The present invention relates to building structures having structural beams and purlins connected between the beams to create a frame, and also relates to building structures having both purlins and trellis.
Tubular purlins are for the most part presently connected to main beams (e.g. trusses) with welded end plates that cover the end of the tubular purlins. The end plates are bent at the top and have an extending flange with holes for receiving bolts to secure the purlins to a main beam or truss. For example, see Porter U.S. Pat. No. 4,275,534. The end plates are pre-formed separate from the tubular purlins and then attached by welding. This takes substantial material, labor, and time, and further results in extra inventory as well as quality and dimensional control concerns. An improvement is desired to reduce the amount of raw material required for manufacture of building structures, to reduce the number of inventoried components, to simplify the manufacturing process, and to improve assembly, dimensional, and quality control.
Most fabrication machinery only cuts in a single plane or cuts best along a single plane. For example, band saws and similar metal-cutting saws cut best and most efficiently when used to make a planar cut completely across an end section of a work piece. While partial depth cuts can be made with saws, it is largely impractical to do so on a production basis for making building and roof beams and purlins, since partial depth cuts are manually intensive and time-consuming to set up, and further are difficult to accurately control in the heavy gauge metals and high-strength steels used in building beams. Aside from the aforementioned problems, it is very difficult to exactly match the end point of a first cut with a second cut coming from another angle. Notably, mis-cuts and poor dimensional control can be a significant problem when manufacturing structural beam components for buildings, since it can result in considerable field problems during construction and also may potentially raise safety concerns. Still further, with traditional high-volume fabrication machinery, there is no easy way to cut at a varied non-linear direction through a tube. In other words, most fabrication machinery is unsatisfactory for cutting configured ends of a structural tubular beam, when the configured end has multiple cut lines that are not in the same plane, and/or where the cuts are non-linear, and/or where the cut defines a cut direction where another wall interferes with positioning the cutting blade.
With recent advances in laser cutting technology, it is economically possible to make irregular shapes at tube ends. However, I have found that there is a lack of beam joint designs that take advantage of this technology. In particular, I have not found beam joints simplified in the manner and method of the present invention, yet having the structural strength, integrity, robustness, and distribution of stress of the present invention, as described below.
Thus, building structures and, in particular, purlin to beam constructions having the aforementioned advantages and solving the aforementioned problems are desired.
In one aspect of the present invention, a metal frame for a building structure includes a structural beam and a tubular purlin attached to the beam. The tubular purlin includes a configured end shaped to mateably engage a side of the beam, and an attachment tab extending longitudinally from the configured end. The configured end and the attachment tab both are integrally formed from material of the tubular purlin. The structural attachment tab supports the configured end on the structural beam and structurally attaches the tubular purlin to the structural beam.
In another aspect of the present invention, a purlin includes a structural tube adapted to form a structural portion of a building. The structural tube has top, bottom, and opposing side walls. At least the top wall extends longitudinally to define an attachment tab. The bottom wall and at least one side wall has end surfaces defining a concavely-shaped recess adapted to fit closely against a beam with the attachment tab engaging a top of the beam. The attachment tab includes at least two apertures for receiving attachment bolts and has sufficient strength to both support the structural tube on the beam and also sufficient strength to retain the structural tube to the beam for stabilizing the beam.
In yet another aspect of the present invention, a method includes steps of providing a structural tube having top, bottom, and opposing side walls. The method further includes cutting the bottom wall and at least one of the side walls to define a configured end with a concave recess shaped to closely engage a side of a beam, and still further includes cutting the walls to leave an integrally-formed structural attachment tab that extends longitudinally over the concave recess. The method also includes positioning a beam in the recess with the attachment tab engaging a top of the beam and further includes attaching the attachment tab to the beam as a purlin.
An aspect of the present invention is to simply let the integral top wall of the tubular purlin extend over a main beam or truss. The extended top wall defines an attachment tab that becomes structural after it is screwed and/or otherwise fastened to the beam.
Another aspect of the present invention is to cut an end of a structural tubular purlin beam into a configured shape that includes a concavely-shaped recess and a structural attachment tab extending from the remaining end of the tubular beam over the recess. The recess is shaped as desired to receive a beam at a particular angle, and the attachment tab is bent as required. The attachment tab has holes therein for mechanical attachment to the beam.
In a narrower aspect, the integral end surfaces of the configured shape are shaped to retain the beam at a non-perpendicular angle relative to the purlin beam.
In a narrower aspect, the end surfaces of the configured shape form a closure panel shaped to cover an open end of a beam truss.
In another aspect of the present invention, a metal frame for a building structure includes a structural beam having a pair of spaced notches, each notch being located at least partially in a top wall of the beam. A tubular purlin has a configured end including a pair of interlock tabs that hookingly engage the pair of spaced notches with the configured end resting on the structural beam. The configured end and interlock tabs are both integrally formed from material of the tubular purlin, such that the structural attachment tab supports the configured end on the structural beam and such that the interlock tabs structurally attach the tubular purlin to the structural beam.
