1) Field of the Invention
The present application relates to an insulated building wrap that seals the exterior of a building from moisture and air permeation, while still allowing water vapor to escape.
2) Description of Related Art
Water resistant film or sheet materials are known to be useful in the construction industry, for preventing the infiltration of air and water to the interior of a building while allowing the outward passage there through of moisture vapor. Such materials may be flexible and used as building “wraps,” or may be rigid and used as structural or decorative panels in the exterior walls or roofs of buildings.
Prior art
Building wrap 20 reduces energy loss through reduction of air infiltration as well as acting as a weather barrier by preventing water intrusion into the building. It is a requirement that these materials are breathable. One popular material that is manufactured for building wrap is PinkWRAP® from Owens Corning. PinkWRAP® Housewrap is a woven polyolefin fabric engineered to be a weather resistant barrier. PinkWRAP® Housewrap reduces the air infiltration through residential and commercial exterior side wall construction.
PinkWRAP® Housewrap has microperforations that permit trapped moisture to escape from the wall to the exterior. PinkWRAP® Housewrap is translucent to allow installers to see the framing underneath. PinkWRAP® Housewrap has excellent tensile strength and tear resistance to withstand installation and wind driven loads. PinkWRAP® Housewrap can be left uncovered for up to 300 days before siding is installed. PinkWRAP® Housewrap meets the requirements of a weather resistant barrier as defined by ICC-ES Acceptance Criteria AC 38. See ICC Evaluation Services ESR 2801. PinkWRAP® Housewrap has the following properties.
Another material that is manufactured for housewrap is a flash spunbonded polyolefin that may be obtained from DuPont under the name Tyvek™. Another material is a microporous polyolefin film composite and may be obtained from Simplex Products under the trademark “R-Wrap™” There are a variety of other brands such as Typar® from Reemay, Amowrap® from Teneco building products, Barricade® from Simplex, and others.
Porous polyolefin films composites are used in building wrap applications. Building wrap 20 materials are permeable to gases as to allow water vapor to escape from the wall to which the film is secured. The film is also sufficiently impervious to air to insulate the wall against wind and water intrusion. Further, the film has adequate tensile and physical properties such as break strength, elongation, tear strength, shrinkage and puncture strength to avoid damage during installation.
Porous polyolefin films may be prepared by stretching a precursor film filled with calcium carbonate. “Breathable” films which are gas/vapor permeable and liquid impermeable have been described in U.S. Pat. No. 4,472,328, assigned to Mitsubishi Chemical Industries, Ltd, which is incorporated here by reference in its entirety. The Mitsubishi patent describes a breathable polyolefin film prepared from a polyolefin/filler composition having from 20 percent to 80 percent by weight of a filler such as a surface treated calcium carbonate. A liquid or waxy hydrocarbon polymer elastomer such as a hydroxy-terminated liquid polybutadiene was found to produce a precursor film that could be monoaxially or biaxially stretched to make a film breathable.
Providing a proper weather barrier material allows energy efficient buildings to be constructed. Currently, the majority of the heat that escapes a residential home exits through the floor, walls, and ceilings. For maximized energy efficiency, the Model Energy Code of the Council of American Building Officials calls for walls and ceilings to be insulated to R19 and R38 respectively. Current “2 by 4” wall construction allows for 3.5″ of fiberglass insulation, which is rated at R-11. Housewraps are widely used as a weatherizing membrane to block both water and air from penetrating into the home structure, while still allowing water vapor to escape.
The present application discloses an insulated building wrap that includes fiberglass insulation laminated to a building wrap material. In one exemplary embodiment, the insulated building wrap is substantially impervious to air, substantially impervious to water, and is permeable to water vapor. In one exemplary embodiment, the fiberglass insulation is binderless or substantially binderless. In one exemplary embodiment, the insulated building wrap includes a grooved surface that assists drainage.
The insulated building wrap can be used in a variety of different applications. In one exemplary embodiment, the insulated building wrap is used in a building wall. For example, a building wall may include framing studs, an interior wallboard secured to the framing studs, cavity insulation between pairs of the framing studs, exterior sheathing secured to the framing studs, the insulated building wrap, and a decorative external fascia disposed over the insulated building wrap.
Various objects and advantages will become apparent to those skilled in the art from the following detailed description of the invention, when read in light of the accompanying drawings. It is to be expressly understood, however, that the drawings are for illustrative purposes and are not to be construed as defining the limits of the invention.
