Transducers generally convert electrical signals to mechanical signals or vibrations, and/or mechanical signals or vibrations to electrical signals. Acoustic transducers, in particular, convert electrical signals to acoustic waves and acoustic waves to electrical signal using inverse and direct piezo-electric effects. Acoustic transducers generally include acoustic resonators, such as thin film bulk acoustic resonators (FBARs), surface acoustic wave (SAW) resonators or bulk acoustic wave (BAW) resonators, and may be used in a wide variety of electronic applications, such as cellular telephones, personal digital assistants (PDAs), electronic gaming devices, laptop computers and other portable communications devices. For example, FBARs may be used for electrical filters and voltage transformers. Generally, an acoustic resonator has a layer of piezoelectric material between two conductive plates (electrodes), which may be formed on a thin membrane. FBAR devices, in particular, generate acoustic waves that can propagate in all possible lateral directions when stimulated by an applied time-varying electric field, as well as higher order harmonic mixing products. The laterally propagating modes and the higher order harmonic mixing products may have a deleterious impact on functionality.
Filters based on FBAR technology provide a comparatively low in-band insertion loss due to the comparatively high quality factor (Q-factor) of FBAR devices. FBAR-based filters are often employed in cellular or mobile telephones that can operate in multiple frequency bands. In such devices, it is important that a filter intended to pass one particular frequency band (“passband”) should have a high level of attenuation at other nearby frequency bands which contain signals that should be rejected. Specifically, there may be one or more frequencies or frequency bands near the passband which contain signals at relatively high amplitudes that should be rejected by the filter. In such cases, it would be beneficial to be able to increase the filter's rejection characteristics at those particular frequencies or frequency bands, even if the rejection at other frequencies or frequency bands does not receive the same level of rejection.
Other types of filters are based on FBAR technology, including a stacked bulk acoustic resonator (SBAR), also referred to as a double bulk acoustic resonator (DBAR), and a coupled resonator filter (CRF). The DBAR includes two layers of piezoelectric materials between three electrodes in a single stack, forming a single resonant cavity. That is, a first layer of piezoelectric material is formed between a first (bottom) electrode and a second (middle) electrode, and a second layer of piezoelectric material is formed between the second (middle) electrode and a third (top) electrode. Generally, the DBAR device allows reduction of the area of a single bulk acoustic resonator device by about half.
A CRF comprises a coupling structure disposed between two vertically stacked FBARs. The CRF combines the acoustic action of the two FBARs and provides a bandpass filter transfer function. For a given acoustic stack, the CRF has two fundamental resonance modes, a symmetric mode and an anti-symmetric mode, of different frequencies. The degree of difference in the frequencies of the modes depends, inter alia, on the degree or strength of the coupling between the two FBARs of the CRF. When the degree of coupling between the two FBARs is too great (over-coupled), the passband is unacceptably wide, and an unacceptable “swag” or “dip” in the center of the passband results, as does an attendant unacceptably high insertion loss in the center of the passband. When the degree of coupling between the FBARs is too low (under-coupled), the passband of the CRF is too narrow.
All FBARs and filters based on FBARs have an active region. The active region of a CRF, for example, comprises the region of overlap of the top FBAR, the coupling structure, and the bottom FBAR. Generally, it is desirable to confine the acoustic energy of certain desired acoustic modes within the active region. As should be appreciated by one of ordinary skill in the art, at the boundaries of the active region, reflection of desired modes can result in mode conversion into spurious/undesired modes, and loss of acoustic energy over a desired frequency range (e.g., the passband of the CRF).
In FBAR devices, mitigation of acoustic losses at the boundaries and the resultant mode confinement in the active region of the FBAR (the region of overlap of the top electrode, the piezoelectric layer, and the bottom electrode) has been effected through various methods. Notably, frames are provided along one or more sides of the FBARs. The frames create an acoustic impedance mismatch that reduces losses by reflecting desired modes back to the active area of the resonator, thus improving the confinement of desired modes within the active region of the FBAR.
While the incorporation of frames has resulted in improved mode confinement and attendant improvement in the Q-factor of the FBAR, direct application of known frame elements has not resulted in significant improvement in mode confinement and Q-factor of conventional DBARs and CRFs. Better acoustic energy confinement, as well as further improvements in FBAR Q-factor due to the better acoustic energy confinement, are needed for increased efficiency of FBARs, DBARs and CRFs.
