The present invention relates to a transportable structure kit most often referred to as a modular or kit home. While this invention is described in the context of such homes, it has broader application and is not limited to this particular use.
Modular or kit homes are those that utilize pre-fabricated components generally assembled off site, which are then transported to a site and assembled. Relative to standard forms of residential construction, modular or kit homes hold the promise of being less expensive, and easier and quicker to assemble on site. However, much of the promise of this type of home has yet to be realized: modular homes are often as costly as standard constructions and they often require specialized machinery and/or expertise that reduce the efficiency of construction. Many of these structures are also relatively difficult to transport to site.
Relatedly, shipping containers have many advantages as a kind of “raw material” for the construction of homes. They are, of course, easily transported, but also quite strong, inexpensive (in their unmodified form), resistant to weather, stackable, etc. For these reasons, shipping containers have become popular as the primary components of modular home designs. However, while their dimensions and solidity are optimal for their primary use as transport containers, these traits are, in many ways, less than optimal for use as habitation without major modification to their structure. Additionally, their use for habitation often requires heavy machinery for positioning or for performing structural modifications. Consequently, shipping container homes are often difficult to design and build, and frequently just as costly as conventional structures.
Many efforts have been made to utilize the general form of the ISO shipping container for transportable modular homes or buildings. These efforts generally aim to provide inexpensive, easy-to-assemble structures, whether for temporary or permanent placement. These inventions attempt to address the shortcomings of both shipping container homes and modular or kit homes in general. However, these inventions generally feature (highly) modified versions of the general form of the shipping container rather than utilizing the strengths of unmodified containers. And in certain cases shipping containers are used for transport only, rather than being integral to the final structure.
Most relevant, U.S. Pat. No. 5,950,373 describes a modular/kit home structure that is transportable in the general form of shipping container. Rather than using an unmodified ISO container, this invention utilizes a unique construction that is preferably but not necessarily compatible with normal transportation methods associated with unmodified ISO containers. This invention also utilizes a specialized foundation and uses the walls and other portions of the container as parts of the primary structure.
U.S. Pat. No. 9,920,512 B1 describes a two level structure using a modified container in the general form of a shipping container. The container used in this invention is a highly-modified version of a container with a telescopic method of forming a second level of the structure. Also, this invention does not necessarily comply with ISO standards for intermodal shipping containers and therefore might require specialized modes of transport.
U.S. Pat. No. 9,115,504 B2 describes a variety of structures and methods of construction utilizing convertible containers transportable in accordance with ISO intermodal standards. However, the final structures are comprised of the steel components that form the walls, ceilings, etc. of the shippable containers, and the method of construction is specific to the design of the component-based containers, rather than being conventional.
U.S. Pat. No. 4,075,814 describes a modular housing invention that utilizes prefabricated housing components that can be shipped inside standard ISO containers. This invention uses the ISO containers for transport only, not as part of the resultant structures.
In accordance with embodiments of the invention, a modular building kit is included. The modular building kit is operable to be delivered to a building site and contains within a single shipping container the materials needed for construction of a modular building. Materials included in the modular building kit are the shipping container itself, prefabricated floor joist panels, prefabricated floor sheathing, prefabricated wall sheathing, prefabricated wall panels, prefabricated roof rafters, prefabricated roof sheathing, and foundation posts.
In accordance with embodiments of the invention, a modular building is provided. The modular building includes a shipping container that is shipped containing the materials needed for construction of the modular building and is placed in a permanent position at a construction site. A plurality of foundation posts are secured in a perimeter surrounding the shipping container. A plurality of floor joist panels are positioned on top of the shipping container and on top of the plurality of foundation posts. The plurality of floor joist panels form a second story floor. Floor sheathing is attached to the top surface of the plurality of floor joist panels. A plurality of wall panels are attached around a periphery of the floor joist panels and form an enclosure. Wall sheathing is attached to the outer perimeter of the plurality of wall panels. A plurality of roof rafters are positioned on top of the enclosure formed by the plurality of wall panels. Roof sheathing is attached to the top of the roof rafters, fully enclosing the structure.
