension is extended.
The various stages of the erection of another embodiment of a building 312 are shown in more detail in the Figures. Similar parts to those shown in
As shown in
The unit 310 has a roof extension 318 which can adopt a collapsed, an extended, or an elevated mode. In
When the unit is in a collapsed mode, located behind the roof extension 318 is a base extension 320. The base extension 320 can adopt either a collapsed mode or an extended mode. In
Because the roof extension is of greater width than the roof extension the house is provided with an awning. The awning advantageously improves passive thermal management making the house more sustainable.
The roof extension 318 has a proximal edge 322 adjacent the roof 316 and also a distal edge 324. When the roof extension 318 adopts the collapsed mode, the distal edge 324 is located adjacent the base 314. In the extended mode, however, the distal edge 324 of the roof extension 318 is elevated above the proximal edge 322 of the roof extension 318, as shown in
As shown in
The roof extension in the elevated mode, as shown in
As shown in
The hinge 342 is configured so that the roof extension 318 can be swung either above or below the roof 316 and so adopt various positions used during transport, construction and final use of the building. This may be impossible using prior art arrangements. A hinge that provides movement along a path rather than around an axis may be used. That is, it may be advantageous to use a hinge that has two or more degrees of freedom, such as for example the double hinge shown in
The, unit 312 has a water proofing material over at least a portion of a boundary between the roof and the roof extension. In this embodiment, the material takes the form of a strip of water proof membrane, such as a strip of PVC plastic sheet or a bituminous sheet. In other embodiments, the water proofing material may be a membrane applied as a fluid and allowed to set, such as silicone.
Typically, the roof extension 318 is swung between the collapsed and extended modes around the hinge 344 however it will be appreciated that the roof extension need not be hinged. In alternative embodiments, the roof 316 (or even the base 314) can be detached from the unit and then reattached in the required position or mode.
As can be seen in
As shown in
As shown in
The embodiments of the unit 310 and sub unit 374 shown are each configured to receive one or more services such as a water service, a gas service, an electrical service, a communication service such as telephone or internet and a sewerage service. For example, the unit 310 may come with one or more of an electrical distribution board and electrical outlets, apertures for receiving pipes and cables therethrough and ducts for pipes and cables; as appropriate. The apertures may be capped for transport and handling of the unit. An exterior service of the unit can comprise an electrical connector for connection to the grid. The connector may be recesses. Electrical wiring may be located within a floor cavity, for example. Generally, no additional electrical work needs to be done inside the house on site besides connecting the house to an electrical supply such as an electrical grid. In this embodiment the sub-unit 374 has a toilet, shower, stove, and oven all connected to service conduits such as wires and pipes, for example, within the unit.
The sub-unit of this embodiment has a base that is removed prior to being disposed within the one or more units. In this case, there is no step into the interior of the sub-unit from the unit.
The sub-unit 374 has a vessel 388, shown in
As can be seen in
As shown in
The base extension may have a proximal edge adjacent the base and a distal edge. The distal edge is, in this but not necessarily all embodiments, configured to receive a respective edge of a panel. In this particular embodiment, the distal edge is configured to engage the panel by a pair of cooperating elements, each of the pair of elements being located on one of the distal edge and panel respectively. The cooperating elements may comprise a pin configured to be located in a corresponding recess. In another embodiment, however, the cooperating elements may comprise a protruding rib configured to be located in a corresponding slot. Generally, any suitable engaging elements may be employed. It may be preferable, in some embodiments, to have the male element, such as a pin or rib, located on the panel. This is because a male element located on the distal edge of the base extension would be vulnerable to snagging and/or damage as the building is erected. A male element on the panel is afforded some protection by virtue of the adjacent structures, most notable a downward projecting flange 408 shown in
The final building 312, such as that shown in
Typically, embodiments of the unit 310 are configured to receive at least one solar collector such as a photovoltaic panel or solar hot water heater. The roof or roof extensions may have mounts 374 attached or formed therein ready to engage a solar collector or a solar collector supporting member. In the present embodiment, mounting plates 374 (
Thus in one aspect of the invention there is provided a unit for a building, the unit comprising: a base; and a roof supported above the base.