The illustrative embodiments are best understood from the following detailed description when read with the accompanying drawing figures. It is emphasized that the various features are not necessarily drawn to scale. In fact, the dimensions may be arbitrarily increased or decreased for clarity of discussion. Wherever applicable and practical, like reference numerals refer to like elements.
It is to be understood that the terminology used herein is for purposes of describing particular embodiments only, and is not intended to be limiting. The defined terms are in addition to the technical and scientific meanings of the defined terms as commonly understood and accepted in the technical field of the present teachings.
As used in the specification and appended claims, the terms “a”, “an” and “the” include both singular and plural referents, unless the context clearly dictates otherwise. Thus, for example, “a device” includes one device and plural devices.
As used in the specification and appended claims, and in addition to their ordinary meanings, the terms “substantial” or “substantially” mean to within acceptable limits or degree. For example, “substantially cancelled” means that one skilled in the art would consider the cancellation to be acceptable.
As used in the specification and the appended claims and in addition to its ordinary meaning, the term “approximately” means to within an acceptable limit or amount to one having ordinary skill in the art. For example, “approximately the same” means that one of ordinary skill in the art would consider the items being compared to be the same.
In the following detailed description, for purposes of explanation and not limitation, specific details are set forth in order to provide a thorough understanding of illustrative embodiments according to the present teachings. However, it will be apparent to one having ordinary skill in the art having had the benefit of the present disclosure that other embodiments according to the present teachings that depart from the specific details disclosed herein remain within the scope of the appended claims. Moreover, descriptions of well-known apparatuses and methods may be omitted so as to not obscure the description of the illustrative embodiments. Such methods and apparatuses are clearly within the scope of the present teachings.
Generally, it is understood that the drawings and the various elements depicted therein are not drawn to scale. Further, relative terms, such as “above,” “below,” “top,” “bottom,” “upper” and “lower” are used to describe the various elements relationships to one another, as illustrated in the accompanying drawings. It is understood that these relative terms are intended to encompass different orientations of the device and/or elements in addition to the orientation depicted in the drawings. For example, if the device were inverted with respect to the view in the drawings, an element described as “above” another element, for example, would now be below that element.
The present teachings relate generally to BAW resonator structures comprising FBARs. In certain applications, the BAW resonator structures provide FBAR-based filters (e.g., ladder filters). Certain details of FBARs and/or BAW resonators and resonator filters, materials thereof and their methods of fabrication may be found in one or more of the following commonly owned U.S. Patents and Patent Applications: U.S. Pat. No. 6,107,721 to Lakin; U.S. Pat. Nos. 5,587,620, 5,873,153, 6,507,983, 6,384,697, 7,275,292 and 7,629,865 to Ruby et al.; U.S. Pat. No. 7,280,007 to Feng, et al.; U.S. Patent App. Pub. No. 2007/0205850 to Jamneala et al.; U.S. Pat. No. 7,388,454 to Ruby et al.; U.S. Patent App. Pub. No. 2010/0327697 to Choy et al.; and U.S. Patent App. Pub. No. 2010/0327994 to Choy et al. The disclosures of these patents and patent applications are hereby incorporated by reference. It is emphasized that the components, materials and method of fabrication described in these patents and patent applications are representative and other methods of fabrication and materials within the purview of one of ordinary skill in the art are contemplated.
Embodiments Comprising FBARs
A first (bottom) electrode 107 is disposed over the substrate 105 and partially over the cavity 106 (or Bragg mirror). A planarization layer 107′ is also provided over the substrate as shown. In a representative embodiment, the planarization layer 107′ includes non-etchable borosilicate glass (NEBSG), for example. In general, planarization layer 107′ does not need to be present in the structure (as it increases overall processing cost), but when present, it may improve quality of growth of subsequent layers and simplify their processing. A piezoelectric layer 108 is disposed over the first electrode 107, and the second (top) electrode 101 is disposed over the piezoelectric layer 108. As should be appreciated by one of ordinary skill in the art, the structure provided by the first electrode 107, the piezoelectric layer 108 and the second electrode 101 is a bulk acoustic wave (BAW) resonator. When the BAW resonator is disposed over a cavity, it is a so-called FBAR (e.g., FBAR 100); and when the BAW resonator is disposed over an acoustic reflector (e.g., Bragg mirror), it is a so-called solidly mounted resonator (SMR). The present teachings contemplate the use of either FBARs or SMRs in a variety of applications, including filters (e.g., ladder filters comprising a plurality of BAW resonators).
