The specifications, drawings, and claims of LeVan, U.S. Pat. No. 10,724,234; LeVan, U.S. Pat. No. 10,202,764; LeVan, U.S. Pat. No. 9,752,319; LeVan, U.S. Pat. No. 10,094,111; and, LeVan, U.S. Pat. No. 10,233,638 (collectively, the “LeVan Patents”) are hereby incorporated by reference in their entirety.
The present invention relates to the field of façade systems which form a curtain wall or shell around buildings. More particularly, the present invention relates to building façade curtain wall panels and methods of incorporating/installing fire-safing insulation in the building façade curtain wall between successive floors of the building.
Building façade systems are known and are common. They form a curtain wall around buildings and protect the building from the elements. The curtain wall typically comprises a plurality of panels supported on a framework, typically referred to as “façade panels” or “curtain panels”, which are hung and/or otherwise secured to the building structure. The panels and framework can be made of various materials such as glass, stone, steel, aluminum, etc., and can be various sizes as needed or desired. The panels can also be insulated. Different types of panels can be used such as, for example, transparent glass between the floor slabs and opaque glass or stone along the building structural components.
Traditional curtain wall façade systems are hung and/or are secured to the building structure outside of the terminal edges of the building floor slabs such that there is a gap, also known as a “safing slot”, between the curtain wall and each slab terminal edge. To prevent transmission of smoke and fire between the building floors, noncombustible fire-safing insulation, such as, for example, stone wool, mineral wool, etc., is installed, and indeed is required by building codes to be installed, in the gap/safing slot between the curtain wall and the terminal edges of the slabs. Smoke sealant can also be applied over the fire-safing insulation.
Of course, the fire-safing insulation must be field installed in the gap/safing slot after the curtain panels are installed—after the gap is established by the installation of the curtain panels at a distance from the slab edges—which can be difficult, time consuming and costly, particularly when the gaps/safing slots are hidden beneath structural elements of the curtain wall or access is otherwise obscured by structural components of the building. Traditional curtain wall façade systems which require fire-safing insulation are shown and described, for example, in Kramer U.S. Pat. No. 3,786,604 (“Kramer”); Shriver, U.S. Pat. No. 8,671,645 (“Shriver”); and, Hogan et al. US 2015/0135615 (“Hogan”).
Hybrid curtain wall façade systems, also sometimes referred to as “window walls with slab edge covers” are hung and/or are secured to the building structure such that they envelop and/or sandwich the terminal edge of the slabs so that there is no gap/safing slot. These curtain wall systems inherently prevent the transmission of smoke and fire between floors because they envelop/sandwich the slab and, hence, building codes do not require the installation of fire-sating insulation therewith. Hybrid curtain wall façade systems which are inherently fire safe and do not require fire-sating insulation are, for example, shown and described in the LeVan Patents, Evensen et al., U.S. Pat. No. 8,959,855 (“Evensen”); Ting, U.S. Pat. No. 8,001,738 (“Ting”); and, Speck, U.S. Pat. No. 7,644,549 (“Speck”).
Although the hybrid curtain wall façade systems are fire safe and building codes do not require fire-safing insulation to be installed therewith, some building owners nevertheless desire yet more fire safety, beyond that required by the building codes. For achieving the sometimes desired yet greater fire safety, it has been proposed to add fire-safing insulation to the hybrid curtain wall façade systems. However, similar to the traditional curtain wall façade systems, the installation of fire-safing insulation in hybrid curtain wall façade systems would be inefficient, time consuming and costly.
Accordingly, a need exists for an improved, more efficient, and cost-effective method of installing fire-sating insulation in curtain wall façade systems.
In one embodiment of the present invention, a method of installing a façade on a building structure having a plurality of vertically stacked levels defined by horizontally arranged floors therebetween comprises the steps of: providing a plurality of façade panels, wherein one of more of the façade panels includes a strip of fire-safing insulation, hanging the one or more façade panels on the one or more building floors adjacent an edge thereof, during the step of hanging, traversing the strip of fire-safing insulation vertically downwardly and horizontally towards the floor edge, and sandwiching at least a portion of the strip of fire-safing insulation between the one or more façade panels and the floor edge.
