The present invention relates to a bulging method for performing a forming process on a hollow member by introducing a fluid under pressure thereinto, and an apparatus for carrying out such a bulging method.
Bulging processes have been employed to produce hollow formed bodies which are long and whose cross-sectional shapes and dimensions perpendicular to the longitudinal direction thereof differ from position to position (see, for example, Patent Document 1). As described in Patent Documents 2, 3, bulging apparatus for performing bulging processes have a single compressing mechanism that is combined with interchangeable dies. The bulging apparatus have a plurality of dies each interchangeable with another die suitable for a shape to be formed.
A bulging process using a straight tube as a blank workpiece will specifically be described below. First, the straight tube is gripped and placed in a die. Then, a fluid under pressure (generally water under high pressure) is supplied into the straight tube.
Therefore, the straight tube has its inner circumferential wall pressed by the fluid under pressure, and is expanded diametrically outwardly. As the straight tube is placed in the die, the expanded portion of the straight tube is finally stopped by the die. Therefore, the straight tube is formed into a shape corresponding to the cavity of the die. This process is also referred to as a tube expanding process.
Then, the die is removed from the compressing mechanism, and another die is mounted in the compressing mechanism for performing a next forming process. At this time, the die used in the tube expanding process is retracted from the compressing mechanism, and the die to be used in the forming process is moved to the compressing mechanism.
The expanded straight tube is transferred to the die, and then compressed to a predetermined shape by the compressing mechanism. A final formed product is now obtained.
Patent Document 1: Japanese Laid-Open Patent Publication No. 2002-96118
Patent Document 2: Japanese Laid-Open Patent Publication No. 10-156429
Patent Document 3: Japanese Laid-Open Patent Publication No. 2001-150048
As can be understood from the foregoing, it has heretofore been customary to move dies to replace one with the other in the bulging process. However, since it takes a long time to move the heavy dies, the cycle time for producing a final formed product from a straight tube is long.
Furthermore, it is not easy to form a complexly shaped product such as a frame for an automobile body or the like only in two processes, i.e., the tube expanding process and the final forming process. It has been considered to perform a preforming process after the tube expanding process. However, using three interchangeable dies on one compressing mechanism tends to make the apparatus complicated in structure. It is not easy to install the three dies movably on the compressing mechanism. Even if the three dies are installed movably on the compressing mechanism, a wide space is required.
In order to avoid the above drawbacks, it may be proposed to prepare individually a die for performing the tube expanding process, a die for performing the preforming process, and a die for performing the finally forming process, and to deliver a workpiece to the dies with a robot. However, since the robot is needed, the apparatus is complex in structure and the investment for facilities is high.
It is a general object of the present invention to provide a bulging process which is capable of shortening a cycle time.
A major object of the present invention is to provide a bulging apparatus which is simple in structure even though it has two or more dies.
Another object of the present invention is to provide a bulging apparatus which makes it difficult for a hollow member being formed to be deformed.
According to an aspect of the present invention, a bulging method for performing a forming process on a hollow member by introducing a fluid under pressure thereinto, comprises the steps of:
gripping the hollow member at opposite ends thereof with rods, which are movable back and forth, of first holding mechanisms, with fluid pressure passages defined in the rods;
introducing a fluid under pressure into the hollow member gripped by the rods to expand the hollow member, and stopping the hollow member with a tube expanding die;
displacing the first holding mechanisms from the tube expanding die to a preforming die with displacing mechanisms to deliver the expanded hollow member to the preforming die;
preforming the hollow member with the preforming die; and
gripping the hollow member at the opposite ends thereof with rods, which are movable back and forth, of second holding mechanisms, with fluid pressure passages defined in the rods, displacing the second holding mechanisms from the preforming die to a main forming die with displacing mechanisms to deliver the preformed hollow member to the main forming die; and
forming the hollow member into a product shape with the main forming die.
According to the present invention, the hollow member (workpiece) gripped by the holding mechanisms is delivered between the dies. Stated otherwise, not the dies which are heavy, but the workpiece is delivered together with the holding mechanisms. Since the workpiece is much smaller and lighter than the dies, it can be delivered with utmost ease. Therefore, the cycle time required until a final formed product is shortened. According to the present invention, therefore, the efficiency of the bulging process is greatly increased.