The unit may be prefabricated in a factory and form at least part of a prefabricated or modular building. Mass production techniques may be employed to reduce costs and construction time. Because units from the factory may be similar or identical economies of scale may be realised reducing costs. A quality, for example one or more of energy rating, sustainability of the materials used, or build quality, of the unit may be greater and more certain when produced in a controlled environment typical of a factory.
In embodiments, the unit comprises a roof extension, having a collapsed mode and an extended mode, in the collapsed mode a surface of the roof extension is also an external side surface of the unit, and in the extended mode the roof extension is an extension of the roof. The roof extension in the extended mode may make an angle of 50-135 degrees with the roof extension in the collapsed mode. The roof extension has a proximal edge adjacent the roof and a distal edge that is, in the extended mode, elevated above the proximal edge.
The collapsible unit may be easily transported in the collapsed mode and still provide significant building space in the extended mode. The distal edge being elevated above the proximal edge is desirable for architectural reasons, including giving more internal space and a greater sense of openness when looking outward from within the building. Without the elevated distal edge the building may feel unacceptably confined to a person, who may even experience claustrophobia.
The roof extension also may have an elevated mode wherein the distal edge of the roof extension is located over the roof. The roof extension in the elevated mode may make an angle of 180-270 degrees with the roof extension in the collapsed mode. The roof extension may be one of two roof extensions. In the elevated mode respective distal edges of the two roof extensions may be brought together.
When the roof extensions are in the elevated mode they are conveniently out of the way during work performed at the level of the base. The roof extensions are less likely to be damaged while in the elevated mode during the work. The extensions may be substantially self supporting when the respective distal edges are brought together, reducing the need of building tools/equipment.
In one embodiment, in the collapsed mode the roof extension extends at least in part between the base and the roof. The roof extension when in the collapsed mode may extend between the base and the roof.
A roof extension that extends between the base and the roof may form a superior barrier to external interference such as from bumps, moisture etc. during transport.
In preferred forms, the roof extension is pivotally attached to the roof. The roof extension may be attached to the roof via a hinge such that the roof extension can be swung above and below the roof.
Preferably, the roof extension is swung between the collapsed, extended and elevated modes around the hinge. The hinge has more than one degree of freedom. The hinge may be a double hinge.
Preferably, the roof extension is configured to receive at least one solar collector. Retrofitting buildings with fittings to engage a solar collector may be more expensive than including the fitting during fabrication of the unit. Ad hoc installation may cause inadvertent d age to the building, for example if apertures for fasteners need to be made.
Preferably, the unit comprises a water proofing material disposed at least a portion of a boundary between the roof and the roof extension.
In forms, the unit comprises a base extension having a collapsed mode and an extended mode, in the collapsed mode the base extension extends at least in part between the base and the roof, and in the extended mode the base extension is an extension of the base. The base extension when in the collapsed mode may extend only in part between the base and the roof. The base extension may have a proximal edge adjacent the base and a distal edge. The distal edge may be configured to receive a respective edge of a panel. The distal edge may be configured to engage the panel by a pair of cooperating elements, each of the pair of elements being located on one of the distal edge and panel respectively. The cooperating elements may comprise a male element, such as a pin, configured to be located in a corresponding female element, such as a recess. Alternatively or additionally, the cooperating elements may comprise a protruding rib configured to be located in a corresponding slot. The panel may comprise at least one of a window, a wall panel and a door.
A collapsible base provides easier transport while allowing significant floor space. The use of interchangeable panels may greatly extend the flexibility of the design of the building. The panels may aid in waterproofing the building, especially compared with, for example, wall panels that are hinged to the building.
In forms, the roof is supported above the base by a plurality of posts extending between the base and the roof. Each post may be offset from a respective corner of the base. The posts may each comprise a steel tube.
Offset posts may not interfere with the roof extension and/or base extension providing more design freedom and may maximise roof and/or base extension area. When the base extension and the roof extension are in respective collapsed modes, the roof extension forms an external side surface of the unit behind which the base extension is disposed.