The present invention will now be described with occasional reference to the specific embodiments of the invention. This invention may, however, be embodied in different forms and should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art.
Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. The terminology used in the description of the invention herein is for describing particular embodiments only and is not intended to be limiting of the invention. As used in the description of the invention and the appended claims, the singular forms “a,” “an,” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise.
Unless otherwise indicated, all numbers expressing quantities of dimensions such as length, width, height, and so forth as used in the specification and claims are to be understood as being modified in all instances by the term “about.” Accordingly, unless otherwise indicated, the numerical properties set forth in the specification and claims are approximations that may vary depending on the desired properties sought to be obtained in embodiments of the present invention. Notwithstanding that the numerical ranges and parameters setting forth the broad scope of the invention are approximations, the numerical values set forth in the specific examples are reported as precisely as possible. Any numerical values, however, inherently contain certain errors necessarily resulting from error found in their respective measurements.
Referring to
The insulated building wrap 220 can take a wide variety of different forms. Referring to
In one exemplary embodiment, the fiberglass insulation 224 is configured to perform the functions described herein of both the fiberglass insulation 224 and the building wrap material 222. For example, the insulation material 224 itself may be permeable to water vapor and may thus be considered as breathable while remaining substantially impervious to air and water such that wind and rain does not pass through. The building wrap material 222 may be omitted or substantially omitted when the insulation material 224 is so constructed.
The fiberglass insulation 224 can take a wide variety of different forms. In one exemplary embodiment, the fiberglass insulation 224 is made in accordance with one or more of US Published Patent Application Pub. Nos. 2013/0084445 published on Apr. 4, 2013, titled “Method of Forming a Web from Fibrous Material” and 2013/0266784 published on Oct. 10, 2013 and titled “Method of Forming a Web from Fibrous Material.” US Published Patent Application Pub. Nos. 2013/0084445 and 2013/0266784 are incorporated herein by reference in their entirety.
In one exemplary embodiment, the fiberglass insulation 224 is a compressible fiberglass insulation. Examples of compressible fiberglass insulation 224 that may be used are disclosed by US Published Patent Application Pub. Nos. 2013/0084445 and 2013/0266784. However, other forms of fiberglass insulation 224 may also be used.
In one exemplary embodiment, the fiberglass insulation 224 has a high compressibility (i.e. a low compressive strength). As a result, the insulated building housewrap 220 has a high compressibility (i.e. a low compressive strength). In one exemplary embodiment, the fiberglass insulation 224 is made in accordance with teachings of US Published Patent Application Pub. Nos. 2013/0084445 and/or 2013/0266784 and has a high compressibility (i.e. a low compressive strength). In one exemplary embodiment, the compressive strength at 25% deformation of the fiberglass insulation 224 is less than 100 lbs/ft2, such as less than 75 lbs/ft2, such as less than 50 lbs/ft2, such as from 20 to 50 lbs/ft2. In one exemplary embodiment, the fiberglass insulation 224 is made in accordance with teachings of US Published Patent Application Pub. Nos. 2013/0084445 and/or 2013/0266784 and the compressive strength at 25% deformation of the fiberglass insulation 224 is less than 100 lbs/ft2, such as less than 75 lbs/ft2, such as less than 50 lbs/ft2, such as from 20 to 50 lbs/ft2. Tables 1A-4B provide examples of compressive strengths of samples of fiberglass insulation 224 made in accordance with teachings of US Published Patent Application Pub. Nos. 2013/0084445 and/or 2013/0266784 with the specifications listed in the tables.
In one exemplary embodiment, the fiberglass insulation 224 is a flexible fiberglass insulation and the insulated building wrap 220 is flexible. The insulation 224 and the finished insulated building wrap may be both flexible and compressible as described above. In one exemplary embodiment, the fiberglass insulation 224 is flexible enough to be wound onto a roll 500 (See
In one exemplary embodiment, the insulated building wrap 220 is pliable. For example, the insulated building wrap 220 is pliable in accordance with the method described in Section 3.3.4 of ICC-ES AC 38 in one exemplary embodiment. According to this test method, five 25.4 mm*203 mm sections of the insulated building housewrap are cut in both the roll and cross roll directions. They are maintained at 0° C. for 24 hours before being bent 180° over a 1.6 mm diameter mandrel. The samples passed the pliability tests when the sample did not crack at 0° C. (−32° F.).