As the bulging apparatus has two sets of holding mechanisms, two workpieces can simultaneously be formed. Consequently, the efficiency of the bulging process is made much higher.
Furthermore, there is no need for a mechanism for moving the dies. Therefore, the apparatus is much simpler in structure.
A set of holding mechanisms may be employed. Specifically, according to another aspect of the present invention, a bulging method for performing a forming process on a hollow member by introducing a fluid under pressure thereinto, comprises the steps of:
gripping the hollow member at opposite ends thereof with rods, which are movable back and forth, of holding mechanisms, with fluid pressure passages defined in the rods;
introducing a fluid under pressure into the hollow member gripped by the rods to expand the hollow member, and stopping the hollow member with a tube expanding die;
displacing the holding mechanisms from the tube expanding die to a main forming die with displacing mechanisms to deliver the expanded hollow member to the main forming die; and
forming the hollow member into a product shape with the main forming die.
In the above bulging method, since the workpiece gripped by the holding mechanisms is delivered between the dies, there is no need to move the dies, and the efficiency of the bulging process is greatly increased.
A preforming die may be disposed between the tube expanding die and the main forming die for preforming the workpiece.
If the workpiece is preformed, then the hollow member is mainly formed by the main forming die after the preformed hollow member is angularly moved. It is thus possible to obtain a finally finished product having a desired shape.
The fluid supplied under pressure to the hollow member should preferably a compressed gas. A compressed gas supply mechanism is smaller in size than a high-pressure liquid supply mechanism. Therefore, the investment for facilities is lower, and the installation space is smaller.
When the hollow member is preformed or mainly formed, the hollow member should preferably be supported so as to be translatable in either a vertical direction or a horizontal direction. The hollow member thus supported is prevented from being deformed, so that the final formed product can be produced with excellent dimensional accuracy.
When the hollow member is heated while being held by the rods, the hollow member clamped by a heating unit is prevented from flexing by being pressed by the heating unit.
According to still another aspect of the present invention, a bulging apparatus for performing a forming process on a hollow member by introducing a fluid under pressure thereinto, comprises:
first holding mechanisms and second holding mechanisms having rods for gripping the hollow member at opposite ends thereof, the rods being movable back and forth, with fluid pressure passages defined in the rods;
a tube expanding die for stopping the hollow member which is gripped by the rods, while the hollow member is being expanded by a fluid under pressure being introduced thereinto;
a preforming die for preforming the expanded hollow member;
a main forming die for forming the preformed hollow member into a product shape; and
displacing mechanisms for displacing the first holding mechanisms from the tube expanding die to the preforming die or from the preforming die to the tube expanding die, and displacing the second holding mechanisms from the preforming die to the main forming die or from the main forming die to the preforming die;
wherein the first holding mechanisms and the second holding mechanisms are displaced by the displacing mechanisms to deliver the hollow member gripped by the rods of the first holding mechanisms from the tube expanding die to the preforming die and to deliver the hollow member gripped by the rods of the second holding mechanisms from the preforming die to the main forming die.
As the preforming die and the two sets of holding mechanisms are provided, two workpieces can simultaneously be formed. Therefore, a final forming product can efficiently be produced. Stated otherwise, the efficiency of the bulging process is greatly increased.
According to yet another aspect of the present invention, a bulging apparatus for performing a forming process on a hollow member by introducing a fluid under pressure thereinto, comprising:
holding mechanisms having rods for gripping the hollow member at opposite ends thereof, the rods being movable back and forth, with fluid pressure passages defined in the rods;
a tube expanding die for stopping the hollow member which is gripped by the rods, while the hollow member is being expanded by a fluid under pressure being introduced thereinto;
a main forming die for forming the expanded hollow member into a product shape; and
displacing mechanisms for displacing the holding mechanisms from the tube expanding die to the main forming die or from the main forming die to the tube expanding die;
wherein the holding mechanisms are displaced by the displacing mechanisms to deliver the hollow member gripped by the rods from the tube expanding die to the main forming die.