The external side surface may be a relatively tough surface, such as steel, which protects the base extension and other p internal of the unit during transport.
In one form, the base extension is configured, when in the extended mode, to be supported by a plurality of columns. Columns may provide a level structure on which the base and base extension can be housed and reduce the ingress of moisture and/or pests into the building.
One or more dimensions of the unit are commensurate with the dimensions of a shipping container. When the roof and base extensions are in respective collapsed modes, the unit may have the dimensions of a shipping container. The shipping container may be an ISO shipping container. The ISO shipping container may be a high cube shipping container.
A unit which takes aspects of an ISO shipping container may conveniently take advantage of the existing shipping and handling infrastructure for shipping containers. Furthermore, the unit may be configured to receive one or more services. The unit may comprise conduits for the one or more services. At least one service may comprise one or more of a water service, a gas service, an electricity service, a communications service and a sewerage service. The requirement for on site tradesmen may be thus reduced.
In one embodiment, the unit comprises opposing ends that are open. In one embodiment, an end of the unit is capped by a cap. The caps may assist in sealing the unit against the ingress of moisture etc: during transport. The caps may also provide engaging means for the existing shipping transport and handing infrastructure to engage, and may subsequently be removed on site without compromising the design of the building. Removable caps provide greater freedom to configure the ends of the building which may otherwise be aesthetically unsatisfactory. The cap, which may be fabricated from a strong material such as steel for transportation and handling considerations, may be used as part of the building, instead of being unnecessarily used as ends of the building.
In forms, the unit is configured to be supported on a plurality of columns. The unit may be configured to receive within it a sub unit having dimensions commensurate with a shipping container. The sub-unit may have external dimensions of a non-high cube shipping container. The sub-unit may comprise a vessel adapted to contain a thermal mass. The sub unit may have a complete kitchen and/or bathroom, for example, reducing the requirements for tradesmen on site. The use of a thermal mass may stabilise the internal temperature of the building. The vessel may be installed when empty and subsequently filled, with water from a pipe for example, which makes handling easier. Thermal masses are typically between 1000 and 10,000 kg and are thus difficult to handle. A sub-unit the height of a standard ISO shipping container may fit within units having the height of a high-cube container.
In a second aspect of the invention, there is provided a sub-unit adapted to be received by a unit in accordance with the first aspect of the invention. In embodiments, the sub unit comprises a door. The sub-unit may comprise one or more services. The sub-unit may comprise a bathroom. The sub-unit may comprise a kitchen. The sub-unit may comprise a vessel adapted to contain a thermal mass. The vessel may be a water tank.
In another aspect of the invention there is provided a method of erecting a building, the method comprising the steps of: providing a unit in accordance with the first aspect of the invention with the roof extension in the collapsed mode; and causing the roof extension to adopt the respective extended mode.
In an embodiment, the method comprises the step of causing the roof extension to adapt the elevated mode. In an embodiment, the method further comprises the steps of causing the base extension to adopt the respective extended mode. A distal edge of the base extension may receive a panel after the base extension is caused to adopt the extended mode. In an embodiment, the method comprises the step of disposing one or more posts between the roof extension and the base extension. Most or all of the load of the roof extensions may be taken by the posts, instead of the panels for example, which provides considerable freedom in design. For example, the panels need not be load bearing and their other aspects, such as visual appearance, may be thus accentuated.
In an embodiment, the method comprises the step of locating the unit on a plurality of columns. The method may comprise the step of installing the plurality of columns. In an embodiment, the method comprises the step of disposing a sub unit within the unit. The sub-unit comprises a bathroom and/or kitchen.
In an embodiment, the step of causing the roof extension to adopt the respective extended mode occurs before the step of causing the base extension to adopt the respective extended mode.
