The present invention relates generally to apparatus for protecting the lower regions of and structure of a building, more particularly, to apparatus for use against organic entities constituting pests or other nuisances in subterranean regions below buildings.
Existing pest control methods differ for new build and retrofit installations. For example, currently, in new build installations control is achieved by use of a passive barrier. Conversely, in retrofit installations the common control method involves the use of chemical treatment. Failure of performance may occur in both of these common methods currently used.
In the case of a passive barrier, for example of the type disclosed in U.S. Pat. No. 5,417,017, even a very small failure can effectively have the same result as having no barrier at all, since some subterranean degradation factors are able to pass through very small openings. Consequently, 100% performance of a control method of this type is difficult to achieve for a new build housing installation. An additional problem with this method of pest control is that damage may occur during work undertaken subsequent to the installation. Further, later alterations may also damage the integrity of an existing well-fitted barrier.
The treatment of existing buildings generally relies upon the delivery of a chemical barrier and/or pesticide to the total area of the underside of a building, where access is difficult. Consequently the effectiveness of this method is reliant upon the operative's efficiency. It is therefore unlikely that 100% coverage will be achieved on every treatment. Moreover, a further treatment is required periodically, for example every three months, which is a labour intensive as well as a costly procedure.
The performance of the delivery system therefore is the key to achieving effective control of subterranean degradation factors, such as subterranean organic entities constituting pests or other nuisances. Accordingly, it is desirable to provide apparatus and methods of using it which address the aforementioned difficulties.
According to an aspect of the present invention, there is provided apparatus for use in protecting a building from damage or degradation by a target subterranean degradation factor, comprising means for creating a region in the ground below the building having properties hostile to the said target subterranean degradation factor.
High moisture content in the region below a building can cause serious problems for wooden structures and supports. One of the major problems caused is the attraction of insects or other such subterranean degradation factors to such environments. For example a high moisture content in an environment can encourage the establishment of colonies of insects, such as termites, or support the growth of other subterranean degradation factors, such as fungi for example. In this way, wood in a structure may be caused to deteriorate due to attack by degradation factors and will therefore decay if there is a high moisture content in the surrounding atmosphere. The present invention is able to provide a hostile environment to a subterranean degradation factor, such as termites, by various methods including removing moisture from the air and avoiding still air conditions.
It may be that the target subterranean degradation factor is an insect, such as a termite for example.
It may be that the means for creating a region with properties inhospitable to the target subterranean degradation factor may comprise means for delivering ozone at least in sufficient concentration to affect the reproductive or communicative behaviour of said termites or other insects.
In some embodiments, the means for creating a region with properties inhospitable to the target subterranean degradation factor may comprise or include means for delivering means for delivering ozone at least in sufficient concentration to modify the pheromone chemistry of the said termites or other insects.
The means for creating a hostile region in the ground below the building may comprise or include means for irradiating the said region with ultrasonic waves. In this way the delivery of means for creating a hostile environment are made more efficient because such a medium can be delivered without the use of extensive excavation equipment.
The apparatus may further comprise means for generating a superatmospheric pressure field in the ground region below the building. A positive pressure field in this region will help to ensure that the subterranean degradation factors are repelled from this field and therefore are discouraged from approaching the building.
The means for creating a superatmospheric pressure field may comprise a pump located within the building. Such a pump may provide sufficient pressure to create a superatmospheric pressure field in the region below the building.
The pump may be located within a habitable region of the building and may act to create forced ventilation thereof. By pumping air from the habitable region of the building to a region below the building, this creates a pressure differential between the two regions. The resultant sub-atmospheric pressure field created in the habitable region of the building encourages an inward movement of air from the exterior of the building thereby naturally ventilating the interior of the building. Further, because the pump is located within a habitable region of the building, access to the pump is made easier for the purpose of any repair and maintenance work that may be required.
The target subterranean degradation factor may be a fungus and the apparatus may thus be so arranged as to target such subterranean degradation factors.
According to another aspect of the present invention there is provided apparatus for use in protecting a building from damage or degradation by a target subterranean degradation factor such as an insect or fungus comprising; means for creating a superatmospheric pressure field in a region below the building, means for delivering a treatment agent into this region, this treatment agent tending to inhibit the growth and/or presence of this target subterranean degradation factor. The present invention thus provides not only the ability to remove moisture from the ground region below the building and to cause movement of air, but may also deliver a treatment agent such as a chemical agent to inhibit growth of the target subterranean degradation factor. In this way the effectiveness of the present invention is further enhanced.
