Building panel with a mechanical locking system

Abstract
A set of essentially identical panels (1, 1′), such as building panels, provided with a mechanical locking system including a displaceable tongue (30), which is arranged in a displacement groove at a first edge of a first panel (1). A second panel is provided with a tongue groove at a second edge. The displaceable tongue is configured to cooperate with the tongue groove (20) for locking together the first and the second edge. The displaceable tongue has a spring constant that varies along the length of the tongue.
Description

The present disclosure relates to a panels such as a building panels, floorboard, wall panels, ceiling panels, furniture components or the like, which is provided with a mechanical locking system.


TECHNICAL BACKGROUND

Building panels provided with a mechanical locking system comprising a displaceable and resilient tongue cooperating with a tongue groove for vertical locking is known and disclosed in, e.g., WO2006/043893, WO2007/015669 and WO2009/066153. The tongue is a separate part and is made of, e.g., plastic and inserted in a displacement groove at an edge of a panel. The tongue is pushed into the displacement groove during an assembling of the panels when the panels are moved vertically with respect to each other, and springs back into the tongue groove of an adjacent panel when the panels have reached a locked position.


Although most of the description relates to floor panel, the description of techniques and problems thereof is applicable also for other applications, such as panels for other purposes, for example wall panels, ceiling panels, furniture, etc.


A drawback with the known locking system is that the tongue may spring back with a lower force than desired.


The above description of various known aspects is the applicant's characterization of such, and is not an admission that any of the above description is considered as prior art.


SUMMARY

It is an object of certain embodiments of the present disclosure to provide an improvement over the above described techniques and known art. Particularly, the strength of the known locking system is improved by embodiments of the invention.


A further object of the disclosure is to provide panels with a locking system comprising a displaceable tongue that springs back with a greater force, without making the assembling of the panels more difficult.


At least some of these and other objects and advantages that will be apparent from the description have been achieved by a set of essentially identical panels provided with a mechanical locking system comprising a displaceable tongue, which is arranged in a displacement groove at a first edge of a first panel. The displacement groove is preferably open in a horizontal direction. The displaceable tongue is configured to cooperate with a first tongue groove at a second edge of an adjacent second panel, for locking the first and the second edge in a vertical direction. The displaceable tongue is of a longitudinal shape and resilient with a spring constant that varies in the longitudinal direction of the displaceable tongue. A middle section in the longitudinal direction of the displaceable tongue has a higher spring constant than a first edge section of the tongue.


The lower spring constant at the first edge section may facilitate assembling of the first and second panel at the first and the second edges while the higher spring constant at the middle section may provide an improved locking. The higher spring constant may also provide a higher click sound when the displaceable tongue enters into the tongue, groove. The higher click sound may be an indication to an assembler of the panels that the panels are properly assembled.


The displaceable tongue may function in a similar manner as a spring. When a spring is compressed, the force it exerts is essentially proportional to its change in length. The rate or spring constant of a spring is the change in the force it exerts, divided by the change in deflection of the spring. An extension or compression spring has units of force divided by distance, for example N/m. The displaceable tongue may be compressed in its width direction.


The displaceable tongue may also be provided or function in a similar manner as a torsion spring that has units of torque divided by angle, such as Nm/rad. The displaceable tongue may alternatively function as a combination of a spring and a torsion spring.


Depending on the design and required operating environment, any material may be used to construct a spring, as long as the material has the required combination of rigidity and elasticity.


The spring constant of the middle section may also be higher than a spring constant of a second edge section of the tongue.


An inner long edge of the tongue may comprise protrusions arranged in the displacement groove, wherein the protrusions are bendable. A first of the protrusions may be arranged at the middle section and a second of the protrusions may be arranged at the first edge section, wherein the bending resistance of the first of the protrusion is greater than the bending resistance of the second protrusion. A third of the protrusions may be arranged at the second edge section, wherein the bending resistance of the first of the protrusion may be greater than the bending resistance of the third protrusion. A thickness of the first protrusion may be greater than a thickness of the second protrusion. A thickness of the first protrusion may be greater than a thickness of the third protrusion.


The displaceable tongue may be provided with a symmetrical outer edge. An upper and a lower side of the outer edge are preferably both provided with a surface and a surface that may function as either a locking surface or a guiding surface. This embodiment may have the advantage that the displaceable tongue may be turned upside-down with the same guiding and locking function.


The mechanical locking system may comprise a first locking strip, at the first or the second edge, provided with a first locking element configured to cooperate with a first locking groove at the other of the first or second edge for locking the first and the second edge in a horizontal direction.


The panels may be rectangular and the mechanical locking system may comprise a second locking strip, at a third or fourth edge, provided with a second locking element configured to cooperate for horizontal locking with a locking groove at the other of the third of fourth edge of an adjacent third panel. The third or the fourth edge is preferably provided with a second tongue configured to cooperate for vertical locking with a second tongue groove at the other of the third of fourth edge of an adjacent third panel.


The mechanical locking system at the third and the fourth edge may be configured to be assembled by an angling motion.


The mechanical locking system at the first and the second edge may be configured to be assembled by a vertical motion.


The panels may be floorboards, wall panels, ceiling panels, a furniture component, or the like.


The core of the panels may be a wood-based core, preferably made of MDF, HDF, OSB, WPC, plywood or particleboard. The core may also be a polymer-based core comprising thermosetting plastic or thermoplastic, e.g., vinyl or PVC. The plastic core may comprise fillers.


The front face of the panels is preferably provided with a decorative layer and the back face is preferably provided with a balancing layer.


The edge of the panels, of which parts of the locking system, such as the first and the second locking strip, the first and the second locking element, the first and the second locking groove and the first and the second tongue groove, may be made, may comprise the core material.





BRIEF DESCRIPTION OF THE DRAWINGS

The present invention will by way of example be described in more detail with reference to the appended schematic drawings, which show several embodiments of the present invention.



FIG. 1 shows assembling of floorboards provided with a locking system comprising a displaceable tongue.



FIGS. 2A-2B show cross sections of embodiments of the locking system.



FIGS. 3A-3B show cross sections of embodiments of the locking system.



FIGS. 4A-4B show two perpendicular assembled panels provided with embodiments of the locking system.



FIGS. 5A-5F show embodiments of the displaceable tongue.



FIGS. 6A-6D show cross sections of embodiments of the locking system.





DETAILED DESCRIPTION

An embodiment of a mechanical locking system for building panels, which comprises a displaceable tongue 30 cooperating with a first tongue groove 20 for vertical locking of a first edge of a first panel 1 with a second edge of a second panel 1′, is shown in FIG. 1. The displaceable tongue 30 is a separate part and is made of e.g. a polymer material, and is inserted in a displacement groove 40 at the first edge of the first panel 1. The displaceable tongue 30 is pushed into the displacement groove 40 during a vertical assembling of the first and the second edges of the panels, and springs back into the first tongue groove 20 at the second edge of the second panel 1′ when the panels have reached a locked position. The displaceable tongue 30 is of a longitudinal shape and has a spring constant that varies in the longitudinal direction of the displaceable tongue 30. A third and a fourth edge of the panels are provided with a locking system, which enables assembling to an adjacent panel 1″ by an angling movement, to obtain a simultaneous assembling of the first and the second edges and the third and the fourth edges.