In one embodiment, the modular building includes a kit for building a kitchen. In another embodiment, the modular building kit includes a kit for building a bathroom. In another embodiment, the modular building kit includes a kit for constructing a plurality of windows. In another embodiment, the modular building kit includes a kit for constructing a staircase. In another embodiment, the modular building kit includes a kit for constructing a ramp. In another embodiment, the modular building kit includes a kit for constructing a plurality of doors.
In accordance with embodiments of the invention, a method for building a structure is provided. The method includes a first step (a) delivering a modular building kit to a construction site, the modular building kit comprising, a shipping container containing a plurality of foundation posts, a plurality of floor joist panels, a plurality of wall panels, a floor sheathing, and a wall sheathing, and a plurality of roof rafters. The method includes a second step (b) of positioning the shipping container via mechanical or manual lifts to a permanent location. The method includes a third step (c) of positioning the plurality of foundation posts offset from the sides of the shipping containers and the foundation posts are operable to support a periphery of the floor joist panels. The method includes a fourth step (d) of positioning said plurality of floor joist panels on top of the shipping container and foundation posts and the floor joist panels form an upper floor. The method includes a step (e) of attaching the floor sheathing to the top of the floor joists. The method includes a step (f) of attaching the plurality of wall panels around a periphery of the floor joists and the plurality of wall panels form an enclosure. The method includes a step (g) of attaching the wall sheathing to the outer perimeter of the wall panels. The method includes a step (h) of positioning the plurality of roof rafters on top of the enclosure formed by the plurality of wall panels. The method includes a step (i) of attaching the roof sheathing to the top of the roof rafters. In one embodiment, the method for building a modular structure includes a preceding step of preparing a foundation upon which the shipping container is placed.
In one embodiment, the method for building a modular structure includes a step intervening between steps (f) and (g), during which plumbing connections are installed into the modular structure.
In one embodiment, a method for building a structure is provided. The method includes a step (a) of delivering a modular building kit to a construction site, the modular building kit comprising: a shipping container; a plurality of foundation posts; a plurality of floor joist panels, wherein the plurality of floor joist panels is comprised of six floor joist panels each having first dimensions and one floor joist panel having second dimensions; a plurality of wall panels, wherein the plurality of wall panels is comprised of six wall panels each having third dimensions, two wall panels each having fourth dimensions and two end wall panels each having fifth dimensions; a floor sheathing; a wall sheathing; a plurality of roof rafters; and a roof sheathing. The method includes a step (b) of positioning the shipping container on a permanent location. The method includes a step (c) of positioning the plurality of foundation posts offset from sides of the shipping container, said foundation posts configured to support a periphery of the floor joist panels. The method includes a step (d) of positioning said plurality of floor joist panels on top of the shipping container and foundation posts, said floor joist panels forming an upper floor. The method includes a step (e) of attaching said floor sheathing to a top of the floor joist panels. The method includes a step (f) of attaching said plurality of wall panels around the periphery of the floor joist panels, said plurality of wall panels forming an enclosure. The method includes a step (g) of attaching said wall sheathing to an outer perimeter of the wall panels. The method includes a step (h) of positioning said plurality of roof rafters on top of the enclosure formed by the plurality of wall panels. The method includes a step (i) of attaching said roof sheathing to a top surface of the roof rafters.
In one embodiment, a method for building a structure is provided. The method includes a step (a) of delivering a modular building kit to a construction site, said modular building kit comprising a shipping container; a plurality of foundation posts, said plurality of foundation posts contained within the shipping container; a plurality of floor joist panels, said plurality of floor joist panels contained within the shipping container, wherein the plurality of floor joist panels is comprised of six floor joist panels each having first dimensions and one floor joist panel having second dimensions; a plurality of wall panels, said plurality of wall panels contained within the shipping container, wherein the plurality of wall panels is comprised of six wall panels each having third dimensions, two wall panels each having fourth dimensions and two end wall panels each having fifth dimensions; a floor sheathing, said floor sheathing contained within the shipping container; a wall sheathing, said wall sheathing contained within the shipping container; a plurality of roof rafters, said plurality of roof rafters contained within the shipping container; and a roof sheathing, said roof sheathing contained within the shipping container. The method includes a step (b) of positioning the shipping container on a permanent location. The method includes a step (c) of positioning the plurality of foundation posts offset from sides of the shipping container, said foundation posts configured to support a periphery of the floor joist panels. The method includes a step (d) of positioning said plurality of floor joist panels on top of the shipping container and foundation posts, said floor joist panels forming an upper floor. The method includes a step (e) of attaching said floor sheathing to a top surface of the floor joist panels. The method includes a step (f) of attaching said plurality of wall panels around the periphery of the floor joist panels, said plurality of wall panels forming an enclosure. The method includes a step (g) of attaching said wall sheathing to an outer perimeter of the wall panels. The method includes a step (h) of positioning said plurality of roof rafters on top of the enclosure formed by the plurality of wall panels. The method includes a step (i) of attaching said roof sheathing to a top surface of the roof rafters.