The apparatus may further comprise detecting means for monitoring the migration rate of the subterranean degradation factor as it approaches the building from within the ground region below the building. The detecting means may be capable of communication with the means for delivery of the treatment agent into the region below the building, to allow the treatment agent to be delivered when required in response to the migration rate of the subterranean degradation factor. In this way, the amount of treatment agent required for delivery to the region below the building can be minimised to the required amount. Accordingly, the treatment agent would only be delivered when a subterranean degradation factor is detected as approaching the superatmospheric pressure field in the region below the building. Operating costs and reagent costs are therefore reduced.
The apparatus may further comprise additional components to alter the form and/or potency of the treatment agent to be delivered. This may include, for example means for ionising air, for generating ozone or for generating oxides of nitrogen. Accordingly, the apparatus comprising the aforementioned means may act to ionise the air which passes through the apparatus. Further, the aforementioned means may also act to generate ozone and/or generate oxides of nitrogen from the air that passes through the apparatus. The generation of ozone may occur on site or in situ. The apparatus may further comprise means for storing and delivering ozone to the region below a building, whereby to produce an environment inhospitable to subterranean degradation factors such as termites or other insects, for example.
According to another aspect of the present invention there is provided a method for protecting a building from damage or degradation by a target subterranean degradation factor such as an insect or fungus; the method comprising the steps of: creating a superatmospheric pressure field in a region below the building; and delivering a treatment agent to this region, this treatment agent tending to inhibit the growth and/or presence of the target subterranean degradation factor. The treatment agent may comprise ozone, for example.
The method may further comprise the step of detecting the migration and/or growth rate of the target subterranean degradation factor located below the building and in response using this information to regulate the inhibition of growth and/or presence of the target subterranean degradation factor.
The delivery of the treatment agent to the region below the building may be continuous. This is particularly advantageous because the sub floor humidity levels may then be controlled. A controlled ventilation at a pre-set flow rate may also prevent wood decay in the lower regions of the buildings. The creation of an airflow at depth flooding through the ground under a building will produce a totally unnatural subsoil condition for the target subterranean degradation factors, such as termites, thereby acting as an invisible barrier. The effect will also be to remove track scenting, laid by such termites in their search for food and moisture; this will act as a disorientating and hostile environment to them.
Alternatively the treatment agent may be delivered at temporally spaced intervals. In this way the present invention may also be used as a backup insurance to a permanent passive barrier. The present invention may therefore remain in a dormant state until such a passive barrier has been breached. Accordingly, the treatment agent may then be delivered to the subterranean regions in the required amounts. The required amount may change over time depending on the presence or growth of the target subterranean degradation factors and therefore the temporally spaced intervals of the treatment agent delivery may also be varied to accommodate this change.
The delivery of the treatment agent may be randomly altered in terms of the concentration of the treatment agent or the length of the temporally spaced intervals, for example. In this way, the target subterranean degradation factors are less likely to become resistant or tolerant to the arrangement of the irregular delivery of treatment agent, whether this be the concentration or the temporal intervals between the treatment agent applications.
The method may further comprise the step of determining the most suitably potent treatment agent for the inhibition of growth and/or presence of the target subterranean degradation factor. In this way the efficiency of the apparatus can be further enhanced in that a more potent treatment agent may be employed in a reduced amount to perform the intended function, when compared to a less potent treatment agent.
In a further aspect, the present invention also envisages a method of protecting a subterranean region below a building from insects, such as termites, the method comprising the step of creating an environment having properties inhospitable to the said termites or other insects by the presence of ozone, the said ozone being present at least in sufficient concentration to affect the reproductive or communicative behaviour of the said termites or other insects whereby to result in at least a depletion of the population thereof.
In another aspect of the present invention, there is provided a method of protecting a subterranean region below a building from insects, such as termites, the method comprising the step of creating an environment having properties inhospitable to the said termites or other insects by the presence of ozone, the said ozone being present at least in sufficient concentration to modify the pheromone chemistry of the said termites or other insects.
In a further aspect, the present invention encompasses the use of ozone to protect a subterranean region below a building from insects, such as termites, whereby to produce an environment inhospitable to the said termites or other insects when present at least in sufficient concentration to affect the reproductive- or communicative behaviour of the said termites or other insects.
In another aspect, the present invention comprehends the use of ozone to protect a subterranean region below a building from insects, such as termites, wherein the said ozone is present at least in sufficient concentration to modify the pheromone chemistry of the said termites or other insects, thereby forming an inhospitable environment.
In another aspect, the present invention provides for the use of ozone in the manufacture of a composition for the treatment of a subterranean region below a building against infestation by insects, such as termites.
In another aspect, the present invention may be considered to comprise ozone when used for protecting a subterranean region below a building from insects, such as termites, the presence of said ozone resulting in an environment inhospitable to the said termites or other insects when present at least in sufficient concentration to affect the reproductive or communicative behaviour of the said termites or other insects.
In a further aspect, the present invention includes ozone when used for protecting a subterranean region below a building from insects, such as termites, the said ozone providing an environment inhospitable to the said termites or other insects when present at least in sufficient concentrations to modify the pheromone chemistry of the said termites or other insects.