FIGS. 2A-2B and 3A-3B show in a locked position cross sections of different embodiments of the mechanical locking system provided at the first and second panels 1, 1′. A displaceable tongue 30 is arranged in a displacement groove 40 at the first edge of the first panel 1. The displaceable tongue 30 cooperates with a first tongue groove 20, which is formed at the second edge of the second panel 1′, for vertical locking of the panels 1, 1′. A first locking strip 6 with a vertically protruding first locking element 8 is formed at the first edge of the first panel 1. The locking element 6 cooperates with a first locking groove 14, formed in the edge of the second panel 1′, for horizontal locking of the panels 1, 1′.


An embodiment of the displaceable tongue 30, which is shown in FIG. 3A-3B, is provided with a recess 31 at an outer tip of the displaceable tongue. The recess 31 makes it possible to have a smaller first tongue groove 20 and an increased distance 50 between the first tongue groove 20 and the locking groove 14. The increased distance may improve the strength of the mechanical locking system. Embodiments of the mechanical locking system may have a displacement groove 40 that extends in a direction essentially parallel to an upper surface of the panels, as is shown in FIG. 2A and FIG. 3A. The displacement groove may alternatively extend at an angle to the upper surface of the panels, as is shown in FIGS. 2B and 3B. The angled displacement groove 40 may have the advantage of the increased distance 50 between the first tongue groove 20 and the locking groove 14.


Embodiments of the mechanical locking system may be used to lock together a first panel 2 and a second panel 4 that are arranged essentially perpendicular to each other. An edge section 22 of the first panel 4 may be arranged in an edge section groove 21 of the second panel 2. FIG. 4A shows an embodiment with the displacement groove 40 arranged in the edge section groove 21 and the tongue groove 20 arranged at the edge section 22. FIG. 4B shows an embodiment with the displacement groove 40 arranged at the edge section 22 and the tongue groove 20 arranged in the edge section groove 21.


Preferred embodiments of the displaceable tongue 30 comprise protrusions 24 at a long edge of the displaceable tongue 30. The protrusions 24 are bendable and preferably arranged in the displacement groove 20. The protrusions 24 are configured to bend when the displaceable tongue 30 is pushed into the displacement groove 40 and to spring back to obtain the locked position. FIGS. 5A-5D show embodiments of the displaceable tongue 30 that is provided with a recess 25 at each of the protrusions. Each of the protrusions 24 is configured to be bent into a respective one of the recesses 25. FIG. 5B shows a cross section of the displaceable tongue 30 and the displacement groove 20 shown in FIG. 5A. The displaceable tongue 30 may comprise an upper and a lower displacement surface 26, 27 that is/are configured to cooperate with an upper and lower surface 28, 29, respectively, of the displacement groove 20. FIG. 5A shows a first protrusion 24 and a second protrusion 24′ with different thicknesses. The thickness of the second protrusion 24′ is larger than a thickness of the first protrusion 24 in order to obtain a larger spring constant of the second protrusion 24′. In addition, or alternatively, the length of the first protrusion may also be longer than the length of the second protrusion 24′ in order to obtain a lower spring constant of the first protrusion 24. The first protrusion 24 is preferably arranged at a first edge section of the displaceable tongue 30 and the second protrusion 24′ is preferably arranged at a middle section of the displaceable tongue 30. An advantage with a lower spring constant at an edge section may be that the force required for assembling is initially lower if panels are installed, e.g., as is shown in FIG. 1. An advantage with a high spring constant at the middle section may be that the spring force that forces the panels together is higher and a difference in level at the middle section of the first and the second edge, due to e.g. warped panels, may be levelled out. Differences in level at the edge sections of the first and second edge may be levelled out by the locking system at the third and forth edge.



FIG. 5C shows an embodiment of the displaceable tongue 30 comprising protrusions with a first spring constant C1 at the middle section of the displaceable tongue 30 and protrusions 24 at the first and the second edge sections with a second spring constant C2. The first spring C1 constant is larger than the second spring constant C2. The first spring constant may be in the range of about 1.1 to about 5 times as large as the second spring constant, preferably about 1.5 to about 3 times as large as the second spring constant, and most preferably about twice as large as the second spring constant. FIG. 5D shows that the displaceable tongue may comprise protrusions with a spring constant C3 that is between the first and the second spring constant.


During assembly, the displaceable tongue may be displaced about 0.5 to about 3 mm, and the spring constant of the protrusion 24 at the first edge section of the tongue is preferably in the range of 0.1 N/mm to about 10 N/mm, and more preferably in the range of 1 N/mm to about 4 N/mm.



FIGS. 5E and 5F show that the displaceable tongue 30 may comprise an inner flexible part 38 and an outer stiffer part 39. The spring constant may be varied in the longitudinal direction of the displaceable tongue by having different thickness of the flexible part or by having different material of flexible part. FIG. 5E shows a cross section of the displaceable tongue shown in FIG. 5D.



FIG. 6A-6B show embodiments of the displaceable tongue in a cross section during assembling of a first and a second panel. The embodiments of the displaceable tongue comprise three sections, an inner section 34, an outer section 33 and a middle section 35 connected to each other. The sections comprise preferably a polymer material. The outer and inner sections 33 and 34 are formed from a more rigid material than the middle section 35, which provides the major flexibility to the displaceable tongue 30. The middle section may be of a rubber like material and may also be used as a friction connection in order to prevent the flexible tongue from falling out of the displacement groove 40. The middle section 35 may function as a torsion spring. The outer section 33 preferably protrudes outside a vertical pane VP at the upper adjacent joint edges of the panels 1, 1′. The material and/or thickness of parts of the displaceable tongue may vary in the longitudinal direction of the displaceable tongue 30 to obtain the desired variation of the spring constant in the longitudinal direction of the displaceable tongue 30. The inner section 34 may comprise a fixing edge that may be located at an upper or a lower part.


An embodiment of the displaceable tongue 30 may be of a V-shaped form as is shown in a cross section during assembling of a first and a second panel 1, 1′ in FIG. 6C. An outer and first leg 61 of the displaceable tongue 30 may protrude outside an edge of the first panel 1. An inner and second leg 62 of the displaceable tongue 30 may be arranged in a fixation groove 63 at a first edge of the first panel 1. A second edge of the second panel is provided with a tongue groove 20. The first leg 61 is configured to cooperate with the tongue groove 20 for locking in a vertical direction. The thickness of the first leg 61 may vary in the longitudinal direction of the displaceable tongue 30 to obtain the desired variation of the spring constant in the longitudinal direction of the displaceable tongue 30. The first leg 61 may point downwards when the flexible tongue 30 is provided at an edge of a panel comprising a strip 6 and a locking element 8. The first leg 61 is pushed downward during assembling of the first and second panels 1, 1′.