In one embodiment, a method for building a structure is provided. The method includes a step (a) of delivering a shipping container to a construction site, said shipping container containing a plurality of foundation posts, a plurality of floor joist panels, a plurality of wall panels, a floor sheathing, a wall sheathing, a plurality of roof rafters, and a roof sheathing. The method includes a step (b) of positioning the shipping container on a permanent location. The method includes a step (c) of positioning the plurality of foundation posts offset from the sides of the shipping container, said foundation posts configured to support a periphery of the floor joist panels. The method includes a step (d) of positioning said plurality of floor joist panels on top of the shipping container and foundation posts, said floor joist panels forming an upper floor. The method includes a step (e) of attaching said floor sheathing to a top surface of the floor joist panels. The method includes a step (f) of attaching said plurality of wall panels around the periphery of the floor joist panels, said plurality of wall panels forming an enclosure. The method includes a step (g) of attaching said wall sheathing to an outer perimeter of the wall panels. The method includes a step (h) of positioning said plurality of roof rafters on top of the enclosure formed by the plurality of wall panels. The method includes a step (i) of attaching said roof sheathing to a top of the roof rafters. The plurality of floor joist panels is comprised of six floor joist panels each having first dimensions and one floor joist panel having second dimensions, The plurality of wall panels is comprised of six wall panels each having third dimensions, two wall panels each having fourth dimensions and two end wall panels each having fifth dimensions.
In accordance with embodiments of the invention, a method for building a structure is provided. The method includes a step (a) of delivering a modular building kit to a construction site, the modular building kit comprising a shipping container; a plurality of foundation posts; a plurality of floor joist panels, wherein the plurality of floor joist panels is comprised of two floor joist panels each having first dimensions and one floor joist panel having second dimensions; a plurality of wall panels, wherein the plurality of wall panels is comprised of four wall panels each having third dimensions, and two end wall panels each having fourth dimensions; a floor sheathing; a wall sheathing; a plurality of roof rafters; and a roof sheathing. The method includes a step (b) of positioning the shipping container on a permanent location. The method includes a step (c) of positioning the plurality of foundation posts offset from sides of the shipping container, said foundation posts configured to support a periphery of the floor joist panels. The method includes a step (d) of positioning said plurality of floor joist panels on top of the shipping container and foundation posts, said floor joist panels forming an upper floor. The method includes a step (e) of attaching said floor sheathing to a top of the floor joist panels. The method includes a step (f) of attaching said plurality of wall panels around the periphery of the floor joist panels, said plurality of wall panels forming an enclosure. The method includes a step (g) of attaching said wall sheathing to an outer perimeter of the wall panels. The method includes a step (h) of positioning said plurality of roof rafters on top of the enclosure formed by the plurality of wall panels. The method includes a step (i) of attaching said roof sheathing to a top surface of the roof rafters.
In accordance with embodiments of the invention, a method for building a structure is provided. The method includes a step (a) of delivering a modular building kit to a construction site, the modular building kit comprising a shipping container; a plurality of foundation posts; a plurality of floor joist panels, wherein the plurality of floor joist panels is comprised of four floor joist panels each having first dimensions; a plurality of wall panels, wherein the plurality of wall panels is comprised of four wall panels each having second dimensions, and two end wall panels each having third dimensions; a floor sheathing; a wall sheathing; a plurality of roof rafters; and a roof sheathing. The method includes a step (b) of positioning the shipping container on a permanent location. The method includes a step (c) of positioning the plurality of foundation posts offset from sides of the shipping container, said foundation posts configured to support a periphery of the floor joist panels. The method includes a step (d) of positioning said plurality of floor joist panels on top of the shipping container and foundation posts, said floor joist panels forming an upper floor. The method includes a step (e) of attaching said floor sheathing to a top of the floor joist panels. The method includes a step (f) of attaching said plurality of wall panels around the periphery of the floor joist panels, said plurality of wall panels forming an enclosure. The method includes a step (g) of attaching said wall sheathing to an outer perimeter of the wall panels. The method includes a step (h) of positioning said plurality of roof rafters on top of the enclosure formed by the plurality of wall panels. The method includes a step (i) of attaching said roof sheathing to a top surface of the roof rafters.