In one exemplary embodiment, the insulated building wrap 220 is more resistant to burning than an insulated building wrap that includes and insulation material made from a polymer. In one exemplary embodiment, the loss on ignition (LOI) of the insulated building wrap 220 is less than or equal to the weight of the building wrap material 222 divided by the total weight of the insulated building wrap 220 (the weight of the wrap material 222 plus the weight of the fiberglass insulation 224). In one exemplary embodiment, the LOI of the insulated building wrap 220 is less than 10%, for example 5-8%. In one exemplary embodiment, the LOI of the insulated building wrap 220 is between 1 and 5%. In one exemplary embodiment, the LOI of the insulated building wrap 220 is less than 5% and the fiberglass insulation 222 is made in accordance with teachings of US Published Patent Application Pub. Nos. 2013/0084445 and/or 2013/0266784. In one exemplary embodiment, the LOI of the insulated building wrap 220 is between 1 and 5% and the fiberglass insulation 222 is made in accordance with teachings of US Published Patent Application Pub. Nos. 2013/0084445 and/or 2013/0266784. In one exemplary embodiment, the fiberglass insulation is binderless. In one exemplary embodiment, the fiberglass insulation is binderless and the fiberglass insulation 222 is made in accordance with teachings of US Published Patent Application Pub. Nos. 2013/0084445 and/or 2013/0266784.
The fiberglass insulation 224 may be constructed to have a variety of different thermal insulation R values. In one exemplary embodiment, the fiberglass insulation 224 has a thermal insulation R value of at least 4R per inch, with a preferred R value of 4.5 or above. In one exemplary embodiment, the fiberglass insulation 224 has a thermal insulation R value of about 5R per inch or above, such as 4.88 R per inch or above. The thickness of the fiberglass insulation 224 may be from 0.5 to 1.5 inches. As such, the R value of the insulated building wrap 222 is up to about 7.5 in one exemplary embodiment. In one exemplary embodiment, the R value of a one-half inch thick insulated building wrap 220 is about 2.5 or above. In one exemplary embodiment, the R value of a one and one-half inch thick insulated building wrap 220 is about 7 or above. In one exemplary embodiment, fiberglass insulation 224 is made in accordance with teachings of US Published Patent Application Pub. Nos. 2013/0084445 and/or 2013/0266784 and has R values as disclosed therein.
In one exemplary embodiment, the fiberglass insulation 224 is configured to drain water. In one exemplary embodiment, a one-inch thick, twelve inch tall sample, having a width W drains greater than 25 gallons per hour per lineal foot of the width W. For example, such a sample may drain greater than 50 gallons per hour per lineal foot of the width W. This drainage is measured by providing a one inch head on top of the one inch by W (width) inch top end of the sample.
In an exemplary embodiment, the insulated building wrap 220 includes building wrap material 222 that is permeable to water vapor attached to fiberglass insulation 224. The building wrap material is permeable to water vapor and may thus be considered as breathable while remaining substantially impervious to air and water such that wind and rain does not pass through. In some embodiments, the building wrap material 222 is a polymeric or cellulosic material. The building wrap material 222 may have a wide range of thicknesses. For example, the thickness of the building wrap material 222 may be from about 0.25 mils to about 1000 mils.
As explained above, the breathable building wrap material 222 is substantially impervious to air and water while permeable to water vapor. The breathable building wrap material 222 may be a polymeric material or a cellulosic material. Optionally, the breathable building wrap material 222 may comprise fibers or a fibrous material which provides a support to the material.
The building wrap material 222 may be an existing housewrap 20 material, such as PinkWrap® from Owens Corning, Typar® from Reemay, Spun bonded polyolefins like Tyvek® from Dupont, Amowrap® from Teneco building products, Barricade® and R-wrap® from Simplex.
In one exemplary embodiment, the building wrap material 222 includes drainage features. The drainage features may take a wide variety of different forms. In one exemplary embodiment, the building wrap material 222 includes a grooved surface. The grooved surface assists in drainage between the insulated building wrap 220 and the decorative external fascia 22, when all or portion of the building wrap 222 are against the decorative external fascia. This contact may occur between the insulated building wrap 220 and the decorative external fascia 22, where contact did not occur between conventional housewrap and the decorative external fascia 22 due to the increased thickness of the insulated building wrap.
