This application claims benefit of European patent application number 10425181.4, filed May 26, 2010, which is herein incorporated by reference.
1. Field of the Invention
The present invention relates to a building roof with rows of curved tiles alternating with strip-shaped solar modules.
The present invention has been developed in particular in order to enable installation of solar modules, either photovoltaic or thermal ones, on roofs of historic buildings with curved tiles.
2. Description of the Related Art
The installation of solar modules on roofs of buildings located in historic centres poses problems from the standpoint of landscape. The installation of photovoltaic or thermal panels on roofs with curved tiles is not generally possible in the majority of historic centres on account of landscape constraints.
The European patent application No. 09425048.7 (which has not yet been published at the date of filing of the present patent application) describes a building roof formed by a plurality of linear rows of curved tiles alternating with strip-shaped solar modules. The solution described in this document enables reduction of the impact of the solar modules in terms of landscape and conservation of the characteristic appearance of the curved-tile roofs of historic buildings.
The solution described in this patent application envisages provision of a base structure of the roof formed by a plurality of elongated tray-shaped roof elements arranged adjacent to one another and on which the strip-shaped solar modules are fixed. The adjacent edges of said roof elements are covered by respective rows of curved tiles.
One of the difficulties in the construction of roofs of this type is that there does not exist just one type of curved tile of standardized dimensions. The size of the curved tiles varies according to the area, the kiln where they were produced, and the type of clay available. It has been noted that the width of existing curved tiles can range from 140 to 210 mm. With this variability of the size of the curved tiles there are difficulties in standardizing the system of construction of a roof.
The object of the present invention is to provide a building roof made up of a small number of modular elements that can be installed in a simple and fast way and are readily adaptable to curved tiles of different sizes.
According to the present invention, said object is achieved by a building roof having at least one inclined pitch bearing a plurality of linear rows of mutually parallel curved tiles, and a plurality of strip-shaped solar modules arranged between said rows of curved tiles, said roof comprising a plurality of fretted sheet-metal panels, each of which has a plurality of longitudinal ribbings configured for engagement of said solar modules, wherein each of said solar modules is fixed by means of fasteners between a pair of adjacent ribbings and wherein said rows of curved tiles are arranged along the line of maximum slope of the pitch between pairs of ribbings, to which said solar modules are fixed.
The present invention also regards a fretted sheet-metal panel used for the construction of a roof with solar modules alternating with rows of curved tiles.
The present invention will now be described in detail with reference to the attached drawings, which are provided purely by way of non-limiting example, and in which:
Illustrated in
With reference to
The first and second external longitudinal ribbings 24, 26 are both shaped like a U turned upside down. As illustrated in
With reference to
With reference to
The fretted sheet-metal panels 14 are produced by means of profiling technique conventional in the sector starting from sheets of metal, for example with a thickness of 0.7 mm, that can be obtained from reels with widths of less than 1295 mm.
The curved tiles 20 used for roofs have in cross section an arched shape with an extension of approximately 180° and are partially set on top of one another according to a technique conventional in the construction of curved-tile roofs. Existing curved tiles have a width ranging from 140 to 210 mm. For the construction of roofs according to the present invention, existing curved tiles have been divided into three groups according to their width:
group 1: width comprised between 140 and 160 mm;
group 2: width comprised between 160 and 180 mm;
group 3: width comprised between 180 and 210 mm.
The fretted sheet-metal panels 14 are made up of three models corresponding to the aforesaid groups of width of the curved tiles.
The panel models differ from one another in the size of the pitch P and, consequently, in the width L:
group 1: P=190 mm; L=760 mm; strip of 1095 mm±5%
group 2: P=210 mm, L=840 mm; strip of 1175 mm±5%
group 3: P=240 mm, L=960 mm; strip of 1295 mm±5%.
The dimensions of the internal longitudinal ribbings 30 remain constant for the different models.
The pitch P between the ribbings 30, the number of the ribbings 30 of each panel 14, and the dimensions of the ribbings 30 have been established in such a way that the width of the development of the panels 14 is always less than the maximum width of 1295 mm of the reels of sheet-metal from which the panels 14 are obtained.
With reference to
With reference to
The solar modules 22 preferably have a constant width, for example of 190 mm, irrespective of the pitch P between the ribbings 30. To adapt the solar modules 22 to fretted sheet-metal panels 14 with different pitch P fasteners 44 of different shapes are used. Illustrated in
Each fastener 46′, 46″, 46′″ has a resting portion 46 that rests on the head surface 40 of a ribbing 30, an elastic portion 48 with an end 50 that presses against the undercut surface 42, and a C-shaped seat 52 in which a part of the side edge of a solar module 22 is inserted.
The fasteners 44′, 44″, 44′″ differ from one another as regards the distance between the C-shaped seat 52 and the resting portion 46.
With reference to
The height B of the ribbings 30 derives from a compromise between aesthetic requirements, the need to cool the solar modules 20, and limits linked to the recognition of the total architectural integration of the solar modules 22. The requirements linked to cooling impose the need to obtain a gap with a minimum thickness in the region of 30 mm to guarantee natural ventilation necessary for cooling the solar modules. The requirements of an aesthetic nature impose the need for the solar modules 22 not to project excessively into the pitch of the roof, whereas for recognition of the total architectural integration it is necessary for the solar panels 22 to be located at a height lower than the maximum height of the curved tiles or exceed the top surface of the curved tiles by less than its own thickness. The height B of the ribbings 30 of approximately 25 mm enables a compromise to be achieved between these requirements since it ensures a gap 53 of a height sufficient for natural ventilation, without, however, the solar module 22 projecting excessively from the aesthetic standpoint with respect to the rows of curved tiles. The solar panels 22 are moreover located underneath the surface of the curved tiles, as required by the standards for recognition of total architectural integration.
All the versions of the fretted sheet-metal panels 14 enable the installation of two strip-shaped solar modules with dimensions of 1655×190 mm, each of which is made up of 10 photovoltaic cells with dimensions of 156×156 mm connected in series to one another.
The fact of keeping the shape of the ribbings 30 unaltered for the three different sizes of the fretted sheet-metal panels 14 enables use of fasteners that are very similar to one another for the different versions. In fact, the profile of the elastic portion 48 of the fasteners 44′, 44″, and 44′″ is substantially identical in the three versions.
The solution according to the present invention uses solar modules 22 of constant dimensions and enables use of curved tiles of any existing size choosing the fretted sheet-metal panels from three possible sizes and using the fasteners associated to the fretted sheet-metal panel of the size chosen. Engagement of the solar modules 22 to the fretted sheet-metal panels 14 is obtained in a simple and fast way and, in the basic version, without the use of screws or other fixing elements.
While the foregoing is directed to embodiments of the present invention, other and further embodiments of the invention may be devised without departing from the basic scope thereof, and the scope thereof is determined by the claims that follow.
Number | Date | Country | Kind |
---|---|---|---|
10425181.4 | May 2010 | EP | regional |