The foregoing and other objects, features, and advantages of the invention are apparent from the following detailed description taken in conjunction with the accompanying drawings in which like parts are given like reference numerals and, wherein:
The images in the drawings are simplified for illustrative purposes and are not depicted to scale. Within the descriptions of the figures, similar elements are provided similar names and reference numerals as those of the previous figure(s). The specific numerals assigned to the elements are provided solely to aid in the description and are not meant to imply any limitations (structural or functional) on the invention.
The appended drawings illustrate exemplary configurations of the invention and, as such, should not be considered as limiting the scope of the invention that may admit to other equally effective configurations. It is contemplated that features of one configuration may be beneficially incorporated in other configurations without further recitation.
The embodiments of the disclosure will be best understood by reference to the drawings, wherein like parts are designated by like numerals throughout. It will be readily understood that the components, as generally described and illustrated in the Figures herein, could be arranged and designed in a wide variety of different configurations or be entirely separate. Thus, the following more detailed description of the embodiments of the system and method of the disclosure, as represented in the Figures is not intended to limit the scope of the disclosure, as claimed, but is merely representative of possible embodiments of the disclosure.
The invention described here is a modular or kit home and a preferred method of assembly or construction. The included drawings and descriptions of its preferred embodiments are not meant to exclude other embodiments that might fall under the scope of this invention. For instance, the drawings represent a structure with a plurality of elements that are comprised of various forms of standard dimensional lumber common in residential construction. However, this invention also imagines the use of other materials, such as conventional steel framing or even 3 dimensional printed components. And while the drawings and descriptions of this one embodiment describe a singular modular home, the scope of the invention is not limited to that embodiment, but includes groupings of similar structures or uses other than as a home.
Similarly, the preferred method of assembly described here does not exclude other methods that might fall within the scope of this invention. For instance, while the present description includes two possible foundation types compatible with the proposed structure and method, other forms of foundation might similarly meet the structural and methodological needs of this invention and fall within its scope.
In accordance with embodiments of the invention, a modular building kit 100 is included, as illustrated in
In accordance with embodiments of the invention, a modular building 101 is provided. The modular building 101 includes a shipping container 102 that is shipped containing all materials needed for construction of the modular building 101 and is placed in a permanent position at a construction site. A plurality of foundation posts 116 are secured in a perimeter surrounding the shipping container 102. A plurality of floor joist panels 104 are positioned on top of the shipping container 102 and on top of the plurality of foundation posts 116. The plurality of floor joist panels 104 form a second story floor. Floor sheathing 106 is attached to the top surface of the plurality of floor joist panels 104. A plurality of wall panels 208 are attached around a periphery of the floor joist panels 104 and form an enclosure. Wall sheathing 108 is attached to the outer perimeter of the plurality of wall panels 110. A plurality of roof rafters 112 are positioned on top of the enclosure formed by the plurality of wall panels 110. Roof sheathing 114 is attached to the top surface of the roof rafters 112, fully enclosing the structure, as illustrated in
In accordance with embodiments of the invention, as illustrated in
In one embodiment, as illustrated in
In one embodiment, as illustrated in
In one embodiment, as illustrated in
Prior to the onsite placement of the shipping container 102, four concrete piers 222 are constructed that correspond with the locations of the four corner posts 224 of the container 102. These piers are to be of a type and size sufficient to support the combined weight of the container 102 and the completed modular structure 101.
Following placement of the shipping container 102 on the foundation piers 222 and the assembly of the floor joist panels 240 in
In one embodiment, as illustrated in
In one embodiment, as illustrated in
The sills described here are constructed with dimensional lumber, however other materials or means that result in a level surface on both sides of the container fall under the scope of this invention. These sills are to be assembled following the placement of the shipping container 102, and prior to the placement of the floor joist panels 240.
