The present invention relates to vents, and more particularly to a roof ridge vent system that ventilates a roof of a building.
Many building roofs are outfitted with vents to promote ventilation and evacuate heat and moisture from the upper extremities of buildings. A common type of vent for building roofs is a ridge vent, which is installed over an opening, typically defined at the peak or ridge of a roof, where two roof surfaces come together. Such ridge vents usually are installed end to end along a length of a ridge of a roof. These ridge vents also are nailed down to the roof with nails to hold them securely in place for a long time.
For many years, ridge vents have been installed using a hammer to manually drive the nails, however, recent advancements in ridge vents have allowed installers of ridge vents to install “sticks” or sections of ridge vents with a nail gun. An example of such a ridge vent that is installable with a nail gun is shown in U.S. Patent Application 2019/0136537 to Henning, which is hereby incorporated by reference in its entirety. This reference uses a series of ports along edges of a ridge vent that have a shape that permits access by the head of a nail gun so that the ridge vent can be installed using the nail gun, which drives a nail through each of the ports. While this design is helpful, it negates the efficiency of such ridge vents with the positioning of the ports, and their obstruction of airflow venting. Indeed, the amount of airflow provided by such a ridge vent can be decreased by up to 10% or more in some cases over conventional ridge vents without the nail gun ports. This restriction can present a significant issue, particularly where the ridge vent is installed on a building within a municipality having building codes that mandate a particular amount of airflow through the ridge vent from attic space under the roof. With the decreased airflow, in some cases, the ridge vents might not pass code, in which case the ridge vents may need to be removed or modified at a great expense and effort to the installer, builder and/or owner.
Accordingly, there remains room for improvement in the field of venting for roofs, and in particular ridge vent systems.
A ridge vent system is provided including a ridge vent having opposing exterior sidewalls that each define multiple fastener recesses that extend inward from the exterior sidewalls and downward from a top plate. Each recess can have multiple recess venting slots that cooperate with adjacent sidewall venting slots to form contiguous vented areas along each of the opposing exterior sidewalls. This can provide enhanced attic ventilation and/or airflow through the ridge vent, while still providing fastener recesses that facilitate rapid and efficient application of fasteners therethrough, optionally via automatic nail or screw guns.
In one embodiment, the ridge vent can include a body including a top plate extending from a first side toward a second side. The top plate can include a first top plate side, a second top plate side and a bending region between the sides. This bending region can overlap a longitudinal axis of the body, and can allow the first and second top plate sides to move and change an angular orientation relative to one another, to thereby accommodate adjacent roof surfaces at a peak or ridge of a roof.
In another embodiment, each recess that accommodates a fastener can be bounded by a nailing flange or bottom wall and a recess wall extending from the bottom wall to the top plate. This recess wall can define multiple air venting slots between the bottom wall and the top plate. These slots can be located between sets of sidewall slots defined by a sidewall, with the air venting slots and the sidewall venting slots providing a contiguous vented area along the respective sidewall and the recess walls of each recess.
In still another embodiment, multiple contiguous vented areas of multiple ridge vents placed over an opening in a roof surface provide an attic ventilation area. This system of ridge vents can thus provide ventilation to a building at a minimum of at least 1 square foot of attic ventilation area for every 300 square feet of attic floor space.
In yet another embodiment, the ridge vent can include a lip extending away from the exterior sidewall. An end wall can extend upward from the first lip, opposite the multiple sidewall slots. The end wall and/or the lip can define multiple drain holes intermittently disposed along the end wall and/or the lip. These drain holes can allow liquid to efficiently drain from the ridge vent.
In even another embodiment, drain holes can be disposed directly in front of and/or aligned with each of the fastener recesses to prevent or impair pooling of liquid in the fastener recesses.
In a further embodiment, each fastener recess can be configured to include a landing pad or target region having a thickness that is greater than other portions of the recess or ridge vent in general. For example, a target region can include a thickness greater than a remaining portion of the nailing flange or recess. The target region with increased thickness can withstand damage due to a fastener penetrating the nailing flange with force.
In still a further embodiment, the target region can be bounded by a perimeter. The perimeter can include an indicia element and/or a step that provides a visual que for a user to identify the location of the target region and advance a fastener through the target region rather than other portions of the fastener recess or nailing flange. The indicia can be a raised or recessed feature along the perimeter, optionally with alphanumeric characters indicating some instructions to the user.