A pheromone is a volatile hormone or behaviour-modifying agent. Ozone is a known, strongly oxidising agent. Accordingly, it is believed that ozone may be used to modify the function of a pheromone, such that the communication between target subterranean organic entities constituting pests or other nuisances, such as termites for example, is adversely affected. This may, for example, have a disorientating effect on the target subterranean organic entities constituting pests or other nuisances.
Accordingly, ozone may have an alternative use for affecting the reproductive or communicative behaviour, and/or modifying the pheromone chemistry of insects, such as termites.
Apparatus formed according to the present invention may comprise means for generating ozone in situ or on site, which may then be conveyed to the required regions. A method of producing ozone on site may include for example, reacting hydrocarbons with nitrogen oxides, particularly nitrogen dioxide, in the presence of sunlight or other source of ultra-violet light. This method is similar to the natural creation of ground level ozone. Other methods of generating ozone on site may include electrostatic or corona discharge techniques.
In use of an embodiment of the present invention air comprising ozone is injected into a region below a building infested with subterranean organic entities constituting pests or other nuisances, such as termites or other insects. The ozone has the effect of creating an uncomfortable and hostile environment for the termites or other insects, and further is able to modify the pheromone chemistry thereof, thereby inhibiting the communication between the termites or other insects, which has the effect of disorientating them. Accordingly, such termites or other insects may either be reduced in numbers by evacuation or termination, or may simply be discouraged from approaching the building.
Insects, such as termites, feed on wood or other sources of cellulose. Although they lack specific cellulases for breaking down cellulose they are still able to digest it because of symbiotic relationships with flagellate protozoa, bacteria and fungi. For example, some protozoa digest wood particles by hydrolysing cellulose anaerobically, which produces glucose that can be absorbed by an insect, such as a termite.
The cellulose which insects, such as termites, attack is broken down to carbon dioxide and water, causing timber to lose strength. The resultant increase in concentration of carbon dioxide during digestion of wood by termites, for example, provides an attractant scent indicating the presence of food for other termites. It is thought that the presence of ozone may reduce or eliminate the carbon dioxide residing in the environment of the termite or other insects, thereby affecting the pheromone chemistry of the termites or other insects. The ozone may provide an energised oxygen-rich atmosphere which may be inhospitable to termites or other insects.
To ensure that the ozone concentration does not have adverse effects on human health if the ozone were to escape from subterranean region below the building into the building itself, the concentration of the ozone in the air to be injected is preferably less than 0.1 ppm (parts per million). If a building is already infested with a subterranean organic entity constituting a pest or other nuisance for example, then it may be desirable to inject a higher ozone concentration (higher than 0.1 ppm) to begin with, to increase the potency of the ozone/air mix, then reduce to a lower ozone concentration (lower than 0.1 ppm), which may be pumped continuously because it is below the safety threshold for humans. Alternatively, in houses under construction, it may be advantageous to inject a low ozone concentration (lower than 0.1 ppm) continuously, for a preventative effect.
It is, of course, possible that the treatment agent for use against subterranean degradation factors may comprise at least one by-product of ozone which results from the manufacture thereof. Such by-products may include, for instance, water vapour, nitrogen dioxide, nitric acid and oxygen radicals. According to a further aspect, therefore, the present invention envisages the use of at least one ozone by-product to protect a subterranean region below a building from insects, such as termites, to produce an environment inhospitable to the said termites or other insects when present at least in sufficient concentration to affect the reproductive or communicative behaviour of the said termites or other insects.
In another aspect, the present invention comprehends the use of at least one ozone by-product to protect a subterranean region below a building from insects, such as termites, wherein the said at least one ozone by-product is present at least in sufficient concentration to modify the pheromone chemistry of the said termites or other insects, thereby forming an inhospitable environment.
It will be understood that an ozone by-product such as nitric acid and nitrogen dioxide, detailed above, may be manufactured by other means as opposed to being manufactured as a by-product of ozone. For example, nitric acid may be manufactured by reacting nitrogen dioxide with water in the presence of oxygen.
Various embodiments of the present invention will now be more particularly described, by way of example, with reference to the accompanying drawings, in which:
a is an enlarged view of the pump unit of
b is an enlarged view of the pump unit of
Referring first to
With reference to
The amount of chemical agent vapour 31 to be delivered to the subterranean ground region below the building 10 can be varied by controlling the opening of the control valve 32.
b illustrates the pump unit 12 of
Referring back to
With reference to
Referring back to
Number | Date | Country | Kind |
---|---|---|---|
0523720.1 | Nov 2005 | GB | national |
0608196.2 | Apr 2006 | GB | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/GB2006/004309 | 11/17/2006 | WO | 00 | 5/21/2008 |