In one embodiment, as illustrated in
In one embodiment, as illustrated in
In one embodiment, as illustrated in
In one embodiment, as illustrated in
In one embodiment, as illustrated in
Joist panels 206 and 240 are represented here as constructions of conventional dimensional lumber that can be quickly attached to the container 102 and sills 228 using conventional fasteners. The key features of these panels relative to this invention are dimensions that allow for transport within the shipping container 102, and their ability to essentially expand the footprint of the modular home beyond the dimensions of the shipping container. While the preferred methods of construction presented here are likely the most cost-effective, other framing methods and materials can be used to the same ends and would still fall within the scope of this invention.
In one embodiment, as illustrated in
In one embodiment, the present invention includes a permanent structure 101 and method of construction 300 aimed at minimizing the costs and complexity of construction and transport through the use of a modular construction kit and the use of a standard ISO intermodal shipping container.
In one embodiment, the structure is fabricated of components that are prefabricated off site and then transported to a permanent site inside the shipping container. Each of the components of the structure are designed to fit within the interior ISO dimensions of the container and when assembled they form the primary habitable structure. In this method, the ISO container functions not only for transport, but as a part of the foundation that supports the modular structure above it.
In one embodiment, the prefabricated modular structure kit is comprised of sills which provide for a level building surface on the roof of the shipping container, floor joist panels, floor and wall sheathing, wall panels, rafters and foundation posts, that when assembled according to the present method, form the principal structure of a home or other building. This structure is intended for either individual use or in combination with other similar structures, as either a home or for other uses, though it is primarily envisaged as housing.
Preferably, the ISO container is to be loaded with the modular kit off site and then relocated using any of the forms of transport associated with ISO intermodal standards, terminating with transport via standard flat or tilt bed truck. Preferably, the permanent site for the structure will be prepared with one of the present, relatively conventional concrete foundation designs. Once on site, the container is preferably offloaded using manual lifts or other means. The modular kit can then be assembled, using conventional techniques and tools, in the order of the method described herein, forming a two level, permanent structure with the container positioned below the modular home structure. The embodiments described below are optimized for particular sizes of shipping containers and the same essential considerations could be applied to smaller containers, larger containers, or to assemblages of containers.
The component parts of the home kit, while all designed to fit within the ISO container, are variously configurable and can be produced with varying dimensions to provide for the construction of a variety of different structural forms. So, while certain forms are represented here, they do not represent the full range of possible structures that can result from the method of transport and construction described by this invention.
In one embodiment, the building kit 100 includes floor joist panels, floor sheathing, wall sheathing, wall panels, roof rafters, roof sheathing, and foundation posts which are prefabricated to fit within a standard 40 foot shipping container. In this embodiment, the kit 100 can be used to construct a building with approximately a 559 sq/ft interior and a footprint of 14 feet×44 feet. To calculate the approximate interior square footage, it is assumed the walls are 6 inches thick, so the calculation is 13 feet×43 feet. In this embodiment, the kit 100 would contain six floor joist panels of 84 inches×168 inches, one floor joist panel of 24 inches×168 inches, six wall panels of 92⅝ inch height×160 inch width, two wall panels 92⅝ inch height×43½ inch width, and two end wall panels of 92⅝ inch height×161 inch width. Depending upon the configuration of the roof, the kit 100 may include additional prefabricated wall panels used to construct one or more walls higher than the nominal 8 foot wall. All of the components of this kit 100 are designed to fit within the interior dimensions of the standard 40 foot shipping container (94 inch height×93 inch width×474 inch length) for transport.