With the above arrangement, the dies are not moved, but the hollow member is moved and formed. Therefore, the bulging apparatus is simple in structure.
A preforming die may be disposed between the tube expanding die and the main forming die, for preforming the expanded hollow member. Since the hollow member can be deformed stepwise, it can be machined more easily than it is greatly deformed once.
Either of the above bulging apparatus should preferably have turning mechanisms for angularly moving the holding mechanisms to make it easy to produce a final formed product having a desired shape.
For the reasons described above, the fluid introduced under pressure into the rods and the hollow member should preferably be a compressed gas. The bulging apparatus is thus combined with a compressed gas supply facility. It is preferable to provide a heating unit for heating the hollow member to be delivered to the tube expanding die in order to increase the deformability of the hollow tube.
When the hollow member is formed by the main forming die, the rods should preferably be translatable in at least one of vertical directions and horizontal directions, or most preferably be translatable in both vertical directions and horizontal directions. The hollow member is thus prevented from being deformed into shapes other than a predetermined shape, and can be processed into a final formed product with excellent dimensional accuracy.
Bulging methods according to preferred embodiments will be described in detail below in relation to forming apparatus for carrying out the bulging methods with reference to the accompanying drawings.
As can be understood from
Heating electrodes 24 (see
The bulging apparatus 10 has a main frame 32, and includes a lower auxiliary frame 34 and an upper auxiliary frame 36 which extend from the heating station 14 to the main forming station 20. As described later, the first and second holding mechanisms 22a, 22b are displaceable along the lower auxiliary frame 34 and the upper auxiliary frame 36.
The workpiece 12 gripped by the first holding mechanisms 22a, 22a in the heating station 14 is delivered to the tube expanding station 16, the preforming station 18, and the main forming station 20 as the first holding mechanisms 22a, 22a and the second holding mechanisms 22b, 22b which subsequently grip the workpiece 12 are displaced successively to the tube expanding die 26, the preforming die 28, and the main forming die 30.
As shown in
A servomotor 54 serving as a displacing mechanism is fixedly mounted on the side plate 46. As shown in
As shown in
The body 38 is angularly movable 90° by a body turning cylinder 104 serving as a turning mechanism. As shown in
A bracket 118 is mounted on an upper portion of the body 38 (see
The body lifting/lowering cylinder 120 is mounted on an upper end surface of the holder 40, and the rod 122 extends through a passage hole 124 defined in the upper end surface of the holder 40. Stated otherwise, the body lifting/lowering cylinder 120 is inverted and fixedly positioned on the upper end surface of the holder 40.
Each of the second holding mechanisms 22b is of an identical construction (see
The heating electrodes 24 shown in
The tube expanding station 16, the preforming station 18, and the main forming station 20, which are disposed parallel to the heating station 14, have the tube expanding die 26 for expanding the workpiece, the preforming die 28 for preforming the workpiece, and the main forming die 30 for performing the main forming process, disposed respectively therein (see
The preforming die 28 in the preforming station 18 and the main forming die 30 in the main forming station 20 are constructed essentially identically to the tube expanding die 26. Specifically, as shown in
The upper dies 132, 182, 190 are fixedly positioned on the main frame 32. The dies 130, 132, 180, 182, 188, 190 are heated to predetermined temperatures by heating means, not shown.
The bulging apparatus 10 according to the first embodiment is basically constructed as described above. Operation and advantages of the bulging apparatus 10 will be described below with respect to a bulging process for forming a straight tube of aluminum alloy. In the description which follows, the straight tube will be denoted by the reference character 12 that has been used to denote the workpiece.
As shown in
The heating electrodes 24 (see
The straight tube 12 is thermally expanded as it is heated to about 450° to 550° C. That is, the longitudinal dimension of the straight tube 12 becomes large. According to the first embodiment, the distal ends of the heating electrodes 24 are held in abutment against the straight tube 12 while the heating electrodes 24 are displaceable in the longitudinal directions of the straight tube 12. Therefore, as the straight tube 12 is longitudinally elongated by thermal expansion, the heating electrodes 24 are displaced along the longitudinal directions of the straight tube 12. Consequently, even when the straight tube 12 is thermally expanded, the regions of the straight tube 12 that are clamped by the heating electrodes 24 are prevented from buckling.