The current embodiments provide a ridge vent and system that can efficiently cap an opening in a roof at two adjoining roof surfaces, and efficiently allow transfer of air from and ventilation of an attic space under the roof and system. Where the ridge vent includes the fastener recesses, an installer can rapidly and quickly use an automated tool, such as a nail gun, screw gun and/or stapler to secure the ridge vent to the roof. The nailing flange or bottom wall of the recesses can directly engage the roof, and can be pinned against the roof surface with the fastener without collapsing the ridge vent air space around the recesses with that fastener. The system can allow easy and quick installation, as well as even fastener spacing when securing the ridge vent to the roof. The system also can enhance overall airflow from an attic space under the roof where the fastener recess walls themselves include airflow ventilation slots. These slots can further cooperate with airflow or venting slots in outer sidewalls of the body of the ridge vent, which otherwise would be interrupted by the fastener recesses, thereby decreasing the ventilation area of the ridge vents. Despite having high airflow characteristics, the ridge vent can be low profile, which can make it less likely to be torn, damaged or blown off a roof under high winds.
These and other objects, advantages, and features of the invention will be more fully understood and appreciated by reference to the description of the current embodiment and the drawings.
Before the embodiments of the invention are explained in detail, it is to be understood that the invention is not limited to the details of operation or to the details of construction and the arrangement of the components set forth in the following description or illustrated in the drawings. The invention may be implemented in various other embodiments and of being practiced or being carried out in alternative ways not expressly disclosed herein. Also, it is to be understood that the phraseology and terminology used herein are for the purpose of description and should not be regarded as limiting. The use of “including” and “comprising” and variations thereof is meant to encompass the items listed thereafter and equivalents thereof as well as additional items and equivalents thereof. Further, enumeration may be used in the description of various embodiments. Unless otherwise expressly stated, the use of enumeration should not be construed as limiting the invention to any specific order or number of components. Nor should the use of enumeration be construed as excluding from the scope of the invention any additional steps or components that might be combined with or into the enumerated steps or components.
A current embodiment of the ridge vent system and roof vent is shown in
Generally, the ridge vent system, with the ridge vent 10 installed on the roof surfaces over the opening 103 allows airflow AF to traverse from the attic space AS, along multiple pathways through the ridge vent 10. For example, as shown, the initial airflow AF from the attic space AS can be ventilated out the opening 103 through the ridge vent 20 and out corresponding airflow pathways AF1 and AF2. The airflow pathways AF1 can be associated with multiple sidewall venting slots 31, 32 defined along the exterior sidewalls of the ridge vent 20, while the airflow pathways AF2 can be associated with multiple venting slots 47 defined in each of the fastener recesses 41, 42, also referred to as nailing flange recesses herein. With this system of multiple airflow pathways through multiple different slots along the sidewalls and the fastener recesses of the ridge vents, airflow ventilated out from the attic space can be maximized. In turn, this can prevent moisture and heat build-up inside the attic space AS. In some cases, the ridge vent system 10 can be designed so that multiple ridge vents 20, 20′, 20″ as shown in
Turning now to
For example, as shown in
The top plate shown in
The first exterior sidewall 21 can define a first plurality of sidewall slots 31 and a second plurality of sidewall slots 32, for example as shown in
With reference to
Optionally, in some applications, the target region 44 can be disposed inward toward the longitudinal axis LA relative to an outer portion 440 of the nailing flange or bottom wall 43. This target region as shown can be of a circular shape, but in other applications, can be of a polygonal, rounded, or other shape. The target region also can extend a majority or all of the length FL and a majority or all of the width FW of the nailing flange or bottom wall. The target region 44 can be of a thickness T3 (
The first flange or recess again can extend inwardly from the first exterior sidewall 21 and downward from the first top plate side 27A. The first recess can be bounded by the bottom wall or flange 43 as noted above, as well as a recess wall 45. This recess wall 45 can define the third plurality of slots 47 between the bottom wall 43 and the first top plate side 27A. These slots 47 can be similar to the first plurality of slots and second plurality of slots 31 and 32 as described above.
The first recess wall 45 can be constructed as a U-, V- or parabolic shape and can open away from the longitudinal axis LA of the ridge vent 20. The recess sidewall 45 can include a first linear part 45L1 that extends toward the longitudinal axis LA of the ridge vent. This first linear part 45L1 can transition to a curved part 45C that transitions to a second linear part 45L2. The second linear part 45L2 can extend back toward the exterior sidewall 21. Generally, the first linear part 45L1 and second linear part 45L2 can be parallel or nonparallel, being angled relative to one another.