Alternatively, the first leg 61 may point upwards when the flexible tongue 30 is provided at an edge of panel comprising a locking groove.


An embodiment of the displaceable tongue 30 with a symmetric outer edge 64 is shown if FIG. 6D. An upper and a lower side of the outer edge are both provided with a surface that may function as either a guiding surface and a locking surface. The guiding surface of the upper side of outer edge 64 cooperates with a guiding surface of the second edge of the second panel 1′ during assembling of the first and the second panel 1, 1′. The locking surface of the upper side of outer edge 64 cooperates with a locking surface of the tongue groove 20 at the second edge of the second panel 1′ in a locked position of the first and the second panel. The symmetric outer edge 64 may have the advantage that the displaceable tongue 30 has the same guiding and locking function also when the displaceable tongue is turned upside-down. An embodiment of the displaceable tongue with a first spring constant at the first edge section and a second spring constant and the second edge section may be turned upside down to change the position in the displacement groove of the first and the second edge section. The displaceable tongue is preferably positioned such that the edge section with lowest spring constant is the edge section with the earliest cooperation with the guiding surface of the second edge of the second panel 1′ during assembling of the first and the second panel 1, 1′.


Although the present invention has been described and illustrated in detail, it is clearly understood that the same is by way of illustration and example only and is not to be taken by way of limitation, the spirit and scope of the present invention being limited only by the terms of the appended claims.