The straight tube 12 thus heated is delivered to the tube expanding station 16 (see
Then, the servomotors 54 are energized to start rotating the rotational shafts 56. The first pinions 58 which are rotated by the rotational shafts 56 roll in mesh with the first racks 60, and, as a result, the first holding mechanisms 22a start being displaced toward the tube expanding station 16. At this time, the first holding mechanisms 22a are guided by the guide rails 50, 52 mounted on the lower auxiliary frames 34 and the upper auxiliary frames 36.
When the first holding mechanisms 22a reach the tube expanding station 16, the servomotors 54 are de-energized, and the first pinions 58 stop rolling in mesh with the first racks 60 and the first holding mechanisms 22a stop being displaced. The body lifting/lowering cylinders 120 are actuated to expand the rods 122 to lower the first holding mechanisms 22a until finally the straight tube 12 is positioned between the first lower die 130 and the first upper die 132. The first lower die 130 and the first upper die 132 have been heated to a predetermined temperature by the heating means, not shown.
As the first holding mechanisms 22a are displaced to the tube expanding station 16, the second holding mechanisms 22b disposed in the tube expanding station 16 are displaced to the preforming station 18 (see
Thereafter, the first lower die cylinder 134 is actuated to lift the first lower die 130 toward the straight tube 12. The die is closed, and, as shown in
Then, compressed air is supplied through the compressed air passages in the rods 64 into the straight tube 12, developing a pressure buildup in the straight tube 12. Specifically, the straight tube 12 is pressed from inside thereof by the compressed air, forcing the portions of the straight tube 12 which are spaced from the first lower die 130 and the first upper die 132 to start expanding toward the first lower die 130 and the first upper die 132.
The expanded portions are finally stopped by the first lower die 130 and the first upper die 132. The expansion is stopped, thereby forming a first partly finished product 200 that is shaped complementarily to the cavity 196, as shown in
While the straight tube 12 is being thus expanded, since the first lower die 130 and the first upper die 132 is being heated by the heating means, the temperature of the straight tube 12 is prevented from being lowered.
If the straight tube 12 is expanded without its longitudinal dimension remaining unchanged, then the wall thickness of the straight tube 12 is reduced. In order to prevent the wall thickness of the straight tube 12 from being reduced, the rods 64 are moved forward as the straight tube 12 is expanded. Therefore, the wall thickness of the first partly finished product 200 is not reduced.
Upon elapse of a predetermined time after the die is closed, the compressed air is discharged through the compressed air passages in the rods 64. The first lower die 130 is lowered to open the die, as shown in
When the tube expanding process is finished, the first holding mechanisms 22a, 22a are retracted to release the first partly finished product 200. As shown in
The first partly finished product 200 is delivered to the preforming station 18 in the same manner as the straight tube 12 is delivered from the heating station 14 to the tube expanding station 16 (see
When the first partly finished product 200 is thus delivered, it is disposed between the second lower die 180 and the second upper die 182. Thereafter, the servomotors of the body lifting/lowering cylinders 120 are de-energized, bringing the body lifting/lowering cylinders 120 into a so-called servo-free state. When an external force is applied to the rods 122 of the body lifting/lowering cylinders 120, the rods 122 are moved back and forth by a displacement depending on the magnitude of the external force.
Then, only the second lower die cylinder 184 is actuated to elevate the second lower die 180 to press the first partly finished product 200 toward the second upper die 182.
Since the body lifting/lowering cylinders 120 are held in the servo-free state, the rods 64 of the second holding mechanisms 22b are lifted parallel to the vertical direction as indicated by the imaginary lines in
As can be seen from the foregoing, even when the first partly finished product 200 is pressed upwardly, it receives no resistance from the body lifting/lowering cylinders 120. Therefore, the first partly finished product 200 can easily be brought closely to the second upper die 182. As the second holding mechanisms 22b are vertically displaceable, the pressed first partly finished product 200 is not released from the second holding mechanisms 22b. Consequently, no compressed air leaks from between the first partly finished product 200 and the second holding mechanisms 22b.