In the depicted embodiment, a bridge 104 is buried within the piezoelectric layer 108, meaning that the bridge 104 is surrounded by the piezoelectric material of the piezoelectric layer 108. The bridge 104 is disposed along all sides of the FBAR 100 (i.e., along a perimeter of the FBAR 100). For example, in representative embodiments, the bridge 104 (and other bridges described in connection with representative embodiments below) has a trapezoidal cross-sectional shape. It is emphasized that the trapezoidal cross-sectional shape of the bridge of the representative embodiments is merely illustrative and the bridges are not limited to a trapezoidal cross-sectional shape. For example, the cross-sectional shape of the bridges of the representative embodiments could be square or rectangular, or of an irregular shape. The “slanting” walls of bridge 104 (and other bridges described in connection with representative embodiments below) are beneficial to the quality of layers (e.g., the quality of the crystalline piezoelectric layer(s)) grown over the bridge 104 (and other bridges described in connection with representative embodiments below). Typical dimensions of the bridge 104 (and other bridges described in connection with representative embodiments below) are approximately 2.0 μm to approximately 10.0 μm in width (x-dimension in the coordinate system shown in
In certain embodiments, the bridge 104 (and other bridges described in connection with representative embodiments below) extends over the cavity 106 (depicted as overlap 113 in
In addition, the width and position of the bridge 104 (and other bridges described in connection with representative embodiments) and the amount of the overlap 113 with the cavity 106 are selected to improve Q-factor enhancement of the resonant piston mode. In general, the greater the overlap 113 of the bridge 104 with the cavity 106 of the FBAR 100, the greater the improvement in the Q-factor, with the improvement realized being fairly small after an initial increase. The improvement in the Q-factor must be weighed against a decrease in the electromechanical effective coupling coefficient kt2, which decreases with increasing overlap 113 of the bridge 104 with the cavity 106. Degradation of the coupling coefficient kt2 results in a degradation of insertion loss (S21) of a filter comprising FBARs. As such, the overlap 113 of the bridge 104 with the cavity 106 may be optimized experimentally.
The bridge 104 (and other bridges described in connection with representative embodiments below) has a height (y-dimension in the coordinate system of
Illustratively, the first electrode 107 and second electrode 101 are formed of tungsten (W) having a thickness of approximately 1000 Å to approximately 20000 Å. Other materials may be used for the first electrode 107 and the second electrode 101, including but not limited to molybdenum (Mo), iridium (Ir), copper (Cu), aluminum (Al) or a bi-metal material. Illustratively, the piezoelectric layer 108 is formed of aluminum nitride (AlN) having a thickness of approximately 5000 Å to approximately 25000 Å. Other materials may be used for the piezoelectric layer 108, including but not limited to zinc oxide (ZnO).
In order to form the bridge 104, growth of the piezoelectric layer 108 on the first electrode 107 is interrupted. In the depicted embodiment, the growth of the piezoelectric layer 108 was interrupted at about half way through the anticipated thickness, resulting in formation the bridge 104 in approximately the middle of the completed piezoelectric layer 108. This location places the bridge 104 at about the point of maximum stress of the piezoelectric layer 108, maximizing the energy decoupling effect of the bridge 104. However, the bridge 104 may be formed in different relative locations within the piezoelectric layer 108 without departing from the scope of the present teachings. Once the growth of the piezoelectric layer 108 is interrupted, the bridge 104 may be formed by patterning a sacrificial material over the grown portion of the piezoelectric layer 108, and then continuing growth of the remaining portion of the piezoelectric layer 108 thereover. After the other layers of the FBAR 100 are formed as desired (e.g., the second electrode 101), the sacrificial material is released leaving the bridge 104 “unfilled” (i.e., containing or filled with air). In a representative embodiment, the sacrificial material used to form the bridge 104 is the same as the sacrificial material used to form the cavity 106, such as phosphosilicate glass (PSG), for example.