Preferably, after the step of hanging, the strip of fire-safing insulation engages the floor edge along a vertical surface and a horizontal surface of the floor. Yet more preferably, during the step of hanging one or more façade panels, one or more strips of adjacently hung façade panels engage each other and thereby form a continuous strip of fire-safing insulation between the adjacently hung façade panels and the floor edge.
Preferably, prior to the step of hanging, the strip of fire-safing insulation is secured to the one or more façade panels. Yet more preferably, the step of securing comprises the steps of piercing the strip of fire-safing insulation with an impaling pin and attaching the impaling pin to the one or more façade panels.
Preferably, during the step of attaching the impaling pin to the one or more façade panels, a surface of the impaling pin is adhered to the one or more façade panels and/or the impaling pin is fastened to the one or more façade panels with a fastener. Yet more preferably, the step of securing comprises the step of adhering the strip of fire-safing insulation to the one or more façade panels with a noncombustible adhesive.
Preferably, during the step of hanging, at least a portion of the strip of fire-safing insulation compresses and the impaling pin bends.
Preferably, the one of more of the façade panels further includes a shelf member extending therefrom and defining a corner therebetween. The strip of fire-safing insulation can be provided substantially in the corner and, during the step of hanging, a portion of the shelf member can be placed over the floor edge and sandwiching at least a portion of the strip of fire-safing insulation between the one or more façade panels and a vertical surface of the floor and between the shelf member and a horizontal surface of the floor.
Preferably, a noncombustible sealant can be provided between the shelf member and the horizontal surface of the floor.
Preferably, gaps are formed between shelf members of adjacently located façade panels and the gaps can be sealed with a noncombustible sealer and/or a noncombustible sealing strip.
Preferably, one or more panel position adjusting mechanisms operatively engage the shelf member and, during the step of hanging, the vertical and/or horizontal position of the one or more façade panels can be adjusted relative to the floor.
Preferably, prior to or during the step of providing a plurality of façade panels, one of more of the façade panels and the strip of fire-safing insulation can be wrapped with a protective sheeting material and, prior to the step of hanging, the protective sheeting material can be removed from the one of more of the façade panels and the strip of fire-safing insulation.
In another embodiment of the present invention, a building façade secured to a building structure having a plurality of vertically stacked levels defined by horizontally arranged floors therebetween comprises a plurality of façade panels wherein one or more of the façade panels comprise a strip of fire-safing insulation. One or more of the façade panels can be secured to the building structure adjacent an edge of a floor thereof and the strip of fire-safing insulation engages the floor edge along a vertical surface and a horizontal surface of the floor.
Preferably, one or more of the façade panels further comprise a shelf member extending therefrom and defining a corner therebetween, and the strip of fire-safing insulation can be provided substantially in the corner. Yet more preferably, a portion of the strip of fire-safing insulation can be sandwiched between the one or more façade panels and the vertical surface of the floor and a portion of the strip of fire-safing insulation is sandwiched between the shelf member and the horizontal surface of the floor.
The above-mentioned and other features of this invention and the manner of attaining them will become more apparent, and the invention itself will be better understood by reference to the following description of the embodiments of the invention, taken in conjunction with the accompanying drawings, wherein:
Corresponding reference characters indicate corresponding parts throughout several views. Although the exemplification set out herein illustrates certain embodiments of the invention, the embodiments disclosed below are not intended to be exhaustive or to be construed as limiting the scope of the invention to the precise form disclosed.
Referring initially to
Building B is diagrammatically depicted and is shown having three levels L1, L2, and L3. Concrete and/or steel and concrete floor slabs FS are constructed and supported between each of the levels L1, L2, L3 in a known and customary manner. The floor slabs FS each include a top surface TS, an underside surface US, and a terminal edge surface ES. The terminal edge surfaces ES of each floor slab FS are generally coplanar with one another.
