Materials and methods for constructing buildings generally take into consideration many factors, such as structure, cost of materials, ease of construction, utilities, and energy efficiency for heating and cooling. For residential construction in North America, wood frames are commonly used in buildings. Walls generally are constructed using a frame of studs, to which a sheathing and siding typically is applied on the exterior, and wallboard or other kind of surface typically is applied on the interior side. Contained air spaces between studs and wall surface materials typically are used for running electrical, telephony, computer networking, and other utilities. To provide better energy efficiency for heating and cooling, the primary solution used in modern wood-framed residential construction is to place material insulation in contained air spaces where needed. In metal-framed construction, continuous material insulation generally is applied outside the sheathing layer. Open air spaces with ventilation also are typical with brick-clad and other types of facades to drain moisture accumulation within a wall or other structure.
This Summary introduces a selection of concepts in simplified form that are described further below in the Detailed Description. This Summary neither identifies key or essential features, nor limits the scope, of the claimed subject matter.
Instead of focusing solely on material insulation as a solution for energy efficiency, a wall construction, or other opaque structure of a building, can include a sequence of highly reflective insulation elements that block heat energy exchange across air spaces, combined with material insulation supporting a heat energy highly reflective surface of the highly reflective insulation element. A highly reflective insulation element is formed by enclosing an air space between surfaces, of which one or both of those surfaces is a heat energy highly reflective surface. The heat energy highly reflective surface can be provided by a layer applied to a material. In an opaque building structure, two or more such highly reflective insulation elements, using three or more heat energy highly reflective surfaces, and two or more air spaces, where the material supporting at least one of the heat energy highly reflective surfaces is a material insulator, can improve energy efficiency.
For example, a wall construction of a building typically includes a plurality of studs that support exterior and interior walls. A sequence of highly reflective insulation elements including at least one material insulator supporting at least one of its heat energy highly reflective surfaces, is formed in the space between the exterior and interior walls and between a pair of studs. Similar structures can be formed within other kinds of framing for a wall or for other opaque building structures, such as ceiling, floor, roof, attic, crawlspace, or basement, or other opaque building structure that forms part of an enclosed living space.
As another example, a device can be made for insertion into the space between exterior and interior walls, or other opaque building structures, and within the framing supporting those structures. The device, when so installed, forms such a sequence of highly reflective insulation elements including at least one material insulator supporting at least one of its heat energy highly reflective surfaces. As an example, such a device can include a pair of material insulators enclosing an air gap, where the opposing surfaces of each material insulator has a heat energy highly reflective surface. Thus, the air gap enclosed by the material insulators is enclosed within two heat energy highly reflective surfaces. When the device is inserted within the space within a wall, with air spaces on either side, the result is a sequence of highly reflective insulation elements, including with two material insulators.
Having two or more enclosed air gaps with heat energy highly reflective layers provides a tandem series of heat energy exchanges across air space elements which supports energy efficient heating and cooling of the space enclosed by walls or other opaque structures of such construction. Different constructions can be used depending on the climate, the building construction, and whether living space is heated, cooled, or ambient, as the number of air spaces and heat energy highly reflective surfaces used depends on the direction of heat transfer in different weather seasons.
In one aspect, an apparatus in an opaque building structure includes a tandem series of highly reflective insulation elements, each highly reflective insulation element comprising one or more parallel heat energy highly reflective surfaces enclosing an air gap. A material insulation element supports at least one of the heat energy highly reflective surfaces of at least one of the highly reflective insulation elements.
In one aspect, a device for use in an opaque building structure includes a first material insulation element having a first surface and a second surface opposite the first surface, wherein the first surface is a first heat energy highly reflective surface, and wherein the second surface is a second heat energy highly reflective surface. The device further includes a second material insulation element having a third surface and a fourth surface opposite the third surface, wherein the third surface is a third heat energy highly reflective surface, and wherein the fourth surface is a fourth heat energy highly reflective surface. The first material insulation element and the second material insulation element are connected to form an air gap between the second surface and the third surface, whereby the air gap, the second surface, and the third surface form a highly reflective insulation element.
In one aspect, an opaque building structure includes framing, and an exterior structure attached to the framing, the exterior structure having an exterior inner surface, and an interior structure attached to the framing, the interior structure having an interior inner surface. Between the exterior structure and the interior structure, a tandem series of highly reflective insulation elements are attached to the framing, each highly reflective insulation element comprising one or more parallel heat energy highly reflective surfaces enclosing an air gap, and parallel with the exterior inner surface and the interior inner surface, and a material insulation element supporting at least one of the heat energy highly reflective surfaces of at least one of the highly reflective insulation elements.