Immediately before the second lower die 180 abuts against the first partly finished product 200, compressed air is supplied from the compressed air passages in the rods 64. The pressure under which the compressed air is supplied may be set to a level not large enough to expand the first partly finished product 200.
When the second lower die 180 abuts against the first partly finished product 200, a cavity 202 is defined as shown in
The squeezing (preforming) progresses as the second lower die 180 approaches the second upper die 182. During the squeezing, the servomotors 54 are in a servo-free state, i.e., the forces on the rotational shafts 56 of the servomotors 54 are reduced. Therefore, during the squeezing, the second holding mechanisms 22b are translatable in the direction (horizontal direction) in which the stations 14, 16, 18 are juxtaposed.
When the squeezing is finished, the compressed air is discharged, and the second lower die cylinder 184 is actuated to lower the second lower die 180. The die is opened, and since the body lifting/lowering cylinders 120 are held in the servo-free state, the second partly finished product 204 returns to its initial position.
While the preforming process is thus being performed to produce the second partly finished product 204 in the preforming station 18, the second straight tube 12 may continuously be heated in the heating station 14, as shown in
The exposed second partly finished product 204 is then delivered to the main forming station 20 in the same manner as the first partly finished product 200 is delivered from the tube expanding station 16 to the preforming station 18. Specifically, the body lifting/lowering cylinders 120 (see
During the delivery of the second partly finished product 204, the body turning cylinders 104 (see
When the delivery of the second partly finished product 204 is finished, the second partly finished product 204 is placed between the third lower die 188 and the third upper die 190. Thereafter, the body lifting/lowering cylinders 120 are brought into a servo-free state in the same manner as described above.
Then, the third lower die cylinder 192 is actuated to lift the third lower die 188 to press the second partly finished product 204 toward the third upper die 190.
At this time, since the body lifting/lowering cylinders 120 are held in the servo-free state as with the preforming process, the rods 64 of the second holding mechanisms 22b are lifted parallel to the vertical direction as indicated by the imaginary lines in
Consequently, the second partly finished product 204 can easily be brought closely to the third upper die 190. The second partly finished product 204 which is pressed by the third lower die 188 is not released from the rods 64.
Immediately before the third lower die 188 abuts against the second partly finished product 204, compressed air is supplied from the compressed air passages in the rods 64.
When the third lower die 188 abuts against the second partly finished product 204, a cavity 206 is defined as shown in
As can be understood from
In the main forming process, the second holding mechanisms 22b are horizontally movable as the second partly finished product 204 is formed if the servomotors 54 are held in a servo-free state.
When the main forming process is finished, the compressed air is discharged, and the workpiece gripping cylinders 62 are actuated. Specifically, the rods 64 are retracted in the direction indicated by the arrow X2 in
Thereafter, the third lower die cylinder 192 is actuated to lower the third lower die 188 with the final formed product 208 placed thereon.
The final formed product 208 placed on the third lower die 188 is gripped by a robot having a take-out jig. An ejector on the third lower die 188 is actuated to release the final formed product 208 from the third lower die 188. The released final formed product 208 is taken out by the robot, and then fed to a next process.
At the same time that the second partly finished product 204 is delivered to the main forming station 20 by the displacement of the second holding mechanisms 22b, the straight tube 12 is delivered to the tube expanding station 16 by the displacement of the first holding mechanisms 22a, as shown in
When the main forming process on the second partly finished product 204 is finished, as mentioned above, the second holding mechanisms 22b release the final formed product 208 (the first straight tube 12), and the first holding mechanisms 22a release the first partly finished product 200 (the second straight tube 12). As shown in
According to the present embodiment, the straight tube 12 as a workpiece is held by the first holding mechanisms 22a, 22a or the second holding mechanisms 22b, 22b, and delivered between the dies 26, 28, 30. Therefore, the dies 26, 28, 30 do not need to be moved.