With reference to
As shown in
Optionally, the first and second exterior side walls 21 and 22 can define lengths L1 and L2 respectively. The venting areas provided on each of the first side S1 and second side S2 of the ridge vent 20, however are not limited to these linear lengths alone. For example, the first contiguous venting area CVA1 along the first exterior sidewall 21 and the respective recesses 41 can have a first venting area length CVAL1. Likewise, the second continuous venting area CVA2 along the second exterior sidewall 22 and the respective recesses 42 can have a second venting area length CVAL2. The first venting area length CVAL1 can be greater than the first wall length L1. The second venting area length CVAL2 also can be greater than the second wall length L2. In some cases, the venting area lengths can be greater than the respective wall length optionally, at least 2% greater, at least 5% greater, at least 10% greater, at least 20% greater, or at least 25% greater than then the respective wall length. With the inclusion of the slots in the nailing flange recesses and along the exterior sidewall, this in turn can increase ventilation airflow through the ridge vent significantly over instances where the nailing flange recesses do not include corresponding recess slots.
As mentioned above, the ridge vent 20 can have multiple first nailing flange recesses 41 and second nailing flange recesses 42 disposed and formed adjacent the respective first exterior sidewall 21 and second exterior sidewall 22. As shown, there are five nailing flanged recesses 41 disposed across from one another or another across the longitudinal axis LA on each of the respective sides S1 and S2. Optionally, nailing flange recesses 41M and 42M can be disposed across from one another at the midline M of the lengths L1 and L2 of the sidewalls. With this construction, the nailing flanges can securely hold down the ridge vent, optionally in the center of the length of the vent, and prevent or impair it from buckling under expansion and contraction during exposure to different temperatures and environments.
As mentioned above, there can be any number of the various first and second recesses 41, 42 along the respective sidewalls. For example, the first exterior sidewall 21 and the first top plate side 27A can cooperatively define a third recess 41′ that extends inwardly from the first exterior sidewall and downward from the first top plate side, distal from another first recess 41 along the first exterior sidewall. The third recess 41′ can be bounded by a third bottom wall and a third recess wall extending from the third bottom wall to the first top plate side. The third recess wall can define a seventh plurality of slots 47′ between the third bottom wall and the first top plate side. The seventh plurality of slots 47′ can cooperate with the first, second and third plurality of slots to provide the first contiguous vented area CVA1 along the first exterior sidewall 21, the first recess wall and the third recess wall. The second exterior sidewall 22 and the second top plate side 27B can cooperatively define a fourth recess 42′ that extends inwardly from the second exterior sidewall 22 and downward from the second top plate side 27B. The fourth recess 42′ can be bounded by a fourth bottom wall and a fourth recess wall extending from the fourth bottom wall to the second top plate side. The fourth recess wall can define an eighth plurality of slots 47″ between the fourth bottom wall and the second top plate side. The eighth plurality of slots 47″ can cooperate with the fourth, fifth and sixth plurality of slots along the second exterior sidewall to provide the second contiguous vented area CVA2 along the second exterior sidewall, the second recess wall and the fourth recess wall.
As mentioned above, with reference to
The ridge vent 20 can be included in a ridge vent system 10. With reference to
Each of the respective ridge vents 20, 20′ and 20″ can be secured to the roof surfaces 101 and 102 via multiple fasteners. For example, multiple first fasteners F1 can be installed and advanced to project through or pierce each of the respective first bottom walls or nailing flanges 43 of each respective recess 41 on the first sides of the ridge vents. These fasteners can extend into the first roof surface 101 and optionally through it, and into an underlying support structure 107 or simply to the attic space. This can secure the first top plate side 27A and generally the ridge vent to the roof first roof surface 101. Multiple second fasteners F2 can be installed and advanced to project through or pierce each of the respective second bottom walls or nailing flanges 43B in the second sides of the ridge vents, as well as the second top plate side 27B, to the second roof surface 102. When this occurs, each of the ridge vents optionally can bend in the bending region 28 to finally conform to the angle of the first and second roof surfaces 101, 102 which can be nonparallel to one another. In this manner, the fasteners F1 and F2 can maintain the first top plate side 27A the second top plate side 27B in a nonparallel configuration relative to one another.
Optionally, the ridge vent 20 can be placed over shingles 101S and 102S that are disposed over underlayment and generally over the roof surfaces 101 and 102 respectively. When this occurs, the first fasteners F1 and second fasteners F2 can pierce through the first shingles 101S and second shingles 102S on opposing sides of the elongated opening 103.