The water vapor permeation of the building wrap material 222 may be designed to be either bidirectional or unidirectional. Depending on the circumstance and in a building envelope, for most of the cases, it is very important to get any water vapor from the inside to the outside environment and not the other way around. However, in some cases, it may be desirable to have bidirectionality of water permeation. Unidirectionality may be provided by the characteristics of the water building wrap material 222 used.
The building wrap material 222 may comprise a polyolefin and preferably a polyethylene, polypropylene or polybutylene. The building wrap material 222 may be prepared from continuous fibers of such materials using a flash spinning followed by bonding with heat and pressure. Other materials like polystyrene, expanded polystyrene, polyester, acrylic, polycarbonate, fluoropolymers, fluorinated urethane, PTFE, expanded PTFE, phenol-formaldehyde, melamine-formaldehyde, a phenolic resin, or copolymers thereof, individually or in combinations can be used to manufacture the building wrap material 222. Building wrap material can be in the form of a microporous composite such as PinkWrap® from Owens Corning or RWrap™ obtained from Simplex products.
The building wrap material 222 and fiberglass insulation 224 can be combined in several ways. Examples of ways the building wrap material 222 and the fiberglass insulation 224 can be combined to make the insulated building wrap 220 include, without limitation, lamination, wrapping, shrink wrapping, etc. Lamination can be performed with an adhesive, a resin, a heat treatment or combinations thereof. The laminations may be extrusion, adhesive, flame, ultrasonic or thermal based. When an adhesive is used, the adhesive may be a hot melt adhesive or a water based adhesive. However, other types of adhesives may also be used. One challenge in combining the building wrap material 222 with fiberglass insulation 224 is ensuring that the moisture vapor is still allowed to escape, while eliminating penetration of water and air. In one exemplary embodiment, the adhesive is a breathable adhesive. That is, the adhesive may be a solid material that is breathable, like the building wrap material 222.
In one exemplary embodiment, the lamination of the building wrap material 222 to the fiberglass insulation 224 allows the fiberglass insulation 224 to be cleanly or substantially completely peeled away from the building wrap material 222. This is particularly useful in areas, such as doors and windows where it is desirable to remove the fiberglass insulation 224 from the building wrap in a pattern that matches the shape of the door or window. In an exemplary embodiment, the clean peel nature of the insulated building wrap is due to the brittleness of the glass fibers. The fiber to fiber entangled bonds of glass fibers can separate very near the building wrap material, allowing the vast majority of the fiberglass insulation 224 to be peeled away from the building wrap material.
Referring to
In some exemplary embodiments, the building wrap material 222 and/or fiberglass insulation 224 may include additional materials. Additional materials that may be included in the building wrap material 222 and/or fiberglass insulation 224 include, but are not limited to, polyethylene, polypropylene, polybutylene polystyrene, expanded polystyrene, polyester, acrylic; polycarbonate, fluoropolymers, fluorinated urethane, PTFE, expanded PTFE, phenol-formaldehyde, melamine-formaldehyde, a phenolic resin, or copolymers thereof, carbon, carbon black, titania, iron oxides, gypsum and cellulosic material including paper.
Referring to
The installation flanges 600 can take a wide variety of different forms. In one exemplary embodiment, the installation flanges 600 are formed by extending the building wrap material 222 past the edges of the fiberglass insulation. As such, there is no insulation 224 behind the insulation flanges 600.
In one exemplary embodiment, one or more of the installation flanges 600 include markings 620 that aid alignment of fasteners, such as screws, nails, staples, etc. with the framing studs 14. For example, framing studs are typically located on 16 inch or 24 inch centers. In one exemplary embodiment, markings 620 are provided on top and/or bottom flanges every eight inches to provide alignment aids for studs on 16 inch or 24 inch centers.
Referring to
In one exemplary embodiment, rather than using an adhesive to attach the installation flanges 600 to adjacent insulated building wrap, similar or dissimilar polymers may be provided on each side of the building wrap material 222. The polymers may be selected such that the application of heat or pressure bonds the joints together. For example, the back surface of the installation flanges 600 may bond to the front surface of the building wrap material 222 to bond the two adjacent insulated building wraps together. This works like tape or an adhesive, but a separate tape or adhesive is not required. For example, the installation flanges 600 may be made from polypropylene and/or polyester. In one exemplary embodiment, the flanges 600 are point bonded together with pressure and no heat. In another exemplary embodiment, the flanges are heat welded together.