In another aspect, an opaque building structure includes framing, a device attached to the framing, an exterior structure attached to the framing, and an interior structure attached to the framing. The device includes a first material insulation element having a first surface and a second surface opposite the first surface. The first surface is a first heat energy highly reflective surface. The second surface is a second heat energy highly reflective surface. The device further includes a second material insulation element having a third surface and a fourth surface opposite the third surface. The third surface is a third heat energy highly reflective surface. The fourth surface is a fourth heat energy highly reflective surface. The first material insulation element and the second material insulation element are connected to form a first air gap between the second surface and the third surface, whereby the first air gap, the second surface, and the third surface form a first highly reflective insulation element. The exterior structure has an exterior inner surface parallel to and facing and forming a second air gap with the first surface of the first material insulation element. The interior structure has an interior inner surface parallel to and facing and forming a third air gap with the fourth surface of the second material insulation element. The exterior inner surface, second air gap, and first surface form a second highly reflective insulation element. The interior inner surface, third air gap, and fourth surface form a third highly reflective insulation element.
In any of the foregoing the material insulation element can have a first surface supporting the at least one of the heat energy highly reflective surfaces of the at least one of the highly reflective insulation elements, and a second surface opposite the first surface support another of the heat energy highly reflective surfaces of another of the highly reflective insulation elements.
Any of the foregoing can include one or more of the following features. The heat energy highly reflective surfaces have an emittance of less than or equal to 0.05. The heat energy highly reflective surfaces have an emittance of less than or equal to 0.04. The heat energy highly reflective surfaces have an emittance of about 0.03. The heat energy highly reflective surfaces are provided by a layer of highly reflective foil. The heat energy highly reflective surfaces are provided by a layer of metal foil. The heat energy highly reflective surfaces are provided by a layer of aluminum foil.
Any of the foregoing can include one or more of the following features. the material insulation element has a resistance factor of greater than about R-3.6 per inch. The material insulation element has a resistance factor of at least R-3.6 per inch. The material insulation element has a resistance factor in the range of R-3.6 per inch to R-8.0 per inch. The material insulation element can include rigid foam board insulation.
The following Detailed Description references the accompanying drawings which form a part this application, and which show, by way of illustration, specific example implementations. Other implementations may be made without departing from the scope of the disclosure.
The structures shown in the drawings are generally shown as cross-section, top-down views of the structures and are not intended to be to scale.
In some implementations, the first material 600 may form part of or may be an exterior wall, such as sheathing or panel board, such as 0.50 inch (nominally) thick plywood or fiberboard, or 0.25 inch (nominally) thick plywood or fiberboard or hardboard. In some implementations, the first material 600 may be separate from the exterior wall. In some implementations, the first material can be a combination of materials, such as a commercially available product, optionally applied to sheathing. For example, a polyurethane insulating panel, such as a PUREWALL panel from Covestro, may be used. For example, an insulation material called HYBRIS from Actis also can be used.
In some implementations, the second material can be a single material panel or sheet, a composite of multiple materials or panels of materials, or a device such as described below in connection with
In some implementations, the third material 604 may form part of or may be an interior wall, such as a wallboard. In some implementations, the third material may be separate from the interior wall. The outside of a building is illustrated at 610; the inside of the building is illustrated at 612, for reference.
In
In
On the first material 600, the first surface 632 can be a first heat energy highly reflective surface (HEHRS), as shown in
In some implementations, the fourth material 656 may form part of or may be an interior wall, such as a wallboard. In some implementations, the fourth material 656 may be separate from the interior wall. The outside of a building is illustrated at 610; the inside of the building is illustrated at 612, for reference.
In
In
In
In
As described in more detail below, the combination of the second material 652 and third material 654 enclosing an air space 662, with each material 652 and 654 having heat energy reflecting surfaces (672, 673, 674, 675), forms a device which can be inserted into the framing of a variety of different building structures to provide energy efficient management of temperature within a building. In some implementations, such a device can be used as the second material 602 in
In
In
In
As in
As described in more detail below, the combination of the second material 752 and third material 754 enclosing an air space 762, with each material 752 and 754 having heat energy highly reflective surfaces (772, 773, 774, 775), forms a device that can be inserted into a wall or other opaque building structure to provide energy efficient climate control. In some uses, this device can be inserted into framing of a wall within a building as shown in
In
In
Also, in
In
Without being bound by theory, an explanation of the terms and presumed mode of operation of such a device within a building construction will now be described.