In a representative embodiment, the bridge 104 defines a perimeter along the active region 114 of the FBAR 100. The active region 114 thus includes the portions of the acoustic resonator disposed over the cavity 106 and bounded by the perimeter provided by the bridge 104. As should be appreciated by one of ordinary skill in the art, the active region of the FBAR 100 is bordered around its perimeter by an acoustic impedance discontinuity created at least in part by the bridge 104, and above and below (cavity 106) by an acoustic impedance discontinuity due to the presence of air. Thus, a resonant cavity is beneficially provided in the active region of the FBAR 100. In the depicted embodiment, the bridge 104 is unfilled (i.e., contains air), as is the cavity 106. In other embodiments, the bridge 104 is “filled” (i.e., contains a dielectric or metal material having an acoustic impedance to provide the desired acoustic impedance discontinuity) to provide bridge 104′, described more fully below with reference to
The acoustic impedance mismatch provided by the bridge 104 causes reflection of acoustic waves at the boundary that may otherwise propagate out of the active region and be lost, resulting in energy loss. The bridge 104 serves to confine the modes of interest within the active region 114 of the FBAR 100 and to reduce energy losses in the FBAR 100. Reducing such losses serves to increase the Q-factor of the FBAR 100. In filter applications of the FBAR 100, as a result of the reduced energy loss, the insertion loss (S21) is beneficially improved.
In an illustrative configuration, it may be assumed for purpose of explanation that the bridge 104 has a width (x-dimension) of approximately 5.0 μm, a height of approximately 1500 Å, and an overlap 113 of approximately 2.0 μm, that the piezoelectric layer 108 has a thickness (y-dimension) of approximately 10000 Å, and that the bottom of the bridge 104 is approximately 5000 Å above the bottom of the piezoelectric layer 108, such that the bridge 104 is in about the middle of the piezoelectric layer 108. Placement of the bridge 104 in about the middle of the piezoelectric layer 108 increases parallel resistance Rp of the FBAR 100 from about 1.1 kΩ to about 3.5 kΩ, which is an increase of over 300 percent, e.g., at a frequency of operation of about 1.88 GHz. Since the bridge 104 is generally placed in a region of maximum stress, the impact of two competing phenomena is maximized: scattering at the leading edge of the bridge 104 (which generally leads to decrease of Q-factor) and decoupling of FBAR modes from the field region modes due to zeroing of normal stress at the upper and lower boundaries of the bridge 104 (which in general leads to increase of Q-factor). A third effect (also generally leading to decrease of Q-factor) is related to poorer quality of piezoelectric material in the region grown immediately above the stop-growth plane. These three factors are weighed appropriately when determining placement of the bridge 104 within the piezoelectric layer 108, and such optimization may be done experimentally, for example.
As mentioned above, in the representative embodiment shown and described in connection with
In certain embodiments, bridge 104′ is filled with NEBSG, carbon doped oxide (CDO), silicon carbide (SiC) or other suitable dielectric material that will not release when the sacrificial material disposed in the cavity 106 is released. In other embodiments, bridge 104′ is filled with one of tungsten (W), molybdenum (Mo), copper (Cu), iridium (Ir) or other suitable metal materials that will not release when the sacrificial material disposed in the cavity 106 is released. The bridge 104′ is fabricated by interrupting growth of the piezoelectric layer 108 on the first electrode 107, for example, when the piezoelectric layer 108 is about half its desired thickness, resulting in formation the bridge 104′ in approximately the middle of the completed piezoelectric layer 108. Once the growth of the piezoelectric layer 108 is interrupted, the NEBSG or other fill material is formed by a known method. The FBAR 100 is completed by continuing the growth of the remaining portion of the piezoelectric layer 108, and forming the second electrode 101 of the FBAR 100 thereover. When the cavity 106 is formed through the release of the sacrificial, the bridge 104′ remains filled with the selected, non-etchable material.
Forming bridges within piezoelectric layer(s) may be implemented in other types of acoustic resonators, including DBARs and CRFs, resulting in similar improvements in parallel resistance Rp, Q-factors, and the like. For example,
Embodiments Comprising DBARs
Referring to
The first electrode 107 is disposed over the substrate 105 and partially over the cavity 106 (or Bragg mirror). A planarization layer 107′ is provided over the substrate as shown. In a representative embodiment, the planarization layer 107′ comprises NEBSG. The first piezoelectric layer 108 is disposed over the first electrode 107, and a first bridge 201 is included within the first piezoelectric layer 108, meaning that the first bridge 201 is surrounded by the piezoelectric material of the first piezoelectric layer 108, as discussed above with reference to bridge 104. The first bridge 201 is disposed along all sides (i.e., along the perimeter) of the DBAR 200. The second electrode 111 and a planarization layer 109 are disposed over the first piezoelectric layer 108, where the planarization layer 109 generally does not overlap the cavity 106. In a representative embodiment, the planarization layer 109 comprises NEBSG. As should be appreciated by one of ordinary skill in the art, the structure provided by the first electrode 107, the first piezoelectric layer 108 and a second electrode 111 is a BAW resonator, which in this illustrative embodiment comprises a first BAW resonator of the DBAR 200. When the BAW resonator is disposed over a cavity, it is a so-called FBAR; and when the BAW resonator is disposed over an acoustic reflector (e.g., Bragg mirror) it is a so-called SMR.