The facade system 10 is secured to the floor slabs FS and forms an outer curtain wall or shell which is architecturally aesthetically pleasing. The facade system 10 additionally protects the building from the elements. The curtain wall/shell is formed from a plurality of façade/curtain panels 12 which are installed on a building structure side-by-side/adjacent one another and which together form the shell or façade of the building. Although preferred embodiments of the façade/curtain panels 12 are described and illustrated, it should be understood that “curtain panels” or “façade panels” as used herein includes any panels which are installed on a building structure side-by-side/adjacent one another and which together form the shell or façade of the building.
The curtain panels 12 can include a plurality of slab edge cover panels 14 extending along and generally covering the floor slab terminal edge surfaces ES. The curtain panels 12 can also include a plurality of infill panels 16 extending between the slab edge cover panels 14 and enclosing the building interior space at each level L1, L2, and L3 between successive floor slabs FS.
The slab edge cover panels 14 and the infill panels 16 can be made of glass which can be transparent, opaque, tinted, translucent, etc. They can also be made from stone, steel, metal, aluminum, and other materials as needed or desired and can be insulated as needed or desired. The slab edge cover panels 14 and the infill panels 16 can also comprise many different dimensions, layers, and thicknesses as needed or desired.
As best seen in
The framework 18 includes horizontal shelf members 20 secured to the above floor slabs AFS above the top surfaces TS thereof. The shelf members 20 include bottom shelf surfaces 22 facing the floor slab top surfaces TS. Vertical mullions 24 are securely fastened to the horizontal shelf members 20 located on the above floor slab AFS and extend vertically downwardly therefrom toward the below floor slab BFS. Horizontal infill support members 26 extend between, and are securely fastened to, the lower terminal ends of adjacent pairs of vertical mullions 24. The infill support members 26 are coupled to the horizontal shelf members 20 which are secured to the below floor slab BFS. The infill support members 26 and the horizontal shelf members 20 secured to the below floor slab BFS are coupled in a manner whereby they are moveable vertically, but not horizontally, relative to each other.
Continuous L-shaped sill trim covers 114 can be secured to the infill support members 26 for closing off easy access to the components used for mounting the horizontal shelf members 20 secured to the below floor slab BFS. The sill trim covers 114 are slidingly supported along the horizontal shelf members 20 whereby they are moveable vertically, but not horizontally, relative to each other.
Intermediate horizontal edge cover support members 28 are located vertically between the infill support members 26 and the shelf members 20 and extend between and are securely fastened to adjacent pairs of vertical mullions 24. Accordingly, a plurality of rectangular infill frames 30 are formed and defined between the adjacent pairs of vertical mullions 24, the infill support members 26, and the edge cover support members 28. The infill panels 16 are sized to fit within and be adhered to the rectangular infill frames 30. More particularly, the infill panels 16 are supported on the infill support members 26 and are adhered along their perimeter edges to the adjacent pairs of vertical mullions 24, the infill support members 26, and the edge cover support members 28.
Similarly, a plurality of rectangular slab cover frames 32 are formed and defined between the adjacent pairs of vertical mullions 24, the edge cover support members 28 and the shelf members 20 on the above floor slab FS. The slab edge cover panels 14 are sized to fit within and be adhered to the rectangular slab cover frames 32. More particularly, the slab edge cover panels 14 are supported on the edge cover support members 28 and are adhered along their perimeter edges to the adjacent pairs of vertical mullions 24, the edge cover support members 28 and the shelf members 20 on the above floor slab AFS. As best seen in
The shelf members 20 include fastener bores (not shown) provided extending vertically through the shelf members 20. The fastener bores are adapted to receive frame fasteners 21 therethrough. As the frame fasteners 21 are extended through the fastener bores, the frame fasteners 21 threadingly engage a pair of male and female mullion halves 34m, 34f for thereby securing the male and female halves 34m, 34f to the shelf member 20. A sealant (not shown) can then be applied completely covering the frame fasteners 21 for thereby sealing the fastener bores.