The system 10 also can include a plurality of cover shingles 103C1 and 103C2 that are disposed over the top plate, optionally stacked one over the other in a partially overlapping configuration. The shingle 103C1 can extend over and cover the first plurality of recesses 41 and the first side of the ridge vent, as well as the second plurality of recesses 42 on the second side of the ridge vent. The shingles can extend outwardly to the respective first and second exterior sidewalls of the ridge vent, optionally covering the lip 36 or end wall 37 on the respective first and second sides of the ridge vent. In this manner, a space is left between the end wall 37 and the ends 103C1E of the shingles that are disposed over the top plate. In this manner, airflow can flow along the pathways AF1 and AF2 out between those elements. Further, there can be minute vertical gaps between the ends of the shingles and the lip 36 or end wall 37 of the ridge vent, so the airflow AF1 and AF2 can escape through these gaps and or the drain holes. In some cases, the ends of the shingles can move upward under the force of the air and slightly move so the airflow AF1 and AF2 can escape from the vent and into the environment.
The shingle 103C1 also can form a roof over each one of the respective nailing flange recesses 41 and 42, however airflow can still travel in each of the respective recesses out of the recess walls 45 and in particular the respective recess walls slots 47 of each of the respective recesses on both sides of the ridge vent.
The shingles can extend outwardly over each of the respective first fasteners F1 and second fasteners F2 and the respective first recesses 41 and second recesses 42. The shingles however, can be separated from the heads of the respective fasteners by distance D3 that is greater than a diameter of a head of the first and second fasteners. Is also noted that the airflow along the airflow path AF2 also moves over the respective heads of the fasteners F1 and F2 located within the respective nailing flange recesses.
The shingles can be fastened down to the ridge vent and the underlying surfaces via third F3 and fourth F4 fasteners. The third and fourth fasteners can project, pierce or penetrate the shingle 103C1 as well as the first top plate side 27A and the second top plate side 27B as well as the top plate in general. In particular, the third fastener F3 can project through the first top plate side 27A and into the first roof surface 101 as well as through the shingles 101S and any underlayment. This third fastener F3 however is distal from the first recesses 41 and is not disposed in those recesses. Indeed, the third fastener F3 can be disposed between the first recess 41 and the bending region 28. In some cases, the third fasteners F3 can be disposed between adjacent ones of the first recesses 41 and closer to the first exterior sidewall 21. The fourth fastener F4 can project through the second top plate side 27B and into the second roof surface 102 as well as through the shingles 102S and any underlayment. The fourth fasteners however can be distal from the second recesses 42 and not disposed in or enter those recesses. Indeed, the fourth fasteners F4 can be disposed between the second recesses 42 and the bending region 28. In some cases, the fourth fasteners F4 can be disposed between adjacent ones of the second flange recesses 42 and closer to the exterior sidewall 22. These third and fourth fasteners can be covered subsequently by another shingle 103C2 that is laid over the shingle 103C1. That shingle can partially overlap the first shingle 103C1, and can be further nailed with additional third and fourth fasteners securing it to the ridge vent and the underlying roof surfaces. Multiple shingles can be laid over the various adjacent ridge vents disposed along the peak to provide an aesthetically pleasing cover over that ridge vent to conceal the nailing flange recesses along the ridge vents.
A second alternative embodiment of the ridge vent is illustrated in
In this embodiment however, the ridge vent 120 can include one or more nailing flanges or recesses 141 that can include a bottom wall or floor 143 with enhanced strength to withstand the impact force of a fastener driven therethrough with a nailing gun or other fastener driver. As shown in
The target region 144 optionally can extend a majority or all of the length FL and a majority or all of the width FW of the nailing flange or bottom wall. The outer portion 144O can extend a minority of the length FL, and can be of lesser area than the target region. The target region 144 can be of a thickness T5 from the upper surface of the same to a lower surface thereof that is greater than a thickness T6 from the upper surface to the lower surface of the adjacent outer portion 144O of the nailing flange recess 141. In some cases, the target region can be optionally at least 5%, at least 10%, at least 15%, at least 20%, at least 25%, at least 50%, at least 75%, or at least 100% thicker than the adjacent outer portion. With this added thickness, the target region can withstand the impact and penetration of a fastener therethrough suitably.