In one embodiment, the building kit 100 includes floor joist panels, floor sheathing, wall sheathing, wall panels, roof rafters, roof sheathing, and foundation posts which are prefabricated to fit within a standard 40 foot shipping container. In this embodiment, the kit 100 can be used to construct a building with approximately a 559 sq/ft interior and a footprint of 14 feet×44 feet. To calculate the approximate interior square footage, it is assumed the walls are 6 inches thick, so the calculation is 13 feet×43 feet. In this embodiment, the kit 100 would contain six floor joist panels of 84 inches×168 inches, one floor joist panel of 24 inches×168 inches, six wall panels of 92⅝ inch height×158½ inch width, two wall panels 92⅝ inch height×47½ inch width, two end wall panels of 92⅝ inch height×158½ inch width. On each side of the two end wall panels, a 1¼ wide stud is added to increase the width to 161 inches. Depending upon the configuration of the roof, the kit 100 may include additional prefabricated wall panels used to construct one or more walls higher than the nominal 8 foot wall. All of the components of this kit 100 are designed to fit within the interior dimensions of the standard 40 foot shipping container (94 inch height×93 inch width×474 inch length) for transport.
In one embodiment, the building kit 100 includes floor joist panels, floor sheathing, wall sheathing, wall panels, roof rafters, roof sheathing, and foundation posts which are prefabricated to fit within a standard 53 foot shipping container. In this embodiment, the kit 100 can be used to construct a building with approximately an 885 sq/ft interior and a footprint of 16 feet×60 feet. To calculate the approximate interior square footage, it is assumed the walls are 6 inches thick, so the calculation is 15 feet×59 feet. In this embodiment, the kit 100 would contain eight floor joist panels of 84 inches×192 inches, one floor joist panel of 48 inches×192 inches, eight wall panels of 92⅝ inch height×158½ inch width, two wall panels 92⅝ inch heat×79¼ inch width, and two end wall panels of 92⅝ inch height×185 inch width. Depending upon the configuration of the roof, the kit 100 may include additional prefabricated wall panels used to construct one or more walls higher than the nominal 8 foot wall. All of the components of this kit 100 are designed to fit within the interior dimensions of the standard 53 foot shipping container (107 inch height×98 inch width×629 inch length) for transport.
In one embodiment, the building kit 100 includes floor joist panels, floor sheathing, wall sheathing, wall panels, roof rafters, roof sheathing, and foundation posts which are prefabricated to fit within a standard 53 foot shipping container. In this embodiment, the kit 100 can be used to construct a building with approximately a 767 sq/ft interior and a footprint of 14 feet×60 feet. To calculate the approximate interior square footage, it is assume the walls are 6 inches thick, so the calculation is 13 feet×59 feet. In this embodiment, the kit 100 would contain eight floor joist panels of 84 inches×168 inches, one floor joist panel of 48 inches×168 inches, eight wall panels of 92⅝ inch height×158½ inch width, two wall panels 92⅝ inch heat×79¼ inch width, and two end wall panels of 92⅝ inch height×158½ inch width. Depending upon the configuration of the roof, the kit 100 may include additional prefabricated wall panels used to construct one or more walls higher than the nominal 8 foot wall. All of the components of this kit 100 are designed to fit within the interior dimensions of the standard 53 foot shipping container (107 inch height×98 inch width×629 inch length) for transport.
In one embodiment, the building kit 100 includes floor joist panels, floor sheathing, wall sheathing, wall panels, roof rafters, roof sheathing, and foundation posts which are prefabricated to fit within a standard 20 foot shipping container. In this embodiment, the kit 100 can be used to construct a building with approximately a 300 sq/ft interior and a footprint of 14 feet×24 feet. In this embodiment, the kit 100 would contain four floor joist panels of 72 inches×168 inches, four wall panels of 92⅝ inch height×143¼ inch width, and two end wall panels of 92⅝ inch height×158½ inch width. Depending upon the configuration of the roof, the kit 100 may include additional prefabricated wall panels used to construct one or more walls higher than the nominal 8 foot wall. All of the components of this kit 100 are designed to fit within the interior dimensions of the standard 20 foot shipping container (93 inch height×93 inch width×232 inch length) for transport.
In one embodiment, the building kit 100 includes floor joist panels, floor sheathing, wall sheathing, wall panels, roof rafters, roof sheathing, and foundation posts which are prefabricated to fit within a standard 16 foot storage/shipping container. In this embodiment, the kit 100 can be used to construct a building with approximately a 250 sq/ft interior and a footprint of 14 feet×20 feet. In this embodiment, the kit 100 would contain two floor joist panels of 84 inches×168 inches, one floor joist panel of 72 inches×168 inches, four wall panels of 84 inch height×119¼ inch width, and two end wall panels of 84 inch height×158½ inch width. Depending upon the configuration of the roof, the kit 100 may include additional prefabricated wall panels used to construct one or more walls higher than 84 inch height. All of the components of this kit 100 are designed to fit within the interior dimensions of the standard 16 foot storage/shipping container, such as a shipping container that is delivered to a residence or commercial property to facilitate moving of possessions, (approximately 86 inch height×86 inch width×180 inch length) for transport.