Claims
  • 1. A set of panels is provided with a mechanical locking system comprising a displaceable tongue, which displaceable tongue is arranged in a displacement groove at a first edge of a first of the panels, the displacement groove having an upper wall, a lower wall and a bottom wall between the upper wall and the lower wall, the displaceable tongue is configured to cooperate with a first tongue groove at a second edge of an adjacent second of the panels, for locking of the first edge and the second edge in a vertical direction, wherein the displaceable tongue is of a longitudinal shape and resilient, and comprises a plurality of protrusions arranged in the displacement groove, each protrusion in the displacement groove protruding from a main body of the displaceable tongue in a substantially horizontal direction, the horizontal direction being perpendicular to the vertical direction, toward the bottom wall, a spring constant of the protrusions varies in the longitudinal direction of the displaceable tongue, and the protrusions at a middle section in the longitudinal direction of the displaceable tongue have a higher spring constant than the protrusions at a first edge section of the displaceable tongue.
  • 2. The set of panels as claimed in claim 1, wherein the displacement groove is horizontally open.
  • 3. The set of panels as claimed in claim 1, wherein the spring constant of the protrusions at the middle section is higher than a spring constant of protrusions at a second edge section of the displaceable tongue.
  • 4. The set of panels as claimed in claim 1, wherein the protrusions are bendable.
  • 5. The set of panels as claimed in claim 4, wherein a first of the protrusions is arranged at the middle section and a second of the protrusions is arranged at the first edge section, wherein bending resistance of the first of the protrusions is greater than bending resistance of the second of the protrusions.
  • 6. The set of panels as claimed in claim 5, wherein a third of the protrusions is arranged at the second edge section, wherein the bending resistance of the first of the protrusions is greater than bending resistance of the third protrusion.
  • 7. The set of panels as claimed in claim 5, wherein a thickness of the first of the protrusions is greater than a thickness of the second of the protrusions.
  • 8. The set of panels as claimed in claim 6, wherein a thickness of the first of the protrusions is greater than a thickness of the third of the protrusions.
  • 9. The set of panels as claimed in claim 1, wherein the mechanical locking system comprises a first locking strip at the first edge of the first panel or at the second edge of the adjacent second panel, the first locking strip provided with a first locking element configured to cooperate for horizontal locking with a first locking groove at the other of the first edge or the second edge.
  • 10. The set of panels as claimed in claim 9, wherein the panels are rectangular and the mechanical locking system comprises a second locking strip at a third edge or a fourth edge of an adjacent third panel, the second locking strip provided with a second locking element configured to cooperate for horizontal locking with a second locking groove at the other of the third edge or the fourth edge of the adjacent third panel.
  • 11. The set of panels as claimed in claim 10, wherein the mechanical locking system at the third edge and the fourth edge of the panels is configured to be assembled by an angling motion.
  • 12. The set of panels as claimed in claim 1, wherein the mechanical locking system at the first edge and the second edge of the panels is configured to be assembled by a vertical motion.
  • 13. The set of panels as claimed in claim 1, wherein the panels are building panels.
  • 14. The set of panels as claimed in claim 1, wherein the spring constant of the protrusions at the middle section is 1.5 to 3 times higher than the spring constant of the protrusions at the first edge section.
  • 15. The set of panels as claimed in claim 1, wherein the spring constant of the protrusions at the first edge section is in the range of about 0.1 to about 10 N/mm.
  • 16. The set of panels as claimed in claim 1, wherein the spring constant of the protrusions at the first edge section is in the range of about 1 to about 4 N/mm.
  • 17. The set of panels as claimed in claim 15, wherein the spring constant of the protrusions at the middle section is 1.5 to 3 times higher than the spring constant of the protrusions at the first edge section.
  • 18. The set of panels as claimed in claim 16, wherein the spring constant of the protrusions at the middle section is 1.5 to 3 times higher than the spring constant of the protrusions at the first edge section.
  • 19. The set of panels as claimed in claim 1, wherein the protrusions are spaced from each other in a direction along the longitudinal direction of the displaceable tongue.
Priority Claims (1)
Number Date Country Kind
1450568 May 2014 SE national
US Referenced Citations (472)
Number Name Date Kind
87853 Kappes Mar 1869 A
108068 Utley Oct 1870 A
124228 Stuart Mar 1872 A
213740 Conner Apr 1879 A
274354 McCarthy et al. Mar 1883 A
316176 Ransom Apr 1885 A
634581 Miller Oct 1899 A
861911 Stewart Jul 1907 A
1194636 Joy Aug 1916 A
1723306 Sipe Aug 1929 A
1743492 Sipe Jan 1930 A
1809393 Rockwell Jun 1931 A
1902716 Newton Mar 1933 A
2026511 Storm Dec 1935 A
2204675 Grunert Jun 1940 A
2266464 Kraft Dec 1941 A
2277758 Hawkins Mar 1942 A
2430200 Wilson Nov 1947 A
2596280 Nystrom May 1952 A
2732706 Friedman Jan 1956 A
2740167 Rowley Apr 1956 A
2858584 Gaines Nov 1958 A
2863185 Riedi Dec 1958 A
2865058 Andersson Dec 1958 A
2889016 Warren Jun 1959 A
3023681 Worson Mar 1962 A
3077703 Bergstrom Feb 1963 A
3099110 Spaight Jul 1963 A
3147522 Schumm Sep 1964 A
3271787 Clary Sep 1966 A
3325585 Brenneman Jun 1967 A