In another aspect of the invention, there is provided a method of erecting a building comprising the step of, during erection, disposing a vessel adapted to contain a thermal mass in the building. In an embodiment, the vessel, when disposed in the building, is empty. The method may comprise the step of disposing the thermal mass in vessel. The vessel may be adapted to hold water. The step of disposing the thermal mass in the vessel may comprise filling the tank with water. In an embodiment, the vessel is part of a sub-unit in accordance with the second aspect of the invention and the step of disposing the vessel in the building comprises the step of disposing the sub-unit in the building. In an embodiment the method comprises the step of providing a unit in accordance with the first aspect of the invention and extending the unit.
According to yet another aspect of the invention there is provided an exterior panel for a building, the panel comprising: a first end and a second end spaced apart from the first end; a flange attached to one of the ends and adapted to engage an edge of either one of a base of a building and an extension of a base of a building. The panel and particularly the flange may provide thermal insulation, and may improve the water proofing of the building. In an embodiment, the flange has a surface which is adapted to be an exterior surface. In an embodiment, the flange is substantially in the same plane as a surface of one of the ends. In an embodiment, the flange comprises an insulating material. In an embodiment, the panel is configured to engage the building by a pair of co-operating elements, each of the pair of elements being located on one of the building and panel respectively. In an embodiment, the panel comprises a surface disposed between the ends. A corner may be located directly behind the flange. The corner may be adapted to receive an edge of the building. The flange may be attached to one of the ends. The flange may be is parallel to the surface disposed between the ends. In an embodiment, the flange is configured to conceal the edge.
In another aspect of the invention there is provided a collapsible wall comprising: first and second sheets of material; a structure attached to the first and second sheets having an extended mode and a collapsed mode, wherein the sheets are relatively closer when the structure is in the collapsed mode than in the extended mode.
The collapsible wall may be collapsed during, for example, transport and storage but expanded when installed in the building. In an embodiment, the structure comprises a hinge. The structure may comprise a double hinge. The hinge may comprise first and second leaves, the first leaf being attached to the first sheet and the second leaf being attached to the second sheet. In an embodiment, the structure is located between the sheets.
According to a further aspect of the invention there is provided a unit for a building , comprising: a base; a roof supported above the base; a roof extension having a collapsed mode and an extended mode, in the collapsed mode a surface of the roof extension is also an external surface of the unit and in the extended mode the roof extension is an extension of the roof, the roof extension having a proximal edge adjacent the roof and a distal edge that is, in the extended mode, elevated above the proximal edge.
In an embodiment, the unit comprises: a base extension having a collapsed mode and an extended mode, in the collapsed mode the base extension extends at least in part between the base and the roof, and in the extended mode the base extension is an extension of the base. In an embodiment, the roof extension also has an elevated mode wherein the distal edge of the roof extension is located over the roof.
In a further aspect of the invention there is provided a modified shipping container comprising: a base; a roof supported above the base; a roof extension having a collapsed mode and an extended mode, in the collapsed mode a surface of the roof extension is also an external surface of the unit and in the extended mode the roof extension is an extension of the roof. In an embodiment the roof extension has a proximal edge adjacent the roof and a distal edge that is, in the extended mode, elevated above the proximal edge.
Further advantages and preferred features will be apparent from the drawings and a reading of the specification as a whole.
It is to be recognised that the embodiments described may be partly conceptual in nature, and that the applicant is developing further arrangements that are more likely to be put into commercial use.
It is to be recognised that various alterations and equivalent forms may be provided without departing from the spirit and scope of the present invention. This includes modifications within the scope of the appended claims along with all modifications, alternative constructions and equivalents. There is no intention to limit the present invention to the specific embodiments shown in the drawings. The present invention is to be construed beneficially to the applicant and the invention given its full scope.
In the present specification, the presence of particular features does not preclude the existence of further features. The words ‘comprising’, ‘including’ and ‘having’ are to be construed in an inclusive rather than an exclusive sense.
It is to be recognised that any discussion in the present specification is intended to explain the context of the present invention. It is not to be taken as an admission that the material discussed formed part of the prior art base or relevant general knowledge in any particular country or region.
Number | Date | Country | Kind |
---|---|---|---|
2011901059 | Mar 2011 | AU | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/AU2012/000309 | 3/22/2012 | WO | 00 | 9/20/2013 |