The second piezoelectric layer 112 is provided over the second electrode 111 and the planarization layer 109, and a second bridge 202 is included within the second piezoelectric layer 112, meaning that the second bridge 202 is surrounded by the piezoelectric material of the second piezoelectric layer 112, as discussed above with reference to bridge 104. The third electrode 101 is provided over the second piezoelectric layer 112. The second bridge 202 is disposed along all sides (i.e., along the perimeter) of the DBAR 200. As should be appreciated by one of ordinary skill in the art, the structure provided by the second electrode 111, the second piezoelectric layer 112 and the third electrode 101 is a BAW resonator, which in this illustrative embodiment comprises a second BAW resonator of the DBAR 200. As mentioned above, when the BAW resonator is disposed over a cavity, it is a so-called FBAR; and when the BAW resonator is disposed over an acoustic reflector (e.g., Bragg mirror), it is a so-called SMR. The present teachings contemplate the use of either FBARs or SMRs to form DBARs. The DBARs are contemplated for a variety of uses, including filters (e.g., ladder filters comprising a plurality of BAW resonators).
Illustratively, the first electrode 107, the second electrode 111 and the third electrode 101 are formed of W having a thickness of approximately 1000 Å to approximately 20000 Å. Other materials may be used for the first electrode 107, the second electrode 111 and the third electrode 101, including but not limited to Mo or a bi-metal material. Illustratively, the first piezoelectric layer 108 and the second piezoelectric layer 112 are AlN having a thickness of approximately 5000 Å to approximately 15000 Å. Other materials may be used for the first piezoelectric layer 108 and the second piezoelectric layer 112, including but not limited to ZnO.
In representative embodiments, the configuration of the first and second bridges 201, 202 may be substantially the same as the bridge 104 discussed above with reference to
Further, in certain embodiments, the first and second bridges 201, 202 extend over the cavity 106 by overlap 113. The overlap 113 (also referred to as the decoupling region) has a width (x-dimension) of approximately 0.0 μm (i.e., no overlap with the cavity 106) to approximately 10.0 μm. Notably, the first bridge 201 and the second bridge 202 do not need to be the same dimensions or located at the same relative position. For example, the overlap 113 of the first and second bridges 201, 202 with cavity 106 is shown in
Generally, the same considerations apply when designing bridges 201 and 202 for DBAR 200 as described for bridge 104 for FBAR 100 in connection with
In addition, the width and position of the first and second bridges 201, 202 and overlap 113 with the cavity 106 are selected to improve Q-enhancement of the odd resonant mode. In general, the greater the overlap 113 of each of the first and second bridges 201, 202 with the cavity 106 of the DBAR 200, the greater the improvement of Q-factor with the improvement realized being fairly small after an initial increase. The improvement in Q-factor must be weighed against a decrease in the electromechanical effective coupling coefficient kt2, which decreases with increasing the overlap 113 of the first and second bridges 201, 202 with the cavity 106. Degradation of the coupling coefficient kt2 results in a degradation of insertion loss (S21) of a filter comprising DBARs. As such, the overlap 113 of the first and second bridges 201, 202 with the cavity 106 may be optimized experimentally.