3331180 Vissing et al. Jul 1967 A
3378958 Parks et al. Apr 1968 A
3396640 Fujihara Aug 1968 A
3512324 Reed May 1970 A
3517927 Kennel Jun 1970 A
3526071 Watanabe Sep 1970 A
3535844 Glaros Oct 1970 A
3572224 Perry Mar 1971 A
3579941 Tibbals May 1971 A
3720027 Christensen Mar 1973 A
3722379 Koester Mar 1973 A
3731445 Hoffmann et al. May 1973 A
3742669 Mansfeld Jul 1973 A
3760547 Brenneman Sep 1973 A
3760548 Sauer et al. Sep 1973 A
3778954 Meserole Dec 1973 A
3849235 Gwynne Nov 1974 A
3919820 Green Nov 1975 A
3950915 Cole Apr 1976 A
3994609 Puccio Nov 1976 A
4007994 Brown Feb 1977 A
4030852 Hein Jun 1977 A
4037377 Howell et al. Jul 1977 A
4041665 de Munck Aug 1977 A
4064571 Phipps Dec 1977 A
4080086 Watson Mar 1978 A
4082129 Morelock Apr 1978 A
4100710 Kowallik Jul 1978 A
4104840 Heintz et al. Aug 1978 A
4107892 Bellem Aug 1978 A
4113399 Hansen, Sr. et al. Sep 1978 A
4169688 Toshio Oct 1979 A
RE30154 Jarvis Nov 1979 E
4196554 Anderson Apr 1980 A
4227430 Janssen et al. Oct 1980 A
4299070 Oltmanns Nov 1981 A
4304083 Anderson Dec 1981 A
4426820 Terbrack Jan 1984 A
4447172 Galbreath May 1984 A
4512131 Laramore Apr 1985 A
4599841 Haid Jul 1986 A
4648165 Whitehorne Mar 1987 A
4819932 Trotter, Jr. Apr 1989 A
5007222 Raymond Apr 1991 A
5026112 Rice Jun 1991 A
5071282 Brown Dec 1991 A
5135597 Barker Aug 1992 A
5148850 Urbanick Sep 1992 A
5173012 Ortwein et al. Dec 1992 A
5182892 Chase Feb 1993 A
5247773 Weir Sep 1993 A
5272850 Mysliwiec et al. Dec 1993 A
5274979 Tsai Jan 1994 A
5295341 Kajiwara Mar 1994 A
5344700 McGath et al. Sep 1994 A
5348778 Knipp et al. Sep 1994 A
5373674 Winter, IV Dec 1994 A
5465546 Buse Nov 1995 A
5485702 Sholton Jan 1996 A
5502939 Zadok et al. Apr 1996 A
5548937 Shimonohara Aug 1996 A
5577357 Civelli Nov 1996 A
5598682 Haughian Feb 1997 A
5618602 Nelson Apr 1997 A
5634309 Polen Jun 1997 A
5658086 Brokaw et al. Aug 1997 A
5694730 Del Rincon et al. Dec 1997 A
5755068 Ormiston May 1998 A
5860267 Pervan Jan 1999 A
5899038 Stroppiana May 1999 A
5950389 Porter Sep 1999 A
5970675 Schray Oct 1999 A
6006486 Moriau Dec 1999 A
6029416 Andersson Feb 2000 A
6052960 Yonemura Apr 2000 A
6065262 Motta May 2000 A
6173548 Hamar et al. Jan 2001 B1
6182410 Pervan Feb 2001 B1
6203653 Seidner Mar 2001 B1
6254301 Hatch Jul 2001 B1
6295779 Canfield Oct 2001 B1
6314701 Meyerson Nov 2001 B1
6332733 Hamberger Dec 2001 B1
6339908 Chuang Jan 2002 B1
6345481 Nelson Feb 2002 B1
6358352 Schmidt Mar 2002 B1
6363677 Chen et al. Apr 2002 B1
6385936 Schneider May 2002 B1
6418683 Martensson et al. Jul 2002 B1
6446413 Gruber Sep 2002 B1
6449918 Nelson Sep 2002 B1
6450235 Lee Sep 2002 B1
6490836 Moriau et al. Dec 2002 B1
6505452 Hannig Jan 2003 B1
6546691 Leopolder Apr 2003 B2
6553724 Bigler Apr 2003 B1
6576079 Kai Jun 2003 B1
6584747 Kettler et al. Jul 2003 B2
6591568 Pålsson Jul 2003 B1
6601359 Olofsson Aug 2003 B2
6617009 Chen et al. Sep 2003 B1
6647689 Pletzer et al. Nov 2003 B2
6647690 Martensson Nov 2003 B1
6651400 Murphy Nov 2003 B1
6670019 Andersson Dec 2003 B2
6681820 Olofsson Jan 2004 B2
6685391 Gideon Feb 2004 B1
6729091 Martensson May 2004 B1
6763643 Martensson Jul 2004 B1
6766622 Thiers Jul 2004 B1
6769219 Schwitte et al. Aug 2004 B2
6769835 Stridsman Aug 2004 B2
6802166 Durnberger Oct 2004 B1
6804926 Eisermann Oct 2004 B1
6808777 Andersson et al. Oct 2004 B2
6854235 Martensson Feb 2005 B2
6862857 Tychsen Mar 2005 B2
6865855 Knauseder Mar 2005 B2
6874291 Weber Apr 2005 B1
6880307 Schwitte et al. Apr 2005 B2
6948716 Drouin Sep 2005 B2
7021019 Knauseder Apr 2006 B2
7040068 Moriau et al. May 2006 B2
7051486 Pervan May 2006 B2
7108031 Secrest Sep 2006 B1
7121058 Pålsson Oct 2006 B2
7152383 Wilkinson et al. Dec 2006 B1
7188456 Knauseder Mar 2007 B2
7219392 Mullet et al. May 2007 B2
7251916 Konzelmann et al. Aug 2007 B2
7257926 Kirby Aug 2007 B1
7337588 Moebus Mar 2008 B1
7377081 Ruhdorfer May 2008 B2
7451578 Hannig Nov 2008 B2
7454875 Pervan et al. Nov 2008 B2
7516588 Pervan Apr 2009 B2
7517427 Sjoberg et al. Apr 2009 B2
7533500 Morton et al. May 2009 B2
7556849 Thompson et al. Jul 2009 B2
7568322 Pervan Aug 2009 B2
7584583 Bergelin et al. Sep 2009 B2
7614197 Nelson Nov 2009 B2
7617651 Grafenauer Nov 2009 B2
7621092 Groeke et al. Nov 2009 B2
7634884 Pervan Dec 2009 B2
7637068 Pervan Dec 2009 B2
7644553 Knauseder Jan 2010 B2
7654055 Ricker Feb 2010 B2
7677005 Pervan Mar 2010 B2
7716889 Pervan May 2010 B2
7721503 Pervan et al. May 2010 B2
7726088 Muehlebach Jun 2010 B2
7757452 Pervan Jul 2010 B2
7802411 Pervan Sep 2010 B2
7806624 McLean et al. Oct 2010 B2
7841144 Pervan et al. Nov 2010 B2
7841145 Pervan et al. Nov 2010 B2
7841150 Pervan Nov 2010 B2
7856789 Eisermann Dec 2010 B2
7861482 Pervan et al. Jan 2011 B2
7866110 Pervan Jan 2011 B2
7908815 Pervan et al. Mar 2011 B2
7908816 Grafenauer Mar 2011 B2
7930862 Bergelin et al. Apr 2011 B2
7954295 Pervan Jun 2011 B2
7980039 Groeke Jul 2011 B2
7980041 Pervan Jul 2011 B2
8006458 Olofsson et al. Aug 2011 B1
8033074 Pervan Oct 2011 B2
8042311 Pervan Oct 2011 B2
8061104 Pervan Nov 2011 B2
8079196 Pervan Dec 2011 B2
8112967 Pervan et al. Feb 2012 B2
8171692 Pervan May 2012 B2
8181416 Pervan et al. May 2012 B2
8191334 Braun Jun 2012 B2
8234830 Pervan et al. Aug 2012 B2
8245478 Bergelin Aug 2012 B2
8281549 Du Oct 2012 B2
8302367 Schulte Nov 2012 B2
8336272 Prager et al. Dec 2012 B2
8341914 Pervan et al. Jan 2013 B2
8341915 Pervan et al. Jan 2013 B2
8353140 Pervan et al. Jan 2013 B2
8359805 Pervan et al. Jan 2013 B2
8381477 Pervan et al. Feb 2013 B2
8387327 Pervan Mar 2013 B2
8448402 Pervan et al. May 2013 B2
8499521 Pervan et al. Aug 2013 B2
8505257 Boo et al. Aug 2013 B2
8511031 Bergelin et al. Aug 2013 B2
8528289 Pervan et al. Sep 2013 B2
8544230 Pervan Oct 2013 B2
8544234 Pervan et al. Oct 2013 B2
8572922 Pervan Nov 2013 B2
8578675 Palsson et al. Nov 2013 B2
8596013 Boo Dec 2013 B2
8615952 Engström Dec 2013 B2
8627862 Pervan et al. Jan 2014 B2
8631623 Engström Jan 2014 B2