The infill support members 26 further include infill support splines 102 and the edge cover support members 28 can include edge cover support splines 104. The infill support splines 102 and the edge cover support splines 104 can be adapted to threadingly receive frame fasteners (not shown) for thereby securing the vertical mullions 24 to the infill support members 26 and the edge cover support members 28 respectively.
As should now be appreciated, the weight of the infill panels 16 is transferred from the infill support members 26 to the vertical mullions 24. The weight of the slab edge cover panels 14 is transferred from the edge cover support members 28 also to the vertical mullions 24. Hence, the infill panels 16 and the slab edge cover panels 14 are “hung” on the shelf members 20 on the above floor slab AFS with the vertical mullions 24, and the vertical mullions 24 are, therefore, in tension.
As best seen in
The slab edge cover panels 14 typically comprise insulated glass panels 36 constructed in a known and customary manner and sized to fit within the framework 18. The insulated glass panels 36 shown are constructed with an exterior glass pane 38 adhered to an interior glass pane 40 along a sandwiched spacer 42 extending along the perimeter thereof, although many other layers can also be used as needed or desired. An insulating air space is thereby sealed and provided between the glass panes 38, 40.
As best seen in
The backpan 44 can be either pan shaped (as best seen in
As best seen in
Once the backpan 44 has been adhered to the rectangular slab cover frames 32, the perimeter edges of the backpan 44 are sealed in a known and customary manner to ensure an airtight fitment between the backpan 44 and the rectangular slab cover frames 32.
Thermal insulation layers 60a can be provided and adhered to the exterior backpan surfaces 48 between the backpans 44 and the insulated glass panels 36. The thermal insulation layers 60a can be rectangular sheets of thermal insulation which are cut to size and configured to snugly fit between adjacent pairs of vertical mullions 24 and between the shelf members 20 and the edge cover support members 28. The thermal insulation layers 60a can be adhered using, for example, weld pins (not shown) inserted through the thermal insulation layers 60a and welded to the backpans 44 in a known and customary manner.
Thermal insulation layers 60b can be provided and adhered inside the vertical mullions 24 between the male and female halves 34m, 34f. The thermal insulation layers 60b can be rectangular sheets of thermal insulation which can be cut to size and configured to snugly fit between the male and female halves 34m, 34f whereby the thermal insulation layer 60b completely fills the space between the male and female halves 34m, 34f.
The insulation layers 60a and 60b can be made of fire-resistant materials such as stone wool, mineral wool, fiberglass and/or other types of compressible, fire-resistant insulation which, preferably, also prevent acoustic transmission.
As best seen in
As shown in
As shown in
The impaling pins 72 are prepared for installation by bending the needle member 74 relative to the planar base member 76 such that the angle between the needle member 74 and the needle surface 78 is less than 90 degrees. For example, as best seen in
To install the fire-sating insulation on a curtain panel 12, the needle members 74 are preferably first secured to the fire-sating insulation 62 by inserting the needle member 74 upwardly through the lower surface 66 as shown in
Preferably, to assure the fire-safing insulation 62 remains fastened to the curtain panel 12 during transport and prior to installation, the planar base members 76 can be further secured to the backpan 44 with fasteners 84. The fasteners 84 can be driven through the impaling pin planar base 76 and the backpan 44. The fasteners 84 can be for example, screws, rivets, and nuts and bolts (not shown).
Alternatively, the planar base members 76 can be secured to the backpan 44 using fasteners 84 alone without the use of adhesives. Also, it is contemplated that the fire-safing 62 can be secured to the curtain panels only with a noncombustible adhesive.