In some applications, the perimeter 144P can serve as an indicia to guide a user where to aim a fastener shot from a nail gun. In some cases, the perimeter 144P can include a dedicated indicia element 1441, which can be a raised surface, such as a ridge, step, transition, or other projection, or a recessed surface, such as a groove or recess, or combinations of the foregoing so that a user can visually identify the target region and its extend to aim the fastener within it. In some cases, the indicia element can be configured or displayed as a dotted or broken line adjacent or over the perimeter 144P or close to it and can include alphanumeric characters to indicate where the target region 144 begins and ends. With this indicia element or the perimeter being visible, a user can readily identify the fastener area FA within which it is suitable to advance a fastener F1 into the bottom of the nailing recess 141 and particularly and precisely penetrate through the bottom wall 143 within the target region 144. Again, where the target region 144 is thicker, it can withstand the forces due to the penetration of the fastener F1 therethrough, in some cases better than the remaining outer portion 144O of the recess. This can preserve the integrity of the nailing recess and the bottom wall 143 provide for a stronger and more efficient securement of the ridge vent 122 an underlying substrate.
The following additional Statements illustrate further embodiments, the numbering of which is not to be construed as designating levels of importance. Moreover, it is to be understood that the Statements of embodiments recited below are provided in conjunction with and in addition to the embodiments described above, as well as those claimed even farther below. Alternative embodiments that result from combining, integrating, and/or omitting features of the embodiments of the Statements below or any other embodiment described herein may also be within the scope of the present invention.
Statement A: A ridge vent for a roof of a building, the ridge vent comprising: a body including a first end, a second end opposite the first end, a first side, a second side opposite the first side, and a longitudinal axis; a top plate extending from the first side toward the second side and including first top plate side, a second top plate side and a bending region between the first top plate side and the second top plate side, the bending region overlapping the longitudinal axis and configured so that the first top plate side and the second top plate side can move and change an angular orientation relative to one another; a first exterior sidewall extending downward from the top plate on the first side, the first exterior sidewall being angled downward from the top plate, the first exterior sidewall defining a first plurality of slots and a second plurality of slots, the first exterior sidewall and the first top plate side cooperatively defining a first recess that extends inwardly from the first exterior sidewall and downward from the first top plate side, the first recess being bounded by a first bottom wall and a first recess wall extending from the first bottom wall to the first top plate side, the first recess wall defining a third plurality of slots between the first bottom wall and the first top plate side, the third plurality of slots being located between the first plurality of slots and the second plurality of slots to provide a first contiguous vented area along the first exterior sidewall and the first recess wall, the first recess wall extending along a curved path inward from the first exterior sidewall, with the third plurality of slots following the curved path to provide a first venting area around the first recess that is curvilinear.
Statement B: The ridge vent of Statement A comprising a first target region in the first recess delimited by an indicia element whereby a user can identify a location in the first target region to install a fastener through the first target region.
Statement C: The ridge vent of any preceding Statement wherein the first, second and third plurality of slots form the first contiguous vented area that has a first venting length longer than a length of the body taken along the longitudinal axis.
Statement D: The ridge vent of any preceding Statement wherein the first recess wall includes a curvilinear portion nearest the longitudinal axis that transitions to first and second linear portions nearest the first sidewall.
Statement E: The ridge vent of any preceding Statement wherein the first target region spans a width between the first and second linear portions across the first floor.
Statement F: The ridge vent of any preceding Statement wherein the first target region includes a dome shape of a first thickness greater than a second thickness of a first remaining portion.
Directional terms, such as “vertical,” “horizontal,” “top,” “bottom,” “upper,” “lower,” “inner,” “inwardly,” “outer” and “outwardly,” are used to assist in describing the invention based on the orientation of the embodiments shown in the illustrations. The use of directional terms should not be interpreted to limit the invention to any specific orientation(s).
In addition, when a component, part or layer is referred to as being “joined with,” “on,” “engaged with,” “adhered to,” “secured to,” or “coupled to” another component, part or layer, it may be directly joined with, on, engaged with, adhered to, secured to, or coupled to the other component, part or layer, or any number of intervening components, parts or layers may be present. In contrast, when an element is referred to as being “directly joined with,” “directly on,” “directly engaged with,” “directly adhered to,” “directly secured to,” or “directly coupled to” another element or layer, there may be no intervening elements or layers present. Other words used to describe the relationship between components, layers and parts should be interpreted in a like manner, such as “adjacent” versus “directly adjacent” and similar words. As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items.
