This invention relates generally to the construction of buildings and specifically to those that utilize pre-manufactured components applied to a modified building skeleton resulting in an improved building. In one aspect, the present disclosure is related to an apparatus and method of constructing a building that improves the safety and efficiency of constructing such building.
Post frame buildings, which evolved from so-called pole barns, are used for a wide variety of commercial, industrial and agricultural purposes, for they are, compared to other types of construction, relatively easy and inexpensive to erect. In this regard, the typical post-frame building has a series of wooden posts or columns along its perimeter, with these columns being set into the earth or onto a concrete foundation The columns are tied together by horizontal members, called girts, and support wooden roof trusses which are joined together with purlins. Bracing is also normally incorporated into the structure. The trusses in turn support a lightweight roofing, similarly the girts have a suitable siding material attached to them.
Other conventional building construction methods have focused on the cost and efficiency advantages of having construction mostly manufactured at the manufacturing plants or factories. Current construction techniques that use manufactured housing structures include building modules of a certain room to be delivered to a construction site. Manufactured housing techniques offer some advantages over on-site construction methods. For example, construction for manufactured housing may be carried out year-round regardless of the weather since manufacturing within a factory or plant can occur indoors.
While there have been improvements in building methods and construction systems, many of these methods still create substantial safety risks as they require construction workers to be at high elevations that are at risk of falling off of the building while attaching roofing components. The system and method of the present disclosure can reduce potential fall heights to less than one foot into a net, as opposed to an impact fall with a cable restraint to upwards of about ten to about twenty feet with potential obstructions prior to engagement of the restraint system. The method of the present disclosure reduces corporate safety costs, improves labor efficiency, increases construction crew retention, and increases the building quality. Therefore, there exists a need to provide a construction method and system to protect employees when working on roofs, especially low-eave buildings.
In one aspect, this disclosure is related to a construction method for building a post frame building by first constructing the roof near ground level. The roof assembly can be covered with a removeable safety net system. The roof system can will be coupled to one or more columns having a hinge. Upon the roof system being lifted, the hinged columns can fold under the roof system and then be coupled to one or more anchor points established in the ground or suitable alternate foundation systems. The roof system can be raised into position at a pre-determined height using a hydraulically powered lifting apparatus.
In another aspect, this disclosure is related to method of constructing a post-frame building where a roof assembly is first constructed at a first position above ground level. The first position can be proximate to the ground. The roof assembly can be constructed on top of a plurality of stubs/foundations provided prior to constructing the roof assembly. A support assembly can then be constructed, wherein the support assembly can include one or more columns. The support assembly can then be pivotably coupled the roof assembly. One or more load distributing apparatuses can then be positioned underneath the roof assembly. One or more lifting means can then be coupled to the load distributing apparatus. A control system having a controller with a memory can be communicatively coupled to the one or more lifting means. The controller can initiate a lifting protocol to raise the roof assembly from the first position to a second position. Once the roof assembly is positioned in the second position, the support assembly is then pivoted to allow for the bottom of the columns of the support assembly too be coupled to the stubs previously supporting the roof assembly. The load distributing apparatus can be lowered back down and removed. The roof assembly can include one or more top members that can first be removably coupled to a corresponding stub or foundation point when the roof assembly is assembled in the first position. The support assembly can be built near ground level and include columns, girts, and a hinge to couple to the roof assembly prior to lifting the roof assembly to the second position. Prior to lifting the roof assembly, a safety net system can be coupled to the roof assembly. The safety net system can include nets located between trusses and at the leading edges of the roof assembly.
In another aspect, this disclosure is related to post-frame building assembly having a roof assembly, one or more support assemblies that can include pre-constructed walls coupled with the hinges to the roof assembly, and one or more lifting apparatuses to raise the roof assembly to a pre-determined height. The hinged or pivotable coupled walls can be configured to swing under the edges of the roof assembly. Upon the walls being positioned vertically under the roof assembly, the hinged portions can be fastened securely to ensure that the walls do not move out from under the roof assembly. The walls can then be coupled to the ground at pre-determined foundations.