8640424 Pervan et al. Feb 2014 B2
8650826 Pervan et al. Feb 2014 B2
8677714 Pervan Mar 2014 B2
8689512 Pervan Apr 2014 B2
8701368 Vermeulen Apr 2014 B2
8707650 Pervan Apr 2014 B2
8713886 Boo et al. May 2014 B2
8733065 Pervan May 2014 B2
8733410 Pervan May 2014 B2
8763341 Pervan Jul 2014 B2
8769905 Pervan Jul 2014 B2
8776473 Pervan et al. Jul 2014 B2
8844236 Pervan et al. Sep 2014 B2
8857126 Pervan et al. Oct 2014 B2
8887468 Hakansson et al. Nov 2014 B2
8898988 Pervan Dec 2014 B2
8925274 Pervan et al. Jan 2015 B2
8938929 Engström Jan 2015 B2
8959866 Pervan Feb 2015 B2
9027306 Pervan May 2015 B2
9051738 Pervan et al. Jun 2015 B2
9068360 Pervan Jun 2015 B2
9194134 Nygren et al. Nov 2015 B2
9284737 Pervan et al. Mar 2016 B2
9309679 Pervan et al. Apr 2016 B2
9316002 Boo Apr 2016 B2
9359774 Pervan Jun 2016 B2
9366036 Pervan Jun 2016 B2
9376821 Pervan et al. Jun 2016 B2
9382716 Pervan et al. Jul 2016 B2
9388584 Pervan et al. Jul 2016 B2
20010024707 Andersson et al. Sep 2001 A1
20020031646 Chen et al. Mar 2002 A1
20020069611 Leopolder Jun 2002 A1
20020092263 Schulte Jul 2002 A1
20020170258 Schwitte et al. Nov 2002 A1
20020170259 Ferris Nov 2002 A1
20020178674 Pervan Dec 2002 A1
20020178680 Martensson Dec 2002 A1
20020189190 Charmat et al. Dec 2002 A1
20020194807 Nelson et al. Dec 2002 A1
20030009971 Palmberg Jan 2003 A1
20030024199 Pervan et al. Feb 2003 A1
20030037504 Schwitte et al. Feb 2003 A1
20030084636 Pervan May 2003 A1
20030094230 Sjoberg May 2003 A1
20030101681 Tychsen Jun 2003 A1
20030145549 Palsson et al. Aug 2003 A1
20030180091 Stridsman Sep 2003 A1
20030188504 Ralf Oct 2003 A1
20030196405 Pervan Oct 2003 A1
20040016196 Pervan Jan 2004 A1
20040031227 Knauseder Feb 2004 A1
20040049999 Krieger Mar 2004 A1
20040060255 Knauseder Apr 2004 A1
20040068954 Martensson Apr 2004 A1
20040123548 Gimpel et al. Jul 2004 A1
20040128934 Hecht Jul 2004 A1
20040139676 Knauseder Jul 2004 A1
20040139678 Pervan Jul 2004 A1
20040159066 Thiers et al. Aug 2004 A1
20040168392 Konzelmann et al. Sep 2004 A1
20040177584 Pervan Sep 2004 A1
20040182033 Wernersson Sep 2004 A1
20040182036 Sjoberg et al. Sep 2004 A1
20040200175 Weber Oct 2004 A1
20040211143 Hannig Oct 2004 A1
20040244325 Nelson Dec 2004 A1
20040250492 Becker Dec 2004 A1
20040261348 Vulin Dec 2004 A1
20050003132 Blix et al. Jan 2005 A1
20050028474 Kim Feb 2005 A1
20050050827 Schitter Mar 2005 A1
20050160694 Pervan Jul 2005 A1
20050166514 Pervan Aug 2005 A1
20050205161 Lewark Sep 2005 A1
20050210810 Pervan Sep 2005 A1
20050235593 Hecht Oct 2005 A1
20050252130 Martensson Nov 2005 A1
20050268570 Pervan Dec 2005 A2
20060053724 Braun et al. Mar 2006 A1
20060070333 Pervan Apr 2006 A1
20060101769 Pervan May 2006 A1
20060156670 Knauseder Jul 2006 A1
20060174577 O'Neil Aug 2006 A1
20060179754 Yang Aug 2006 A1
20060236642 Pervan Oct 2006 A1
20060260254 Pervan et al. Nov 2006 A1
20060272262 Pomberger Dec 2006 A1
20070006543 Engstrom Jan 2007 A1
20070011981 Eiserman Jan 2007 A1
20070028547 Grafenauer et al. Feb 2007 A1
20070065293 Hannig Mar 2007 A1
20070108679 Grothaus May 2007 A1
20070151189 Yang et al. Jul 2007 A1
20070175156 Pervan et al. Aug 2007 A1
20070193178 Groeke et al. Aug 2007 A1
20070209736 Deringor et al. Sep 2007 A1
20070214741 Llorens Miravet Sep 2007 A1
20080000182 Pervan Jan 2008 A1
20080000185 Duernberger Jan 2008 A1
20080000186 Pervan et al. Jan 2008 A1
20080000187 Pervan et al. Jan 2008 A1
20080005998 Pervan Jan 2008 A1
20080010931 Pervan et al. Jan 2008 A1
20080010937 Pervan et al. Jan 2008 A1
20080028707 Pervan Feb 2008 A1
20080034708 Pervan Feb 2008 A1
20080041008 Pervan Feb 2008 A1
20080053029 Ricker Mar 2008 A1
20080066415 Pervan Mar 2008 A1
20080104921 Pervan et al. May 2008 A1
20080110125 Pervan May 2008 A1
20080134607 Pervan Jun 2008 A1
20080134613 Pervan Jun 2008 A1
20080134614 Pervan Jun 2008 A1
20080155930 Pervan et al. Jul 2008 A1
20080216434 Pervan Sep 2008 A1
20080216920 Pervan Sep 2008 A1
20080236088 Hannig et al. Oct 2008 A1
20080295432 Pervan et al. Dec 2008 A1
20080302044 Johansson Dec 2008 A1
20090019806 Muehlebach Jan 2009 A1
20090064624 Sokol Mar 2009 A1
20090100782 Groeke et al. Apr 2009 A1
20090133353 Pervan et al. May 2009 A1
20090151290 Liu Jun 2009 A1
20090173032 Prager et al. Jul 2009 A1
20090193741 Capelle Aug 2009 A1
20090193748 Boo et al. Aug 2009 A1
20090193753 Schitter Aug 2009 A1
20090217615 Engstrom Sep 2009 A1
20090241460 Beaulieu Oct 2009 A1
20090308014 Muehlebach Dec 2009 A1
20100043333 Hannig Feb 2010 A1
20100083603 Goodwin Apr 2010 A1
20100170189 Schulte Jul 2010 A1
20100173122 Susnjara Jul 2010 A1
20100281803 Cappelle Nov 2010 A1
20100293879 Pervan et al. Nov 2010 A1
20100300031 Pervan et al. Dec 2010 A1
20100319290 Pervan Dec 2010 A1
20100319291 Pervan et al. Dec 2010 A1
20110016815 Yang Jan 2011 A1
20110030303 Pervan et al. Feb 2011 A1
20110041996 Pervan Feb 2011 A1
20110047922 Fleming, III Mar 2011 A1
20110088344 Pervan et al. Apr 2011 A1
20110088345 Pervan Apr 2011 A1
20110088346 Hannig Apr 2011 A1
20110131916 Chen Jun 2011 A1
20110154763 Bergelin et al. Jun 2011 A1
20110167750 Pervan Jul 2011 A1
20110167751 Engström Jul 2011 A1
20110173914 Engström Jul 2011 A1
20110197535 Baker et al. Aug 2011 A1
20110225921 Schulte Sep 2011 A1
20110225922 Pervan et al. Sep 2011 A1
20110252733 Pervan Oct 2011 A1
20110271632 Cappelle et al. Nov 2011 A1
20110283650 Pervan et al. Nov 2011 A1
20120017533 Pervan et al. Jan 2012 A1
20120031029 Pervan et al. Feb 2012 A1
20120036804 Pervan Feb 2012 A1
20120042598 Vermeulen et al. Feb 2012 A1
20120055112 Engström Mar 2012 A1
20120124932 Schulte et al. May 2012 A1
20120151865 Pervan et al. Jun 2012 A1
20120174515 Pervan Jul 2012 A1
20120174520 Pervan Jul 2012 A1
20120174521 Schulte et al. Jul 2012 A1
20120192521 Schulte Aug 2012 A1
20120279161 Hakansson et al. Nov 2012 A1
20120304590 Engström Dec 2012 A1
20130008117 Pervan Jan 2013 A1
20130008118 Baert et al. Jan 2013 A1