A second representative curtain panel 12′ is shown in
The curtain panels 12′ further similarly comprise backpans 44 made of a noncombustible material and secured to the framework 18′. Also, fire-safing insulation 62 is similarly secured thereto with impaling pins 72 and preferably fasteners 84 and/or noncombustible adhesives.
As shown in
When installing the curtain panels 12 and hanging them on an above floor slab AFS in accordance with the principles of the present invention, as depicted in
As the curtain panels 12 are lowered and traversed horizontally onto the AFS, as best seen in
By forcing a fire to travel/penetrate both vertically and horizontally through the fire-safing insulation 62, the effective thickness and seal of the fire-safing insulation 62 through which a fire must penetrate is significantly increased. Therefore, a fire can be more efficiently and effectively be prevented from climbing between floor levels by the use of the curtain panels 12 and the fire-safing insulation 62 which is installed as described hereinabove. Beneficially, sealing the edge of the floor slab FS by compressing the fire-sating insulation 62 both vertically and horizontally as described also reduces the transmission of sound between floors because the shelf members 20 and the fire-sating insulation 62 also act as baffles that reflect and absorb sounds.
As shown in
As mentioned hereinabove, advantageously, after adjacent curtain panels 12 are installed on a building floor slab FS and the mullion halves 34m, 34F thereof are securely snapped together to form the vertical mullions 24, the fire-safing insulation 62 secured to each curtain panel 12 is longitudinally compressed against the adjacent panel fire-safing insulation 62 (the first terminal ends 68 and second terminal ends 70 thereof are compressed towards each other) for thereby forming a continuous strip of fire-safing insulation 12 along the edge of the floor slab FS which prevents fire and acoustic transmission.
Preferably, after the curtain panels 12 have been installed/hung on a floor slab FS, the shelf member slots 124, the posts 126, and the locknuts 130 can be completely covered with a noncombustible sealant 132 for thereby sealing any openings in the shelf members 20 and thereby yet further preventing the transmission of fire or fumes through the shelf members 20.
As shown in
As shown in
Although the fire-safing insulation 62 is preferably rectangular in cross section as described hereinabove, it is contemplated that its cross section can take on various forms, provided that one or more surfaces thereof can extend along and be compressed against the floor slab edge surface and/or the floor slab top surface TS. For example, the cross-section shape thereof can be oval, circular and, also, indefinite. The cross-section shape thereof can also be L-shaped, fitted within the corner formed between the slab edge cover panel 14/backpan surface 46 and the shelf members 20/bottom shelf surface 22 and having a mirror image L-shaped surface adapted to receive the top corner of the floor slab terminal edge surface ES.
As should now be appreciated, the fire-sating insulation 62 is advantageously factory applied/secured to the façade panels in a controlled interior factory environment in a manner whereby it is installed in the field simultaneously with the façade panels thereby decreasing the installation time and overall cost thereof and resulting in much higher quality fire-safing than the prior field applied fire-sating systems. Also, by employing the factory applied/secured fire-sating to façade panels of the type described in the LeVan patents and hereinabove, a superior building facade can be provided wherein, not only are the floor slabs bifurcated/enveloped and/or sandwiched between the shelf members 20 and the edge cover support members 28 so that there are no gaps/slots requiring fire-sating (similar to window walls with slab edge covers) but, also, further includes fire-safing insulation along the slab edge ES and slab top surface TS.
While this invention has been described as having an exemplary design, the present invention may be further modified within the spirit and scope of this disclosure. This application is therefore intended to cover any variations, uses, or adaptations of the invention using its general principles.
This application claims priority under 35 U.S.C. 119(e) of U.S. provisional patent application Ser. No. 63/419,181 filed on Oct. 25, 2022, entitled Curtain Wall Panels Including Fire Safing Insulation and Method of Installation, the disclosure of which is hereby incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
20240133185 A1 | Apr 2024 | US |
Number | Date | Country | |
---|---|---|---|
63419181 | Oct 2022 | US |