In order to form the first bridge 201, growth of the first piezoelectric layer 108 on the first electrode 107 is interrupted. Likewise, in order to form the second bridge 202, growth of the second piezoelectric layer 112 on the second electrode 111 is interrupted. In the depicted embodiment, the growth of the first and second piezoelectric layers 108, 112 were interrupted at about half way through the anticipated thickness, resulting in formation the first and second bridges 201, 202 in approximately the middle of the completed first and second piezoelectric layers 108, 112, respectively, as discussed above. However, the first and second bridges 201, 202 may be formed in different relative locations within the first and second piezoelectric layers 108, 112, without departing from the scope of the present teachings. Once the growth of the first piezoelectric layer 108 is interrupted, the first bridge 201 may be formed by patterning a sacrificial material over the grown portion of the first piezoelectric layer 108, and then continuing growth of the remaining portion of the first piezoelectric layer 108 thereover. Likewise, after formation of the second electrode 111, the growth of the second piezoelectric layer 112 is interrupted, and the second bridge 202 may be formed by patterning a sacrificial material over the grown portion of the second piezoelectric layer 112. Growth of the remaining portion of the second piezoelectric layer 112 is then continued thereover. After the other layers of the DBAR 200 are formed as desired (e.g., the third electrode 101), the sacrificial material is released leaving the first and second bridges 201, 202 “unfilled.” In a representative embodiment, the sacrificial material used to form the first and second bridges 201, 202 is the same as the sacrificial material used to form the cavity 106, such as PSG, for example.
In a representative embodiment, the first bridge 201 and the second bridge 202 define a perimeter along the active region 114 of the DBAR 200. The active region 114 thus includes the portions of the first BAW resonator and the second BAW resonator disposed over the cavity 106 and bounded by the perimeter provided by the first bridge 201 and the second bridge 202. As should be appreciated by one of ordinary skill in the art, the active region of the DBAR 200 is bordered around its perimeter by an acoustic impedance discontinuity created at least in part by the first and second bridges 201, 202, and above and below (cavity 106) by an acoustic impedance discontinuity due to the presence of air. Thus, a resonant cavity is beneficially provided in the active region of the DBAR 200. In certain embodiments, the first bridge 201 and the second bridge 202 are unfilled (i.e., contain air), as is the cavity 106. In other embodiments described more fully below, the first bridge 201, or the second bridge 202, or both, are filled with a material to provide the desired acoustic impedance discontinuity.
It is noted that the first bridge 201, or the second bridge 202, or both, do not necessarily have to extend along all edges of the DBAR 200, and therefore not along the perimeter of the DBAR 200. For example, the first bridge 201 or the second bridge 202, or both, may be provided on four “sides” of a five-sided DBAR 200 (similar to the five-sided FBAR 100 shown in
The acoustic impedance mismatch provided by the first bridge 201 and the second bridge 202 causes reflection of acoustic waves at the boundary that may otherwise propagate out of the active region and be lost, resulting in energy loss. The first bridge 201 and the second bridge 202 serve to confine the modes of interest within the active region 114 of the DBAR 200 and reduce energy losses in the DBAR 200. Reducing such losses serves to increase the Q-factor of the modes of interest in the DBAR 200. In filter applications of the DBAR 200, as a result of the reduced energy loss, the insertion loss (S21) is beneficially improved.
In the representative embodiment shown and described in connection with
In the embodiments described presently, a single bridge is provided in an illustrative DBAR. The single bridge is provided within a single piezoelectric layer in each embodiment, and forms a perimeter that encloses the active region of the DBAR. By placing the bridge within different piezoelectric layers, the various embodiments can be studied to test the degree of coupling of modes in the active region (DBAR region) and the modes in the field region. Generally, the bridge decouples modes with a comparatively large propagation constant (kr) from the modes in the field region. As described below, certain embodiments comprise an “unfilled” bridge and certain embodiments comprise a “filled” bridge. Many details of the present embodiments are common to those described above in connection with the representative embodiments of
Embodiments Comprising CRFs
Referring to
The first electrode 107 is disposed over the substrate 105 and partially over the cavity 106 (or Bragg mirror). A planarization layer 107′ is provided over the substrate as shown. In a representative embodiment, the planarization layer 107′ comprises NEBSG. The first piezoelectric layer 108 is disposed over the first electrode 107, and a first bridge 501 is included within the first piezoelectric layer 108, meaning that the first bridge 501 is surrounded by the piezoelectric material of the first piezoelectric layer 108, as discussed above with reference to bridge 104. The first bridge 501 is disposed along all sides (i.e., along the perimeter) of the CRF 500. The second electrode 111 and a planarization layer 109 are disposed over the first piezoelectric layer 108, where the planarization layer 109 generally does not overlap the cavity 106. In a representative embodiment, the planarization layer 109 comprises NEBSG. As should be appreciated by one of ordinary skill in the art, the structure provided by the first electrode 107, the first piezoelectric layer 108 and a second electrode 111 is a BAW resonator, which in this illustrative embodiment comprises a first BAW resonator of the CRF 500. When the BAW resonator is disposed over a cavity, it is a so-called FBAR; and when the BAW resonator is disposed over an acoustic reflector (e.g., Bragg mirror) it is a so-called SMR.