20130014463 Pervan Jan 2013 A1
20130019555 Pervan Jan 2013 A1
20130042562 Pervan Feb 2013 A1
20130042563 Pervan et al. Feb 2013 A1
20130042564 Pervan et al. Feb 2013 A1
20130042565 Pervan Feb 2013 A1
20130047536 Pervan Feb 2013 A1
20130081349 Pervan et al. Apr 2013 A1
20130111837 Devos et al. May 2013 A1
20130111845 Pervan May 2013 A1
20130145708 Pervan Jun 2013 A1
20130152500 Engström Jun 2013 A1
20130160391 Pervan et al. Jun 2013 A1
20130167467 Vermeulen et al. Jul 2013 A1
20130232905 Pervan Sep 2013 A2
20130239508 Pervan et al. Sep 2013 A1
20130263454 Boo et al. Oct 2013 A1
20130263547 Boo Oct 2013 A1
20130283719 Dohring et al. Oct 2013 A1
20130318906 Pervan et al. Dec 2013 A1
20140007539 Pervan et al. Jan 2014 A1
20140020324 Pervan Jan 2014 A1
20140026513 Bishop Jan 2014 A1
20140033634 Pervan Feb 2014 A1
20140053497 Pervan et al. Feb 2014 A1
20140059966 Boo Mar 2014 A1
20140069043 Pervan Mar 2014 A1
20140090335 Pervan et al. Apr 2014 A1
20140109501 Pervan Apr 2014 A1
20140109506 Pervan et al. Apr 2014 A1
20140123586 Pervan et al. May 2014 A1
20140130437 Cappelle May 2014 A1
20140144096 Vermeulen et al. May 2014 A1
20140150369 Hannig Jun 2014 A1
20140186104 Hamberger Jul 2014 A1
20140190112 Pervan Jul 2014 A1
20140208677 Pervan et al. Jul 2014 A1
20140223852 Pervan Aug 2014 A1
20140237931 Pervan Aug 2014 A1
20140250813 Nygren et al. Sep 2014 A1
20140260060 Pervan et al. Sep 2014 A1
20140290173 Hamberger Oct 2014 A1
20140305065 Pervan Oct 2014 A1
20140366476 Pervan Dec 2014 A1
20140373480 Pervan et al. Dec 2014 A1
20150000221 Boo Jan 2015 A1
20150013260 Pervan Jan 2015 A1
20150047284 Cappelle et al. Feb 2015 A1
20150059281 Pervan Mar 2015 A1
20150089896 Pervan et al. Apr 2015 A2
20150121796 Pervan May 2015 A1
20150167318 Pervan Jun 2015 A1
20150176289 Hannig Jun 2015 A1
20150176619 Baker Jun 2015 A1
20150267419 Pervan Sep 2015 A1
20150300029 Pervan Oct 2015 A1
20160060879 Pervan Mar 2016 A1
20160069088 Boo et al. Mar 2016 A1
20160076260 Pervan et al. Mar 2016 A1
20160090744 Pervan et al. Mar 2016 A1
20160153200 Pervan Jun 2016 A1
20160168866 Pervan et al. Jun 2016 A1
20160186426 Boo Jun 2016 A1
20160194884 Pervan et al. Jul 2016 A1
20160201336 Pervan Jul 2016 A1
Foreign Referenced Citations (164)
Number Date Country
2456513 Feb 2003 CA
201588375 Sep 2010 CN
2 159 042 Jun 1973 DE
33 43 601 Jun 1985 DE
33 43 601 Jun 1985 DE
39 32 980 Nov 1991 DE
42 15 273 Nov 1993 DE
42 42 530 Jun 1994 DE
196 01 322 May 1997 DE
299 22 649 Apr 2000 DE
200 01 788 Jun 2000 DE
199 40 837 Nov 2000 DE
199 58 225 Jun 2001 DE
202 05 774 Aug 2002 DE
203 20 799 Apr 2005 DE
10 2004 055 951 Jul 2005 DE
10 2004 001 363 Aug 2005 DE
10 2005 002 297 Aug 2005 DE
10 2004 054 368 May 2006 DE
10 2005 024 366 Nov 2006 DE
10 2006 024 184 Nov 2007 DE
10 2006 037 614 Dec 2007 DE
10 2006 057 491 Jun 2008 DE
10 2007 018 309 Aug 2008 DE
10 2007 016 533 Oct 2008 DE
10 2007 032 885 Jan 2009 DE
10 2007 035 648 Jan 2009 DE
10 2007 049 792 Feb 2009 DE
10 2009 048 050 Jan 2011 DE
WO 2013017574 Feb 2013 DE
0 013 852 Aug 1980 EP
0 871 156 Oct 1998 EP
0 974 713 Jan 2000 EP
1 120 515 Aug 2001 EP
1 146 182 Oct 2001 EP
1 350 904 Oct 2003 EP
1 350 904 Oct 2003 EP
1 420 125 May 2004 EP
1 437 457 Jul 2004 EP
1 640 530 Mar 2006 EP
1 650 375 Apr 2006 EP
1 650 375 Sep 2006 EP
1 980 683 Oct 2008 EP
2 000 610 Dec 2008 EP
2 017 403 Jan 2009 EP
2 034 106 Mar 2009 EP
2 333 195 Jun 2011 EP
2 570 564 Mar 2013 EP
2 333 195 Jul 2014 EP
1.138.595 Jun 1957 FR
2 256 807 Aug 1975 FR
2 810 060 Dec 2001 FR
240629 Oct 1925 GB
376352 Jul 1932 GB
1171337 Nov 1969 GB
2 051 916 Jan 1981 GB
03-110258 May 1991 JP
05-018028 Jan 1993 JP
6-146553 May 1994 JP
6-288017 Oct 1994 JP
6-306961 Nov 1994 JP
6-322848 Nov 1994 JP
7-300979 Nov 1995 JP
526 688 May 2005 SE
529 076 Apr 2007 SE
WO 9426999 Nov 1994 WO
WO 9623942 Aug 1996 WO
WO 9627721 Sep 1996 WO
WO 9747834 Dec 1997 WO
WO 9821428 May 1998 WO
WO 9822677 May 1998 WO
WO 9858142 Dec 1998 WO
WO 9966151 Dec 1999 WO
WO 9966152 Dec 1999 WO
WO 0020705 Apr 2000 WO
WO 0020706 Apr 2000 WO
WO 0043281 Jul 2000 WO
WO 0047841 Aug 2000 WO
WO 0055067 Sep 2000 WO
WO 0102669 Jan 2001 WO
WO 0102670 Jan 2001 WO
WO 0102671 Jan 2001 WO
WO 0102672 Jan 2001 WO
WO 0107729 Feb 2001 WO
WO 0138657 May 2001 WO
WO 0144669 Jun 2001 WO
WO 0144669 Jun 2001 WO
WO 0148331 Jul 2001 WO
WO 0148332 Jul 2001 WO
WO 0151732 Jul 2001 WO
WO 0151733 Jul 2001 WO
WO 0175247 Oct 2001 WO
WO 0177461 Oct 2001 WO
WO 0194721 Dec 2001 WO
WO 0194721 Dec 2001 WO
WO 0198604 Dec 2001 WO
WO 0248127 Jun 2002 WO
WO 02055809 Jul 2002 WO
WO 02055810 Jul 2002 WO
WO 02081843 Oct 2002 WO
WO 02103135 Dec 2002 WO
WO 03012224 Feb 2003 WO
WO 03016654 Feb 2003 WO
WO 03025307 Mar 2003 WO
WO 03038210 May 2003 WO
WO 03044303 May 2003 WO
WO 03069094 Aug 2003 WO
WO 03074814 Sep 2003 WO
WO 03083234 Oct 2003 WO
WO 03087497 Oct 2003 WO
WO 03089736 Oct 2003 WO
WO 2004016877 Feb 2004 WO
WO 2004020764 Mar 2004 WO
WO 2004048716 Jun 2004 WO
WO 2004050780 Jun 2004 WO
WO 2004079128 Sep 2004 WO
WO 2004079130 Sep 2004 WO
WO 2004083557 Sep 2004 WO
WO 2004085765 Oct 2004 WO
WO 2005003488 Jan 2005 WO
WO 2005003489 Jan 2005 WO
WO 2005054599 Jun 2005 WO
WO 2006043893 Apr 2006 WO
WO 2006050928 May 2006 WO
WO 2006104436 Oct 2006 WO
WO 2006123988 Nov 2006 WO
WO 2006125646 Nov 2006 WO
WO 2007015669 Feb 2007 WO
WO 2007019957 Feb 2007 WO
WO 2007079845 Jul 2007 WO
WO 2007089186 Aug 2007 WO
WO 2007118352 Oct 2007 WO
WO 2007141605 Dec 2007 WO
WO 2007142589 Dec 2007 WO
WO 2008004960 Jan 2008 WO
WO 2008004960 Jan 2008 WO
WO 2008017281 Feb 2008 WO
WO 2008017301 Feb 2008 WO
WO 2008017301 Feb 2008 WO
WO 2008060232 May 2008 WO
WO 2008068245 Jun 2008 WO
WO 2009013590 Jan 2009 WO
WO 2009066153 May 2009 WO
WO 2009116926 Sep 2009 WO
WO 2010006684 Jan 2010 WO
WO 2010070472 Jun 2010 WO
WO 2010070605 Jun 2010 WO
WO 2010082171 Jul 2010 WO
WO 2010087752 Aug 2010 WO
WO 2010105732 Sep 2010 WO
WO 2010108980 Sep 2010 WO
WO 2010136171 Dec 2010 WO