In yet another aspect, this disclosure is related to a building system. The building system is designed to allow for safer construction of a building by including a plurality of stubs and/or foundation points at pre-determined points of a desired building layout. The system can include a roof assembly. The roof assembly can include a plurality of top members. The top members can be temporarily coupled to the stubs while the remainder of the roof assembly is constructed. The system can further include a support assembly comprised of a plurality of columns. The support assembly can be pivotably coupled to a portion of the roof assembly. The system can use one ore more load distributing apparatuses that is designed to support the roof assembly when it is raised from a first position to a second position off of the ground by a lifting apparatus. The load distributing apparatus can include one or more wheel assemblies. The wheel assemblies can have a moveable portion to allow the wheels to be either extended and engaged to allow a user to easily position the load distributing apparatus or in a retraced position when the load distributing apparatus is stationary. The lifting apparatus can be coupled to the load distributing apparatus and can include a control system. The control system can include a controller communicatively coupled to a memory. The memory can include lifting protocols, algorithms, historical data, level thresholds, and other related data. The control system can be communicatively coupled to the lifting apparatus and control a lifting means, such as a hydraulic cylinder to lift the roof assembly from a first position to a second position. The system can further include a safety net system that can be coupled to the roof assembly and the stubs while the roof assembly is being constructed on top of the stubs. The safety net system can further include a tensioning means to maintain the nets of the safety net system in a taught position. The safety net systems can have one or more support members extending outward from the roof assembly, wherein a proximate end of the support member can be coupled to the stub and the distal end can extend out away form the roof assembly. The
The features and advantages of this disclosure, and the manner of attaining them, will be more apparent and better understood by reference to the following descriptions of the disclosed system and process, taken in conjunction with the accompanying drawings, wherein:
The following detailed description includes references to the accompanying drawings, which forms a part of the detailed description. The drawings show, by way of illustration, specific embodiments in which the invention may be practiced. These embodiments, which are also referred to herein as “examples,” are described in enough detail to enable those skilled in the art to practice the invention. The embodiments may be combined, other embodiments may be utilized, or structural, and logical changes may be made without departing from the scope of the present invention. The following detailed description is, therefore, not to be taken in a limiting sense.
Before the present invention of this disclosure is described in such detail, however, it is to be understood that this invention is not limited to particular variations set forth and may, of course, vary. Various changes may be made to the invention described and equivalents may be substituted without departing from the true spirit and scope of the invention. In addition, many modifications may be made to adapt a particular situation, material, composition of matter, process, process act(s) or step(s), to the objective(s), spirit or scope of the present invention. All such modifications are intended to be within the scope of the disclosure made herein.
Unless otherwise indicated, the words and phrases presented in this document have their ordinary meanings to one of skill in the art. Such ordinary meanings can be obtained by reference to their use in the art and by reference to general and scientific dictionaries.
References in the specification to “one embodiment” indicate that the embodiment described may include a particular feature, structure, or characteristic, but every embodiment may not necessarily include the particular feature, structure, or characteristic. Moreover, such phrases are not necessarily referring to the same embodiment. Further, when a particular feature, structure, or characteristic is described in connection with an embodiment, it is submitted that it is within the knowledge of one skilled in the art to affect such feature, structure, or characteristic in connection with other embodiments whether or not explicitly described.
The following explanations of certain terms are meant to be illustrative rather than exhaustive. These terms have their ordinary meanings given by usage in the art and in addition include the following explanations.
As used herein, the term “and/or” refers to any one of the items, any combination of the items, or all of the items with which this term is associated.
As used herein, the singular forms “a,” “an,” and “the” include plural reference unless the context clearly dictates otherwise.
As used herein, the terms “include,” “for example,” “such as,” and the like are used illustratively and are not intended to limit the present invention.
As used herein, the terms “preferred” and “preferably” refer to embodiments of the invention that may afford certain benefits, under certain circumstances. However, other embodiments may also be preferred, under the same or other circumstances.
Furthermore, the recitation of one or more preferred embodiments does not imply that other embodiments are not useful and is not intended to exclude other embodiments from the scope of the invention.
As used herein, the terms “front,” “back,” “rear,” “upper,” “lower,” “right,” and “left” in this description are merely used to identify the various elements as they are oriented in the FIGS, with “front,” “back,” and “rear” being relative to the apparatus. These terms are not meant to limit the elements that they describe, as the various elements may be oriented differently in various applications.
As used herein, the term “coupled” means the joining of two members directly or indirectly to one another. Such joining may be stationary in nature or movable in nature. Such joining may be achieved with the two members or the two members and any additional intermediate members being integrally formed as a single unitary body with one another or with the two members or the two members and any additional intermediate members being attached to one another. Such joining may be permanent in nature or alternatively may be removable or releasable in nature. Similarly, coupled can refer to a two member or elements being in communicatively coupled, wherein the two elements may be electronically, through various means, such as a metallic wire, wireless network, optical fiber, or other medium and methods.