The term “heat energy highly reflective” layer or surface (HEHRS) refers to a layer on a material or a surface of a material which provides that material with a surface which is highly reflective of heat energy, i.e., the surface emittance of heat energy of less than 0.05. In some implementations the surface emittance is preferably less than or about 0.04. In some implementations the surface emittance is preferably less than or about 0.03. In some implementations, the surface emittance is preferably in a range of about 0.05 to 0.03 (or less), 0.04 to 0.03 (or less). In some implementations, a thin metal foil sheet can be used as a layer applied to a material to provide a heat energy highly reflective surface. An aluminum foil sheet with a surface emittance of 0.03 can be used. Such a surface reflects or blocks most heat energy exchange from another material across an adjacent air space. Other heat energy highly reflective materials can be used, such as certain metals, alloys, compounds, or other materials, and the invention is not limited to use of aluminum foil.
A surface is called a non-reflecting surface when the surface emittance of heat energy is greater than about 0.25. A surface is called reflective when the surface emittance of heat energy is less than about 0.10. A surface that is neither non-reflective nor reflective may be called “fairly reflective” or “partially reflective”. Many typical building materials, such wood, plastic, or concrete, have a natural surface which typically is non-reflective of heat energy, with a surface emittance of about 0.90. Similarly, when the surfaces of such materials are painted with conventional paint, the surface typically remains non-reflective of heat energy. Because the surface of the material is non-reflective, most heat energy exchanged across any adjacent material or air space is retained in the receiving material mass.
The term “reflective insulation element” refers to the combination of a confined air space and bounding surfaces of two parallel opaque materials enclosing the air space, when one or both of the bounding surfaces is a heat energy reflecting surface. A “highly reflective insulation element” is a reflective insulation element in which at least one of the enclosing surfaces of the confined air space is a heat energy highly reflective surface. The effective emittance of the reflective insulation element depends on many factors, such as the size and constitution of the air gap, surface emittances of the enclosing surfaces, textures of the surfaces, and other factors, and generally is determined experimentally for any combination. Notably, the effective emittance is substantially lower when at least one heat energy highly reflective surfaces is used and is even lower when both surfaces are heat energy highly reflective surfaces.
Within a confined air space, the material with the heat energy highly reflective surface herein is called a “radiant shield”. If a wall assembly space is not confined, and instead is open, then the term “radiant barrier” is used herein, because an equivalent R-value cannot be determined by experimental testing of heat transfer conductivity of an unconfined space.
The term “material insulation element” or “material insulator” means any form of solid material, such as a panel, board, spray foam (when solidified), rigid foam insulation, or other element, where the material is opaque and primarily insulating with respect to heat energy. The material insulation element may have voids. The material insulation element is preferably homogeneous in the direction of heat transfer. Conventionally such materials have a so-called “R-factor” or “R-rating” indicating a measure of its resistance to heat transfer. For these purposes, an R-factor greater than R-3.6 per inch is typically insulating and many products are in the range of R-3 to R-8 per inch.
The term “air space” or “air gap” can be either still air or moving air. With still air, there is little or no convection, and any heat transfer occurs primarily by conduction. With moving air, heat transfer can occur by both convection and conduction.
The term “device” means any combination of materials that, when inserted into a wall construction, forms a sequence of two or more parallel highly reflective insulation elements in the direction of heat flow in combination with a material insulator providing one or more of the heat energy highly reflective surfaces. In some implementations, the device can be any two-sided material element which forms a reflective insulation element on either side of it in a cavity. In some implementations, the device can include two material insulation elements with an air space in between them. In some implementations, the surfaces enclosing the air space are both heat energy highly reflective surfaces. Any of the foregoing embodiments can be embodied as a device. In some implementations, the device is formed by the placement of layers of material in the specified order and the specified spacing between layers of sheathing and between studs during construction of a wall. In some implementations, the layers of material forming the device are preconstructed into sheets, wherein the specified order and specified spacing of the layers of material is maintained by affixing framing material, such as wood, material insulation, or other rigid construction material, to the layers of material. The framing material can be placed at the edges of the sheet, or at spaced-apart intervals along a sheet. For example, a sheet can be sized to fit a standard distance between a pair of studs or between battens for conventional building construction. During construction of a wall, a sheet can be cut to fit between each pair of studs forming the wall.
A highly reflective insulation element is formed by an air gap and two enclosing parallel surfaces, of which one or both of the surfaces is a heat energy highly reflective surface. Heat energy transfers through the air gap from the surface with the greater heat energy to the other surface with lower heat energy. When the surface with the lower heat energy is a heat energy highly reflective surface, most of that heat energy is reflected back to the other surface. While some heat energy passes through the heat energy highly reflective surface, in the device, that heat energy highly reflective surface is on a material insulator. The material insulator retards transfer of heat energy to its opposite surface. The opposite surface can be one surface of another highly reflective insulation element. A sequence of two or more highly reflective insulation elements in the direction of heat transfer incorporating two or more material insulating elements provides a hybrid material insulating/highly reflective insulating device.