The sizing of the structure is optimized for industry standard and widely available lumber, examples including 4 feet by 8 feet sheets. In embodiments 14 feet wide, 16 foot rafters are properly sized to use as a shed roof.
For the purposes of promoting an understanding of the principles of the invention, reference has been made to the preferred embodiments illustrated in the drawings, and specific language has been used to describe these embodiments. However, this specific language intends no limitation of the scope of the invention, and the invention should be construed to encompass all embodiments that would normally occur to one of ordinary skill in the art. The particular implementations shown and described herein are illustrative examples of the invention and are not intended to otherwise limit the scope of the invention in any way. For the sake of brevity, conventional aspects of the system (and components of the individual operating components of the system) may not be described in detail. Furthermore, the connecting lines, or connectors shown in the various figures presented are intended to represent exemplary functional relationships and/or physical or logical couplings between the various elements. It should be noted that many alternative or additional functional relationships, physical connections or logical connections may be present in a practical device. Moreover, no item or component is essential to the practice of the invention unless the element is specifically described as “essential” or “critical”. Numerous modifications and adaptations will be readily apparent to those skilled in this art without departing from the spirit and scope of the present invention.
This application is a continuation in part application of U.S. patent application Ser. No. 16/899,866, filed Jun. 12, 2020, which is incorporated by reference in its entirety as if fully disclosed herein.
Number | Name | Date | Kind |
---|---|---|---|
4075814 | Theurer | Feb 1978 | A |
4854094 | Clark | Aug 1989 | A |
5447000 | Larsen | Sep 1995 | A |
5950373 | von Hoff | Sep 1999 | A |
6463705 | Davis | Oct 2002 | B1 |
7827738 | Abrams | Nov 2010 | B2 |
8001730 | Wallance | Aug 2011 | B2 |
8186110 | Green | May 2012 | B2 |
8397441 | Wallance | Mar 2013 | B2 |
8826600 | Wallance | Sep 2014 | B2 |
9115504 | Wallance | Aug 2015 | B2 |
9279265 | Nead | Mar 2016 | B1 |
9920512 | Eisold | Mar 2018 | B1 |
10260228 | King | Apr 2019 | B2 |
10584503 | Fan | Mar 2020 | B2 |
10633877 | Wolff | Apr 2020 | B2 |
10745930 | Newman | Aug 2020 | B2 |
10837168 | Rittmanic | Nov 2020 | B2 |
10851552 | DeMatteis | Dec 2020 | B1 |
10920414 | Gordon | Feb 2021 | B2 |
11274430 | Scilley | Mar 2022 | B2 |
11384550 | McDonald | Jul 2022 | B2 |
20080134589 | Abrams | Jun 2008 | A1 |
20090000213 | Coopman | Jan 2009 | A1 |
20090223144 | Leahy | Sep 2009 | A1 |
20100018131 | Green | Jan 2010 | A1 |
20180079589 | Meister | Mar 2018 | A1 |
20180163391 | King | Jun 2018 | A1 |
20180274254 | Fan | Sep 2018 | A1 |
20180274258 | Newman | Sep 2018 | A1 |
20190249413 | Brotherton | Aug 2019 | A1 |
20190292770 | Gordon | Sep 2019 | A1 |
20190376303 | Wolff | Dec 2019 | A1 |
20200040565 | Viehweg | Feb 2020 | A1 |
20200291637 | Rittmanic | Sep 2020 | A1 |
20200399917 | McDonald | Dec 2020 | A1 |
20210388602 | Scilley | Dec 2021 | A1 |
20220145611 | Kuehmstedt | May 2022 | A1 |
Number | Date | Country | |
---|---|---|---|
20220081921 A1 | Mar 2022 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16899866 | Jun 2020 | US |
Child | 17527138 | US |