WO 2011001326 Jan 2011 WO
WO 2011012104 Feb 2011 WO
WO 2011032540 Mar 2011 WO
WO 2011038709 Apr 2011 WO
WO 2011085788 Jul 2011 WO
WO 2011127981 Oct 2011 WO
WO 2011151758 Dec 2011 WO
WO 2013017574 Feb 2013 WO
WO 2013017575 Feb 2013 WO
WO 2013025164 Feb 2013 WO
WO 2013083629 Jun 2013 WO
WO 2013087190 Jun 2013 WO
Non-Patent Literature Citations (41)
Entry
U.S. Appl. No. 14/683,340, Pervan.
U.S. Appl. No. 14/701,959, Pervan, et al.
U.S. Appl. No. 14/646,567, Pervan.
U.S. Appl. No. 14/730,691, Pervan.
Välinge Innovation AB, Technical Disclosure entitled “Mechanical locking for floor panels with a flexible bristle tongue,” IP.com No. IPCOM000145262D, Jan. 12, 2007, IP.com PriorArtDatabase, 57 pages.
Engstrand, Ola (Contact)/Välinge Innovation AB, Technical Disclosure entitled “VA-038 Mechanical Locking of Floor Panels With Vertical Folding,” IP com No. IPCOM000179246D, Feb. 10, 2009, IP.com Prior Art Database, 59 pages.
Engstrand, Ola (Contact)/Välinge Innovation AB, Technical Disclosure entitled “VA043 5G Linear Slide Tongue,” IP com No. IPCOM000179015D, Feb. 4, 2009, IP.com Prior Art Database, 126 pages.
Engstrand, Ola (Owner)/Välinge Innovation AB, Technical Disclosure entitled “VA043b PCT Mechanical Locking of Floor Panels,” IP com No. IPCOM000189420D, Nov. 9, 2009, IP.com Prior Art Database, 62 pages.
Engstrand, Ola (Contact)/Välinge Innovation AB, Technical Disclosure entitled “VA055 Mechanical locking system for floor panels,” IP com No. IPCOM000206454D, Apr. 27, 2011, IP.com Prior Art Database, 25 pages.
Engstrand, Ola (Contact)/Välinge Innovation AB, Technical Disclosure entitled “VA058 Rocker Tongue,” IP com No. IPCOM000203832D, Feb. 4, 2011, IP.com Prior Art Database, 22 pages.
Pervan, Darko (Author)/Välinge Flooring Technology, Technical Disclosure entitled “VA066b Glued Tongue,” IP com No. IPCOM000210865D, Sep. 13, 2011, IP.com Prior Art Database, 19 pages.
Pervan, Darko (Inventor)/Välinge Flooring Technology AB, Technical Disclosure entitled “VA067 Fold Slide Loc,” IP com No. IPCOM000208542D, Jul. 12, 2011, IP.com Prior Art Database, 37 pages.
Pervan, Darko (Author)/Välinge Flooring Technology, Technical Disclosure entitled “VA068 Press Lock VFT,” IP com No. IPCOM000208854D, Jul. 20, 2011, IP.com Prior Art Database, 25 pages.
Pervan, Darko (Author), Technical Disclosure entitled “VA069 Combi Tongue,” IP com No. IPCOM000210866D, Sep. 13, 2011, IP.com Prior Art Database, 41 pages.
Pervan, Darko (Author), Technical Disclosure entitled “VA070 Strip Part,” IP com No. IPCOM000210867D, Sep. 13, 2011, IP.com Prior Art Database, 43 pages.
Pervan, Darko (Author), Technical Disclosure entitled “VA071 Pull Lock,” IP com No. IPCOM000210868D, Sep. 13, 2011, IP.com Prior Art Database, 22 pages.
Pervan, Darko (Author), Technical Disclosure entitled “VA073a Zip Loc,” IP com No. IPCOM000210869D, Sep. 13, 2011, IP.com Prior Art Database, 36 pages.
LifeTips, “Laminate Flooring Tips,” available at (http://flooring.lifetips.com/cat/61734/laminate-flooring-tips/index.html), 2000, 12 pages.
Pervan, Darko, U.S. Appl. No. 14/683,340 entitled “Mechanical Locking System for Floor Panels,” filed in the U.S. Patent and Trademark Office Apr. 10, 2015.
Pervan, Darko, et al., U.S. Appl. No. 14/701,959 entitled “Mechanical Locking system for Floor Panels,” filed in the U.S. Patent and Trademark Office May 1, 2015.
Pervan, Darko, U.S. Appl. No. 14/646,567 entitled “Mechanical Locking System for Floor Panels,” filed in the U.S. Patent and Trademark Office May 21, 2015.
Pervan, Darko, U.S. Appl. No. 14/730,691 entitled “Mechanical Locking System for Panels and Method for Installing Same,” filed in the U.S. Patent and Trademark Office Jun. 4, 2015.
U.S. Appl. No. 14/938,612, Pervan.
International Search Report mailed Aug. 13, 2015 in PCT/SE2015/050538, ISA/SE, Patent-och registreringsverket, Stockholm, SE, 4 pages.
Pervan, Darko, U.S. Appl. No. 14/938,612, entitled “Mechanical Locking System for Floor Panels,” filed in the U.S. Patent and Trademark Office Nov. 11, 2015.
U.S. Appl. No. 14/951,976, Pervan.
U.S. Appl. No. 14/962,291, Pervan, et al.
Pervan, Darko, U.S. Appl. No. 14/951,976, entitled “Mechanical Locking System for Floor Panels,” filed in the U.S. Patent and Trademark Office Nov. 25, 2015.
Pervan, Darko, et al., U.S. Appl. No. 14/962,291, entitled “Mechanical Locking System for Floor Panels,” filed in the U.S. Patent and Trademark Office Dec. 8, 2015.
U.S. Appl. No. 15/048,252, Darko Pervan and Tony Pervan, filed Feb. 19, 2016.
U.S. Appl. No. 15/148,820, Darko Pervan, May 6, 2016.
Pervan, Darko, et al., U.S. Appl. No. 15/048,252, entitled “Mechanical Locking System for Floor Panels,” filed in the U.S. Patent and Trademark Office Feb. 19, 2016.
Pervan, Darko, U.S. Appl. No. 15/148,820, entitled “Mechanical Locking System for Panels and Method of Installing Same,” filed in the U.S. Patent and Trademark Office May 6, 2016.
U.S. Appl. No. 15/160,311, Darko Pervan, May 20, 2016.
U.S. Appl. No. 15/172,926, Darko Pervan and Agne Pålsson, Jun. 3, 2016.
U.S. Appl. No. 15/175,768, Darko Pervan and Tony Pervan, Jun. 7, 2016.
U.S. Appl. No. 15/217,023, Darko Pervan and Agne Pålsson, Jul. 22, 2016.
Pervan, Darko, U.S. Appl. No. 15/160,311, entitled “Mechanical Locking System for Floor Panels,” filed in the U.S. Patent and Trademark Office May 20, 2016.
Pervan, Darko, et al., U.S. Appl. No. 15/172,926, entitled “Mechanical Locking of Floor Panels with a Flexible Bristle Tongue,” filed in the U.S. Patent and Trademark Office on Jun. 3, 2016.
Pervan, Darko, et al., U.S. Appl. No. 15/175,768, entitled “Mechanical Locking System for Floor Panels,” filed in the U.S. Patent and Trademark Office on Jun. 7, 2016.
Pervan, Darko, et al., U.S. Appl. No. 15/217,023, entitled “Mechanical Locking System for Floor Panels,” filed in the U.S. Patent and Trademark Office on Jul. 22, 2016.
Related Publications (1)
Number Date Country
20150330088 A1 Nov 2015 US