According to the first embodiment, the dies 26, 28, 30 are juxtaposed. Therefore, the apparatus is not complex in structure, and the dies 26, 28, 30 do not need to be movably installed. As there is no need to move the dies 26, 28, 30 which are heavy, the cycle time is shortened.
The first embodiment is advantageous in that since the apparatus is constructed to deliver the workpiece 12 between the dies 26, 28, 30, the apparatus is structurally simpler, operates more simply, and has a shorter cycle time until the final formed product 208 is obtained, than if the workpiece 12 is delivered between the dies 26, 28, 30 by a robot.
According to the first embodiment, furthermore, two straight tubes 12, 12 can simultaneously be formed. Therefore, the cycle time is shortened.
A bulging apparatus according to a second embodiment will be described below.
The bulging apparatus 210 is constructed in accordance with the bulging apparatus 10 according to the first embodiment except that it has a set of holding mechanisms 212 which are identical in structure to the first and second holding mechanisms 22a, 22b. Various components are constructed and operate in the same manner as with the first embodiment.
In the bulging apparatus 210 according to the second embodiment, the holding mechanisms 212, 212 grip a workpiece and are displaced between the stations 14, 16, 18, 20. Specifically, a straight tube 12 is first gripped by the holding mechanisms 212, 212 in the heating station 14 and heated by the heating electrodes 24. The holding mechanisms 212 are displaced to the tube expanding station 16 in the same manner as with the first embodiment to deliver the straight tube 12 to the expanding station 16.
Then, the straight tube 12 is expanded in the tube expanding station 16, producing a first partly finished product 200. The first partly finished product 200 is delivered to the preforming station 18 when the holding mechanisms 212 are displaced to the preforming station 18.
The first partly finished product 200 is preformed in the preforming station 18, producing a second partly finished product 204. The second partly finished product 204 is delivered to the main forming station 20 when the holding mechanisms 212 are displaced to the main forming station 20. Finally, the main forming process is performed on the second partly finished product 204 in the main forming station 20, producing a final formed product 208.
As described above, the workpiece can be delivered between the dies 26, 28, 30 by only the single set of holding mechanisms 212, 212.
In the above embodiments, compressed air is introduced into the straight tube 12. The workpiece is not limited to the straight tube 12 whose cross-sectional shape is circular, but may be a hollow member whose cross-sectional shape is polygonal.
In each of the first and second embodiments, the bulging apparatus has the heating station 14, the tube expanding station 16, the preforming station 18, and the main forming station 20. However, both the bulging apparatus 10, 210 may be arranged so as to be free of the heating station 14.
In the second embodiment, the tube expanding station 16 and the main forming station 20 may make up a bulging apparatus. If necessary, the heating station 14 may be added.
At any rate, the holding mechanisms 22a, 22b, 212 may be translated in at least one of the horizontal direction and the vertical direction.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP2006/325599 | 12/22/2006 | WO | 00 | 10/15/2007 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2008/078356 | 7/3/2008 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5239852 | Roper | Aug 1993 | A |
5865054 | Roper | Feb 1999 | A |
5890387 | Roper et al. | Apr 1999 | A |
7266982 | Guza | Sep 2007 | B1 |
7269986 | Pfaffmann et al. | Sep 2007 | B2 |
7464572 | Miyanaga et al. | Dec 2008 | B2 |
Number | Date | Country |
---|---|---|
103 93 208 | Nov 2005 | DE |
0 588 528 | Mar 1994 | EP |
6-292929 | Oct 1994 | JP |
10-156429 | Jun 1998 | JP |
2001-150048 | Jun 2001 | JP |
2002-096118 | Apr 2002 | JP |
2003-290845 | Oct 2003 | JP |
2003-290850 | Oct 2003 | JP |
2004-105995 | Apr 2004 | JP |
2005-324209 | Nov 2005 | JP |
2004024359 | Mar 2004 | WO |
Number | Date | Country | |
---|---|---|---|
20080307848 A1 | Dec 2008 | US |