It will be understood that, although the terms first, second, etc. may be used herein to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish one element from another. For example, a first element could be termed a second element, and, similarly, a second element could be termed a first element without departing from the teachings of the disclosure.
Systems and methods are described herein for constructing buildings, such as new post-frame buildings, that allow for cost-effective site management and improved safety for construction workers on site. The systems and methods described herein provide access to all components of all internal building systems after the construction of the building is complete.
The present disclosure relates to a method of constructing a building while providing additional safety for the construction workers. The construction method can first include preparing and laying out the building design and dimensions. One or more foundation locations can be marked and excavated in order to establish one or more pre-determined foundation locations. In some exemplary embodiments, the foundations can be a solid slab foundation. Alternatively, foundations can be poured foundations for accepting one or more columns. The foundations can be poured on location or can be pre-cast using any suitable material. In one exemplary embodiment, the pre-cast foundations can be made from a composite material that reduces potential deterioration that can be experienced by concrete foundations due to freezing and thawing cycles.
The foundations can then be placed, and the stubs 17 can be set and cut to a predetermined length for receiving a column 19. The stubs can extend up from the ground a pre-determined distance. The columns can have a top end 24 and a bottom end 26. The various construction materials can be staged prior to assembly. The materials can include upper columns, liners, overhang tails, end-fills, wind braces and nets, among other components. As shown in
In other exemplary embodiments, the stubs 17 can be formed out of any suitable material such as a polymer, concrete, wood, or composite materials. The stubs 17 can be molded to form a similar junction point wherein an interior portion 6 extends past the plane of the two exterior portions, forming an extension portion 11 that can be used to couple to a corresponding recessed portion 9 of another component such as a column 19 or on of the top members 20 as shown in
In one exemplary embodiment, a column 19 can include a corresponding recessed portion 9 to accept the extension portion 11 of a stub 17. The recessed portion 9 can be configured in a similar manner, wherein the two outer portions sandwich an inner portion between them. Like the stubs, the portions can have a first end and a second end, where in the first end of the outer portions can extend further than the first end of the inner portion as shown in
The building can also use roof top members 20 that can be configured to couple to both the stubs 17 and columns 19. The various types of top members 20 can include a side top member 21, a corner top member 23, and an end column top member 25 These members 20 are illustrated in
During construction, the roof assembly can first be staged and build upon the stubs as shown in
After column top members 20 and trusses 45 are installed, the liners and a safety net system 700 can be installed. The safety net system 700 can provide a safety system for workers constructing the building, especially the roof components of the building assembly. The safety net system 700 can include intermediate fall protection system 702, wherein a net 701 can be located in between individual trusses 45 of the roof assembly 1 as shown in
Additionally, the net system 700 can have one or more outstretched/diagonal support members 705 having a proximate end 707 and a distal end 709 as illustrated in
In some exemplary embodiments of the safety net system 700, net coupling members 719, such as saddle bracket hooks, can be used as mounting points or clips for the coupling of the net 701 to the trusses. The net coupling members 719 can be positioned in one or more predetermined locations on the trusses 45. The net 701 can be coupled to the brackets using one or more coupling means, including but not limited to a double-sided carabiner that couples the net directly to the bracket, a single-sided carabiner or a flat plate opposite side, wherein the net clips directly into the bracket and allows for easier bracket removal, or a double-sided winged plate. The double-sided winged plate allows the carabiner to remain attached to the nets and clips into a hole on the bracket wing.
As shown in
Once the safety net system has been installed, the overhang tails and purlins of the roof assembly 1 can be installed. In some exemplary embodiments, end fills and wind braces can be combined into a single manufactured component, called an end column top and installed as part of the roof assembly 1. The end column top 23 can be installed when we place the column tops on the treated stubs 17. The roof system can then be squared. After the building is squared, the bracing can be installed to the roof assembly 1. The bracing can include but is not limited to x-bracing and v-bracing. Next the barge board or top F&J board can be installed to the roof assembly 1.