The above description is that of current embodiments of the invention. Various alterations and changes can be made without departing from broader aspects of the invention as defined in the appended claims, which are to be interpreted in accordance with the principles of patent law including the doctrine of equivalents. This disclosure is presented for illustrative purposes and should not be interpreted as an exhaustive description of all embodiments of the invention or to limit the scope of the claims to the specific elements illustrated or described in connection with these embodiments. For example, and without limitation, any individual element of the described invention may be replaced by alternative elements that provide substantially similar functionality or otherwise provide adequate operation. This includes, for example, presently known alternative elements, such as those that might be currently known to one skilled in the art, and alternative elements that may be developed in the future, such as those that one skilled in the art might, upon development, recognize as an alternative. Further, the disclosed embodiments include a plurality of features that are described in concert and that might cooperatively provide a collection of benefits. The present invention is not limited to only those embodiments that include all of these features or that provide all of the stated benefits, except to the extent otherwise expressly set forth in the issued claims. Any reference to claim elements in the singular, for example, using the articles “a,” “an,” “the” or “said,” is not to be construed as limiting the element to the singular. Any reference to claim elements as “at least one of X, Y and Z” is meant to include any one of X, Y or Z individually, any combination of X, Y and Z, for example, X, Y, Z; X, Y; X, Z; Y, Z, and/or any other possible combination together or alone of those elements, noting that the same is open ended and can include other elements.
Number | Name | Date | Kind |
---|---|---|---|
2799214 | Roose | Jul 1957 | A |
4280399 | Cunning | Jul 1981 | A |
4554862 | Wolfert | Nov 1985 | A |
4676147 | Mankowski | Jun 1987 | A |
4817506 | Cashman | Apr 1989 | A |
4903445 | Mankowski | Feb 1990 | A |
4957037 | Tubbesing | Sep 1990 | A |
4962692 | Shuert | Oct 1990 | A |
5052286 | Tubbesing | Oct 1991 | A |
5070771 | Mankowski | Dec 1991 | A |
5095810 | Robinson | Mar 1992 | A |
5122095 | Wolfert | Jun 1992 | A |
5149301 | Gates | Sep 1992 | A |
5797222 | Martin | Aug 1998 | A |
6128869 | Brotherton | Oct 2000 | A |
6233887 | Smith | May 2001 | B1 |
6277024 | Coulton | Aug 2001 | B1 |
6793574 | Robinson | Sep 2004 | B1 |
7735287 | Gaudreau | Jun 2010 | B2 |
8549802 | Thagard, III | Oct 2013 | B2 |
9175480 | Polston | Nov 2015 | B1 |
20020016150 | Hansen | Feb 2002 | A1 |
20020100232 | Robinson | Aug 2002 | A1 |
20050054284 | Ciepliski | Mar 2005 | A1 |
20060196130 | Mantyla | Sep 2006 | A1 |
20060229010 | Villela | Oct 2006 | A1 |
20070039252 | Railkar | Feb 2007 | A1 |
20070072540 | Ciepliski | Mar 2007 | A1 |
20080064320 | Polston | Mar 2008 | A1 |
20080287053 | Carlson | Nov 2008 | A1 |
20080287054 | Carlson | Nov 2008 | A1 |
20090025316 | Coulton | Jan 2009 | A1 |
20090049769 | Kaseda | Feb 2009 | A1 |
20110195655 | Holland | Aug 2011 | A1 |
20110302852 | Grubka | Dec 2011 | A1 |
20130074428 | Allen | Mar 2013 | A1 |
20140273808 | Mankowski | Sep 2014 | A1 |
20140308891 | Holland | Oct 2014 | A1 |
20160201332 | Fiser | Jul 2016 | A1 |
20160215500 | Van Noort | Jul 2016 | A1 |
20160333574 | Grubka | Nov 2016 | A1 |
20160369513 | Van Wey | Dec 2016 | A1 |
20170321933 | Kvasnicka | Nov 2017 | A1 |
20170350127 | Lowe | Dec 2017 | A1 |
20190136537 | Henning | May 2019 | A1 |
20190249440 | Hendricks, Jr. | Aug 2019 | A1 |
20200018071 | Holland | Jan 2020 | A1 |
20220298798 | Thompson | Sep 2022 | A1 |
20230126169 | Thompson | Apr 2023 | A1 |
20230130279 | Thompson | Apr 2023 | A1 |
20230228092 | Robida | Jul 2023 | A1 |
20230313533 | Vega-Gutierrez | Oct 2023 | A1 |
Number | Date | Country | |
---|---|---|---|
20220298798 A1 | Sep 2022 | US |
Number | Date | Country | |
---|---|---|---|
63162646 | Mar 2021 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 29817795 | Dec 2021 | US |
Child | 17683814 | US |