The acoustic coupling layer 116 (“coupling layer 116”) is provided over the second electrode 111. In a representative embodiment, the coupling layer 116 may comprise carbon doped oxide (CDO) or NEBSG, such as described in commonly owned U.S. patent application Ser. No. 12/710,640, entitled “Bulk Acoustic Resonator Structures Comprising a Single Material Acoustic Coupling Layer Comprising Inhomogeneous Acoustic Property” to Elbrecht et al., filed on Feb. 23, 2010. The disclosure of this patent application is hereby incorporated by reference. Notably, CDO is a general class of comparatively low dielectric constant (low-k) dielectric materials, including carbon-doped silicon oxide (SiOCH) films, for example, of which the coupling layer 116 may be formed. Alternatively, the coupling layer 116 may comprise other dielectric materials with suitable acoustic impedance and acoustic attenuation, including, but not limited to porous silicon oxynitride (SiON), porous boron doped silicate glass (BSG), or porous phosphosilicate glass (PSG). Generally, the material used for the coupling layer 116 is selected to provide comparatively low acoustic impedance and loss in order to provide desired pass-band characteristics.
The third electrode 117 is provided over the coupling layer 116, and the second piezoelectric layer 112 is provided over the third electrode 117 and the planarization layer 109. A second bridge 502 is included within the second piezoelectric layer 112, meaning that the second bridge 502 is surrounded by the piezoelectric material of the second piezoelectric layer 112, as discussed above with reference to bridge 104. The fourth electrode 101 is provided over the second piezoelectric layer 112. The second bridge 502 is disposed along all sides (i.e., along the perimeter) of the CRF 500. As should be appreciated by one of ordinary skill in the art, the structure provided by the third electrode 117, the second piezoelectric layer 112 and the fourth electrode 101 is a BAW resonator, which in this illustrative embodiment comprises a second BAW resonator of the CRF 500. As mentioned above, when the BAW resonator is disposed over a cavity, it is a so-called FBAR; and when the BAW resonator is disposed over an acoustic reflector (e.g., Bragg mirror), it is a so-called SMR. The present teachings contemplate the use of either FBARs or SMRs to form CRFs. The CRFs are contemplated for a variety of uses, including filters.
Illustratively, the first electrode 107 and the fourth electrode 101 are formed of Mo having a thickness of approximately 1000 Å to approximately 20000 Å, and the second electrode 111 and the third electrode 117 are formed of W having a thickness of approximately 1000 Å to approximately 20000 Å. Other materials may be used for the first electrode 107, the second electrode 111, the third electrode 117 and the fourth electrode 101. Illustratively, the first piezoelectric layer 108 and the second piezoelectric layer 112 are formed of AlN having a thickness of approximately 5000 Å to approximately 15000 Å. Other materials may be used for the first piezoelectric layer 108 and the second piezoelectric layer 112, including but not limited to ZnO.
In representative embodiments, the configuration of the first and second bridges 501, 502 may be substantially the same as the bridge 104 discussed above with reference to
Further, in certain embodiments, the first and second bridges 501, 502 extend over the cavity 106 by overlap 113. The overlap 113 (also referred to as the decoupling region) has a width (x-dimension) of approximately 0.0 μm (i.e., no overlap with the cavity 106) to approximately 10.0 μm. Notably, the first bridge 501 and the second bridge 502 do not need to be the same dimensions or located at the same relative position. For example, the overlap 113 of the first and second bridges 501, 502 with cavity 106 is shown in
Generally, the same considerations apply when designing bridges 501 and 502 for CRF 500 as described for bridge 104 for FBAR 100 in connection with
In addition, the width and position of the first and second bridges 501, 502 and overlap 113 with the cavity 106 are selected to improve Q-enhancement of resonant mode. In general, the greater the overlap 113 of each of the first and second bridges 501, 502 with the cavity 106 of the CRF 500, the greater the improvement in odd-mode Q-factor)(Qo) and even mode Q-factor (Qe) with the improvement realized being fairly small after an initial increase. The improvement in Qo and Qe must be weighed against a decrease in the electromechanical effective coupling coefficient kt2, which decreases with increasing overlap 113 of the first and second bridges 501, 502 with the cavity 106. Degradation of the coupling coefficient kt2 results in a degradation of insertion loss (S21). As such, the overlap 113 of the first and second bridges 501, 502 with the cavity 106 may be optimized experimentally.