The present structural purlin to beam connections described above are believed to be novel, useful, and unobvious, particularly in association with modern laser cutting technology, because the connecting configured ends are surprisingly and unexpectedly consistent and robust, and can be made in significant volumes with a reduced amount of high cost manual and skilled labor. Further, the cuts of the configured ends can be made at relatively high speed and quickly with low set-up time and cost.
These and other aspects, objects, and features of the present invention will be understood and appreciated by those skilled in the art upon studying the following specification, claims, and appended drawings.
A metal frame 20 (
The purlin 22 (
In the following description, similar and identical features, characteristics and components are identified using the same identifying numbers, but with the addition of a letter “A”, “B”, “C”, etc. This is done to reduce redundant discussion.
The purlin 22A (
The recesses 23′ and 23A′ are both rectangularly shaped for closely mateably engaging a side of the beam 21, but the end surfaces 27A-29A′ of purlin 22A form a configured end 23A formed so that rectangular recess 23A′ is “rotated forwardly” about an axis “X”. It also is conceived that the end surfaces 27B′-29B′ on purlin 22B (
A purlin 22C (
Many different rigid metal frames for building structures can be constructed by using the above concepts, as will be recognized by persons skilled in this art. Advantageously, the metal frames can be constructed by bolted assembly of beams and purlins, without the need for welding of secondary components and ends pieces to the purlins. It is contemplated that several of the above concepts concerning the purlins can potentially also be employed on the beams, such as for connection of secondary beams to main peak beams, depending on the functional load requirements of the beams.
The building structure 50 (
Specifically, in regard to the roof frame structure 51 (
The purlin 57 is connected between the angled beams 53, at an intermediate location between the peak beam 54 and the column-spanning beams 55, with the intermediate purlin 57 extending parallel the peak beam 54. The purlin 57 is a right angle purlin, and has two configured ends 61 similar in shape to the configured end 23 discussed above. An eave-forming purlin 58 is connected between ends of the angled beams 53. The eave-forming purlin 58 is also a right angle purlin and has a configured end 62 similar to the configured end 23 discussed above. However, the configured end 62 has a cover tab (34E) covering half of the open end of the associated angled beam 53.
The building structure 70 (
The illustrate roof structure 71 includes several purlins 82 that have configured ends 83 similar to the configured end 23B described above. The purlins 82 extend between the adjacent lower angled beams 74 and between the adjacent higher angled beams 76. The purlins 82 are cut to an appropriate length so that the adjacent angled beams 74 and 76 fit closely into the recesses formed by the configured ends 83.
At the outer end of the lower angled beams 78 are attached purlins 85. The purlins 85 include a configured end 86 similar in shape to the configured ends 83, but these configured ends 86 include a cover tab 87 covering an outer open end of the lower angled beams 74 like the cover tab 34E described above.
Another metal frame structure 20D (
Notably, laser cutting technology has now progressed so that the end surfaces 27′-29′ (and 27A′-29A′, 27B′-29B′, etc) and attachment tab 24 (and 24A, and 24B, etc) can be laser cut with precision. Further, laser machinery can be preprogrammed to automatically make a plurality of cuts that are virtually exactly where they need to be with only minimal manufacturing variation. In other words, much tighter tolerances can be held than with traditional cutting processes and machinery requiring individual set-up and cuts. Also, the machines can be programmed to cut a limited depth, such as for cutting only a first side wall while not cutting an adjacent wall and/or not cutting a second side wall that is spaced away only a few inches on an opposite side of the purlin or beam. This allows various purlins and beams to have configured ends accurately and quickly cut by simply calling up the stored data for computer controlled cutting of a configured end. The machine then automatically performs the cuts required. Such machines are commercially available, and need not be described for an understanding of (nor for enablement of) the present invention. The present structural purlin-to-beam connections described above are believed to be novel, useful, and unobvious. They are surprisingly and unexpectedly consistent and robust, and can be made in significant volumes with a reduced amount of high cost manual and skilled labor. Further, the cuts can be made at relatively high speed and quickly with low set-up.
Advantageously, a building structure incorporating a plurality of interconnected beams, purlins, trellises, and/or stabilizers, as illustrated by the beam and purlins, can be quickly constructed to form a secure and stable roof structure, building wall, building overhang, and other structures, with excellent stress distribution and consistent assembly, yet with minimal extra parts and pieces. Installation time and construction materials are minimized. Notably, through use of a high precision laser cutting machine, the joints and configured ends can be accurately and quickly cut, using a database of standardized information and design criteria.
It is to be understood that variations and modifications can be made on the aforementioned structure without departing from the concepts of the present invention, and further it is to be understood that such concepts are intended to be covered by the following claims unless these claims by their language expressly state otherwise.