This invention related generally to structured building materials and, more specifically, to cellular building blocks configured to connect in a multi-dimensional pattern to produce an improved structured building material exhibiting beneficial characteristics.
Wood is a preferred material for building structures because it has high strength, low density and it may be sawed, cut and/or have a nail driven into it. However, in some areas, there is a limited supply of wood to use as a building material. There currently exists a need for a replacement for wood that does not contain wood, glue, plastic or hydrocarbons in general. The replacement would have similar characteristics of wood. Finally, it could be manufactured using local materials, without trees and with minimal expense.
A cellular building block including a middle beam and two legs. The cellular building block having the first leg coupled to the middle beam such that the leg is perpendicular to the middle beam and a second leg coupled to the middle beam such that the leg is perpendicular to the middle beam and spaced apart from the first leg, the first leg and the second leg having an inside edge and an outside edge. Having at least one barb located on the inside edge of the first leg and on the inside edge of the second leg and further configured to lock into a recess.
A method for using a cellular building block including aligning a guide portion of each leg from a first block with guide portions of a leg from a second block and a third block. Applying pressure sufficient to urge the barb, coupled to legs of the first block, into recesses defined by the leg in the second and third block; and locking the blocks together by confirming that all of the barbs of the first block are in the recesses of the second and third block and the barbs of the second and third block are in the recesses of the first block. A continuation of this process will produce a material where cells hold each other together.
The preferred and alternative embodiments of the present invention are described in detail below with reference to the following drawings.
In one embodiment a cell uses a variety of different types of materials made separately into cells and connected mechanically using different geometries. These geometries include, but are not limited to, rectangular and prismatic geometries, which provide cohesion and strength based on the geometry of the composition. The different geometries combine materials at a cellular level to produce advantageous characteristics in the resulting composition. The advantageous properties include, but are not limited to, low density, strength, toughness, and/or fire resistance.
The following dimensions are derived in one embodiment. The depth of each barb A is derived from the width of each leg V divided by four. The length of each barb B is derived from the depth of the barb multiplied by eight. The distance between the legs P is derived from the basic width of the cell divided by two. The distance between the center lines of the legs Q is derived from the distance between the legs P added to the width of a leg V. The distance between outside lines of the legs R is derived from the distance between the center lines of the legs Q added to the width of the leg V. The length of a leg G is derived from the width of the middle beam U subtracted from the height of the cell H and then divided by two. The resulting number is then multiplied by 0.95 to find the length of the leg. The length of the middle beam S is derived from the gap between adjacent cell middle beams D subtracted from the basic width of the cell W. The distance from the outside of the leg to the middle beam intersection N is derived from the distance between the outside lines of the legs R subtracted from the basic width of the cell W and then divided by two.
In one embodiment, it is preferred, but not necessary, to have the following relationships. The depth of each barb is less than or equal to the width of each leg divided by two. The length of each barb is greater than two times the depth of the barb. The depth of the barb is two times the gap between adjacent cell middle beam intersections. The length of a leg is less than the width of the middle beam subtracted from the basic height of the cell and then divided by two. In a three-dimensional cell, the depth of the middle beam is less than the distance from the outside of the leg to the middle beam intersection. Further the depth of the barb is also constrained by the elasticity of the material and the length of the leg in one embodiment. As a cell is coupled to another, the legs will bend slightly to overcome the depth of the barb until the barb reaches the recess.
In an alternate embodiment the barbs are removed from one end and recesses are removed from the other end resulting in a cell that is polarized. The cell would have a positive and negative side, and as long as the cells were organized with the correct polarization would form a lattice. In yet another alternate embodiment the cells may be connected without barbs or recesses using rivets, pins and/or screws.
While the preferred embodiment of the invention has been illustrated and described, as noted above, many changes can be made without departing from the spirit and scope of the invention. Accordingly, the scope of the invention is not limited by the disclosure of the preferred embodiment.
This application claims the benefit of U.S. Provisional Application Ser. No. 60/916,927 filed on May 9, 2007, which is herein incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
1234628 | Christensen | Jul 1917 | A |
1355486 | Longenecker | Oct 1920 | A |
3053558 | Challas, Jr. et al. | Sep 1962 | A |
3390589 | Tschanz | Jul 1968 | A |
3695190 | Bucholz | Oct 1972 | A |
3928950 | Beynon | Dec 1975 | A |
4129969 | Haapala | Dec 1978 | A |
4145977 | Yellin | Mar 1979 | A |
4681477 | Fischer | Jul 1987 | A |
4757769 | Suttles | Jul 1988 | A |
6520095 | Hayes | Feb 2003 | B1 |
Number | Date | Country |
---|---|---|
10121778 | May 1998 | JP |
11301738 | Nov 1999 | JP |
2002339592 | Nov 2002 | JP |
Number | Date | Country | |
---|---|---|---|
20080276548 A1 | Nov 2008 | US |
Number | Date | Country | |
---|---|---|---|
60916927 | May 2007 | US |