The term “rigid foam insulation” is a kind of material insulation element and refers to a variety of low-density, homogeneous, opaque foam materials. The “Resistance” property or “R-factor” of such materials typically is in the range of R-3.0 per inch to R-8.0 per inch. By way of example only, and not intended to be limiting, such materials include: expanded polystyrene (EPS), typically with R-3.6 per inch to R-4.0 per inch; extruded polystyrene (XPS) typically with R-4.5 to R-5 per inch, and polyisocyanurate (polyiso) typically with R-7.0 per inch to R-8.0 per inch. When a heat energy highly reflective layer is applied to a surface of a panel of rigid foam insulation panel, the layer provides the panel with a heat energy highly reflective surface. The surface of the rigid foam insulation panel forms a radiant shield to any adjacent confined air space that surface faces in a highly reflective insulation element.
Thus, without being bound by theory, having two or more enclosed air gaps in combination with heat energy highly reflective surfaces on materials adjacent those air gaps, examples of which are shown in
In the examples above, without being bound by theory,
Further example implementations are shown in
In
In
In
In these various examples, without being bound by theory, energy efficiency is provided because two or more air spaces are enclosed by surfaces of which at least one is provided by a radiant shield or is a heat energy highly reflective surface, which forms a highly reflective insulation element. The surfaces with the heat energy highly reflective material reflect or block transfer of most of the heat energy that hits them and allows a minimum amount of heat energy to pass through them into the materials behind those surfaces (such as a wood board or insulator board). Thus, heat energy between the two surfaces in an air space tends to remain captured in that air space. The temperature of the receiving surface elevates, while the temperature of the sending surface reduces, but at different rates, until an equilibrium is reached. When the air space is still, at approximately 0.75 inches maximum thickness, this heat energy exchange is mostly conductive and not convective. Energy efficiency is maximized when at least one of the radiant shields or heat energy highly reflective surfaces reflects about 97% or more of the heat energy that hits it.
In some implementations, the first enclosed air space can have a thickness of about 0.75 inches. The second enclosed air space can have a thickness of about 0.75 inches. A third enclosed air space can have a thickness of about 1.50 inches to 2.50 inches and act as a utility air space. The first, second, and third materials can be of similar construction, such as 0.25-inch-thick wood boards.
In some implementations, when a sheathing is attached to an outer surface of the studs, the sheathing and the outer surface of the first material form an outer air space. When a wallboard is attached to an inner surface of the studs, the wallboard and the inner surface of the third material form a utility air space. The outer air space can have a thickness in the range of about 1.0 inches to 1.5 inches. The utility air space has a thickness in the range of about 3.0 inches to about 4.0 inches.
In some implementations, a device can include two material insulation elements with an enclosed air gap between them of about 0.75 inches, and with each material insulation element having both surfaces with a heat energy highly reflective surface, preferably and aluminum foil with an emissivity of about 0.03. The material insulation elements can be made of rigid foam board insulation and can be about 0.5 inches thick, making the device about 1.75 inches thick. Without being bound by theory, such a device produces four 97% heat block events in series through the heat energy highly reflective surfaces, and the material insulation elements provide a thermal mass that stores heat energy between highly reflective insulation elements.
Generally, the material insulation element has a thickness between 0.25 inches and 1.0 inches, depending on the material. The material can be, for example, plywood, hardboard, closed-cell board, open-cell board, rigid foam insulation, or yes other materials. Example commercially available materials include but are not limited to Polyiso board, closed-cell rigid foam board, Plascore polypropylene honeycomb board (closed-cell), Plascore polypropylene honeycomb board (open-cell). Any such materials can be manufactured as foil-backed, i.e., to have a heat energy highly reflective surface, or a layer can be applied to a surface of the material to provide the heat energy highly reflective surface.
It should be understood that the subject matter defined in the appended claims is not necessarily limited to the specific implementations described above. The specific implementations described above are disclosed as examples only.
This application is a continuation of U.S. patent application Ser. No. 17/532,975, filed Nov. 22, 2021, entitled “Building Construction”, which is a nonprovisional patent application of, and which claims the benefit under 35 USC § 119 to, prior filed U.S. provisional patent application Ser. No. 63/118,294, entitled “Building Construction”, filed Nov. 25, 2020, hereby incorporated by reference.
Number | Date | Country | |
---|---|---|---|
63118294 | Nov 2020 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17532975 | Nov 2021 | US |
Child | 18600925 | US |