The eaves, gutter, soffit, fascia and roofing can then be installed on the roof assembly 1, followed by rake trim, ridge cap and other rooftop accessories. After the roofing materials are installed on the roof assembly 1, one or more workers can then conduct an inspection and walk-through to ensure all of the components have been properly assembled and installed on the roof assembly 1. The support assembly 100 materials can then be staged. The support assembly 100 materials can include columns 19, hinges 49, and girts 51. Hinges 49 can first be installed either to the upper end of the columns 19 or to the bottom of the column top members 20. The column 19 can then be attached to the roof assembly 1 via the hinge 49. The columns 19 can all be attached to the roof assembly 1 using any suitable fasteners, such as screws, bolts, nails, or welding. After the columns 19 and hinges 49 have been attached to the roof assembly, the wall framing can then be attached to the columns 19.
The hinged column design shown in
After workers have finished the roof assembly 1 and support assembly 100 the safety net system 700 can be removed from the roof assembly. The roof assembly 1 now having the support assembly 100 completely assembled and attached can then be lifted using one or more lifting apparatuses 500. The lifting apparatus 500 can be any suitable means and can be used along with a segmented or single piece load distributing apparatus 400 positioned beneath the trusses or bottom plane of the roof assembly 1 to raise the roof assembly in its entirety. The roof assembly can be lifted by the one or more lifting apparatuses from a first position to a second position. Similarly, the lifting apparatus can move roof assembly be controlled to stop the roof assembly at any point between the first and second positions. One of ordinary skill in the art would understand that the lifting apparatus may lift the roof assembly to varying heights depending upon the application and desired building.
Additionally, as shown in
In some exemplary embodiments, a load distributing apparatus 400 can be a three-dimensional space frame as shown in
One or more lifting apparatuses 500 can be assembled for use to lift the completed roof assembly 1. A lifting apparatus 500 can initially be positioned under the cross members of the roof assembly prior to construction of the roof assembly 1 or under a portion of a load distributing apparatus 400. In one exemplary embodiment, the lifting apparatus 500 can include a hydraulic lift cylinder assembly 501 as shown in
In other embodiments, the proximate end 502 of the hydraulic cylinder 501 can be coupled to a base portion or foot 503 of the lifting apparatus 500. The base portion 503 can be configured to distribute the load of the structure over a larger area of the ground. The base 503 can have a first side 506 and a second side 508. The base 503 can either be integrated into the hydraulic cylinder or consist of cribbing. Additionally, in some exemplary embodiments, the base 503 can include one or more wheel assemblies configured to easily move the lifting apparatus into place at a site location. The wheel assemblies can be retractable and moved in and out of position to allow for the base 503 to be flat upon the ground surface when the hydraulic cylinder is in use and can be deployed when not in use to aid in moving the lifting apparatus 500 into position or removing the lifting apparatus 500.
The cylinder 501 can be coupled to the base, and in some embodiments include a pivotable connection means 505, including but not limited to, a swivel-end ball mount at the base 503 and at the connection to the lifting apparatus to allow for the building to rise evenly without binding or damaging the cylinders 501 as shown in
As shown in
To aid in bracing the roof assembly 1 during the lifting, a scissor brace 520 can be positioned in one or more locations of the roof assembly 1 and the lifting apparatus 500. In one embodiment shown in
The lifting apparatus 500 can further include a frame descender 530 that can allow for the lifting apparatus 500 to safely lower and/or guide the load distributing apparatus 400 after the support assembly 100 is positioned under the roof assembly 1. As shown in
Similarly, the frame descenders 530 can be used to raise the load distributing apparatus 400 from the ground position into contact with the roof assembly. The frame descenders 530 can be retractable or modular in nature to allow differences in building heights and designs. In one exemplary embodiment, the guide poles can be threadedly connected using threading fittings at either end of the pole to allow for additional length to be added or removed based upon the desired application.
The hydraulic cylinder can use a central or master pump 209 that can be powered by a motor, such as an electric, fuel powered generator, and/or a hydraulic fluid powered motor that can power the pump. The lifting apparatus 500 can further include amplifiers that can be configured to adjust signals to proportional valves 513 of the one or more pumps to modify and control the flow of oil to the hydraulic cylinders. The pump 509 can be mounted to a moveable cart or on a vehicle to allow for easy transportation throughout a worksite. The pump 509 can have one or more hydraulic outlets.