In one exemplary embodiment, the one or more of the installation flanges 600 include pre-installed fasteners, such as screws, nails, staples, etc. Some or all of the pre-installed fasteners can be pre-aligned with the framing studs 14. The insulated building wrap 220 with the pre-installed fasteners can be provided on a roll 500. The insulated building wrap 220 can simply be unrolled and installed on the wall with the pre-installed fasteners and optionally, some or all of the pre-installed fasteners are aligned with the framing studs 14 once a first of the fasteners is aligned and/or secured to the framing studs. For example, framing studs are typically located on 16 inch or 24 inch centers. Pre-installed nails or screws can be provided on 8 inch, 16 inch or 24 inch centers. Optional additional staples that do not need to be aligned with the studs 14 can also be pre-applied in the installation flanges.
Referring to
Referring to
Referring to
In one exemplary embodiment, the flanges 600 are omitted. For example, the uninsulated building wrap 220 can be installed using fasteners that extend through the insulated building wrap 220 and/or with an adhesive. Referring to
Referring to
Referring to
Referring to
As noted above, the insulated building wrap 220 may be provided on a roll 500 in a wide variety of different configurations. In one exemplary embodiment, the weight of the roll 500 is between 29 and 35 lbs. The roll 500 of insulated building wrap 220 may have a horizontal dimension H of about 25 feet with optional 6 inch flanges at each end (i.e. an insulation horizontal dimension of 24 feet) and a vertical dimension V 5 feet, two inches with optional 7 inch flanges at the top and bottom (i.e. and insulation vertical dimension of 4 feet). However, any size can be selected depending on the application.
In one exemplary embodiment, the insulated building wrap 220 has a high permeability or water vapor transfer rate (WVTR). In some embodiments, WVTR can be at least about 5 US perms to about 29 US perms or more. In one exemplary embodiment, the WVTR can be at least about 10 US perms to about 24 US perms or more.
In one exemplary embodiment, the thickness and/or the R value of some portions of the installed insulation material 224 is greater to compensate for other thinner and/or lower R value portions of the installed insulation product. For example, the thickness of the insulation material 224 may be selected to provide an R value of 6 for an application that requires an average R value of 5. This thicker insulation material compensates for low local R values at compressed areas, such as fastening points, at corners, etc. This allows for simpler, faster, and/or more secure installation, because the maximum number of fasteners can be used and it is permissible to compress part of the insulation material 224 and still provide the rated R value.
The insulated building wrap 220 can be used in a wide variety of different applications. For example, the insulated building wrap 220 can be used to insulate building structures like walls, roof, fenestration, ducts, heating and cooling pipes etc. Building structures or envelopes can be pre-built with such insulation material incorporated into such structures.
Moreover, while this invention has been shown and described with references to particular embodiments thereof, those skilled in the art will understand that various other changes in form and details may be made therein without departing from the scope of the invention. Although only some combinations of embodiments are claimed in the current disclosure, the current disclosure teaches the practice of all combinations of embodiments which are referenced by individual claims. For the purposes of disclosure, it is understood that all such combinations of claims are hereby taught to be practicable as per the current disclosure.
While the present invention has been illustrated by the description of embodiments thereof, and while the embodiments have been described in considerable detail, it is not the intention of the applicant to restrict or in any way limit the scope of the appended claims to such detail. Additional advantages and modifications will readily appear to those skilled in the art. Still further, while specifically shaped features have been shown and described herein, other geometries can be used including elliptical, polygonal (e.g., square, rectangular, triangular, hexagonal, etc.) and other shapes can also be used. Therefore, the invention, in its broader aspects, is not limited to the specific details, the representative apparatus, and illustrative examples shown and described. Accordingly, departures can be made from such details without departing from the spirit or scope of the applicant's general inventive concept.
The present application is a continuation of U.S. application Ser. No. 14/719,447, filed May 22, 2015 titled “BUILDING INSULATION SYSTEM”, which claims the benefit of U.S. provisional patent application No. 62/011,890, filed on Jun. 13, 2014, titled “Building Insulation System”, the entire disclosures of which are incorporated herein by reference in their entirety.
Number | Date | Country | |
---|---|---|---|
62011890 | Jun 2014 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14719447 | May 2015 | US |
Child | 15722144 | US |