The lifting apparatus 500 can further include a control system 200 or controller 201 that can have a graphical user interface or display 203 as illustrated in
In some exemplary embodiments, the cylinders can be synchronized to lift the roof assembly uniformly into position, such as lifted position. One or more level sensors 211 can be used to monitor the distance above the ground plane at each corner of the roof assembly to ensure that the system is lifting the roof assembly in a uniform manner. In one exemplary embodiment, the sensors 211 can include an analog output laser to translate a distance measurement into a standard signal that is communicated to the controller 201 to determine a distance. Using a logic algorithm, the controller which of the points is the highest and lowest and makes adjustments to the output to the amplifiers to decrease the flow to the highest point and increase the flow to the lowest point when lifting and lowering the load distributing means. Additionally, the user interface 203 can provide for manual control of each individual valve, lift speed, output of each valve as well as the height for each of the sensors 211. The sensors can be communicatively coupled to the controller using any suitable means, such as NFC, Bluetooth, Wi-Fi, or electrically connected among other means.
In some exemplary embodiments, the system can us analog output lasers to translate a distance measurement into a signal to the controller. The controller 201 can then use the signals to proportional valves 213 in order to modify the flow of hydraulic fluid to the cylinders 501. The controller 201 can then use a logic processor to determine the high and low points at various sensors 211 and make adjustments according to the outputs to increase or decrease the flow to the cylinders to maintain a level raising of the roof assembly. The system can operate in one or more modes, including a manual and automatic mode. An emergency stop condition can be programed to prevent all movement in either mode. Each of the pumps 209 can be controlled individually by the controller or simultaneously by a user. The automatic mode allows the controller 201 to determine the high and low points during the lifting stage using the signals from the sensors.
This written description uses examples to disclose various embodiments including the best mode, and also to enable any person skilled in the art to make and use these embodiments. The patentable scope is defined by the claims and may extend to include other examples not explicitly listed that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they have structural elements that do not differ from the literal language of the claim, or if they include equivalent elements with insubstantial differences from the literal languages of the claims.
Various alternatives and embodiments are contemplated as being within the scope of the following claims, particularly pointing out and distinctly claiming the subject matter of the present disclosure.
This U.S. patent application claims priority to U.S. Provisional Application 62/773,814 filed Nov. 30, 2018, the disclosure of which is considered part of the disclosure of this application and is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
1418510 | Orion | Jun 1922 | A |
3017968 | McMahon | Jan 1962 | A |
3053351 | Fulcher | Sep 1962 | A |
3362126 | Herolf | Jan 1968 | A |
3828513 | Vanderklaauw | Aug 1974 | A |
3832819 | Houdin | Sep 1974 | A |
3890688 | Van Der Lely | Jun 1975 | A |
4162595 | Ramos | Jul 1979 | A |
4320607 | Eubank | Mar 1982 | A |
4467585 | Busby | Aug 1984 | A |
4607724 | Hillberg | Aug 1986 | A |
4679374 | Boehmig | Jul 1987 | A |
5259479 | St-Germain | Nov 1993 | A |
5388376 | Demeyer | Feb 1995 | A |
5417018 | Matsumoto | May 1995 | A |
5461832 | Smith | Oct 1995 | A |
5623786 | DeMeyer | Apr 1997 | A |
5794389 | Vysma | Aug 1998 | A |
6253504 | Cohen | Jul 2001 | B1 |
6357550 | Willson | Mar 2002 | B1 |
6430892 | Castano | Aug 2002 | B1 |
6763633 | Cote | Jul 2004 | B2 |
7258198 | Rexroad | Aug 2007 | B2 |
7828116 | Vetesnik | Nov 2010 | B2 |
8544238 | Larouche | Oct 2013 | B2 |
9038777 | Stearns | May 2015 | B2 |
9080326 | Johnson | Jul 2015 | B2 |
9353537 | Wensel | May 2016 | B2 |
9623270 | Palet | Apr 2017 | B2 |
9725869 | Friesen | Aug 2017 | B2 |
10352415 | Martyn | Jul 2019 | B2 |
10463895 | Palet | Nov 2019 | B2 |
10577814 | Uribeetxebarria Zubia | Mar 2020 | B2 |
10753080 | Houston | Aug 2020 | B1 |
20090169339 | Simfors | Jul 2009 | A1 |
Number | Date | Country | |
---|---|---|---|
20200190790 A1 | Jun 2020 | US |
Number | Date | Country | |
---|---|---|---|
62773814 | Nov 2018 | US |