In order to form the first bridge 501, growth of the first piezoelectric layer 108 on the first electrode 107 is interrupted. Likewise, in order to form the second bridge 502, growth of the second piezoelectric layer 112 on the third electrode 117 is interrupted. In the depicted embodiment, the growth of the first and second piezoelectric layers 108, 112 were interrupted at about half way through the anticipated thickness, resulting in formation the first and second bridges 501, 502 in approximately the middle of the completed first and second piezoelectric layers 108, 112, respectively, as discussed above. However, the first and second bridges 501, 502 may be formed in different relative locations within the first and second piezoelectric layers 108, 112, without departing from the scope of the present teachings. Once the growth of the first piezoelectric layer 108 is interrupted, the first bridge 501 may be formed by patterning a sacrificial material over the grown portion of the first piezoelectric layer 108, and then continuing growth of the remaining portion of the first piezoelectric layer 108 thereover. Likewise, after formation of the third electrode 117 (on the coupling layer 116), the growth of the second piezoelectric layer 112 is interrupted, and the second bridge 502 may be formed by patterning a sacrificial material over the grown portion of the second piezoelectric layer 112. Growth of the remaining portion of the second piezoelectric layer 112 is then continued thereover. After the other layers of the CRF 500 are formed as desired (e.g., the fourth electrode 101), the sacrificial material is released leaving the first and second bridges 501, 502 “unfilled.” In a representative embodiment, the sacrificial material used to form the first and second bridges 501, 502 is the same as the sacrificial material used to form the cavity 106, such as PSG, for example.
In a representative embodiment, the first bridge 501 and the second bridge 502 define a perimeter along the active region 114 of the CRF 500. The active region 114 thus includes the portions of the first BAW resonator and the second BAW resonator disposed over the cavity 106 and bounded by the perimeter provided by the first bridge 501 and the second bridge 502. As should be appreciated by one of ordinary skill in the art, the active region of the CRF 500 is bordered around its perimeter by an acoustic impedance discontinuity created at least in part by the first and second bridges 501, 502, and above and below (cavity 106) by an acoustic impedance discontinuity due to the presence of air. Thus, a resonant cavity is beneficially provided in the active region of the CRF 500. In certain embodiments, the first bridge 501 and the second bridge 502 are unfilled (i.e., contain air), as is the cavity 106. In other embodiments described more fully below, the first bridge 501, or the second bridge 502, or both, are filled with a material to provide the desired acoustic impedance discontinuity.
It is noted that the first bridge 501, or the second bridge 502, or both, do not necessarily have to extend along all edges of the CRF 500, and therefore not along the perimeter of the DBAR 500. For example, the first bridge 501 or the second bridge 502, or both, may be provided on four “sides” of a five-sided CRF 500 (similar to the five-sided FBAR 100 shown in
The acoustic impedance mismatch provided by the first bridge 501 and the second bridge 502 causes reflection of acoustic waves at the boundary that may otherwise propagate out of the active region and be lost, resulting in energy loss. The first bridge 501 and the second bridge 502 serve to confine the modes of interest within the active region of the CRF 500 and reduce energy losses in the CRF 500. Reducing such losses serves to increase the Q-factor of the modes (Qo and Qe) of interest in the CRF 500, and to improve insertion loss (S21) over the passband of the CRF 500.
In the representative embodiment shown and described in connection with
In the embodiments described presently, a single bridge is provided in an illustrative CRF. The single bridge is provided within a single piezoelectric layer in each embodiment, and is disposed about a perimeter that encloses the active region of the CRF. By placing the bridge within different piezoelectric layers, the various embodiments can be studied to test the degree of coupling of modes in the active (CRF) region and the modes in the field plate region. Generally, the bridge decouples modes with a comparatively large propagation constant (kr) from the modes in the field plate region. As described below, certain embodiments comprise an “unfilled” bridge and certain embodiments comprise a “filled” bridge. Many details of the present embodiments are common to those described above in connection with the representative embodiments of
Notably, each of the FBARs 100, DBARs 200-400 and CRFs 500-700 may include various additional features without departing from the scope of the present teachings. For example, an inner raised region and/or an outer raised region may be included on a top surface of the top electrode (e.g., second electrode 101 in
In accordance with illustrative embodiments, BAW resonator structures comprising bridges and their methods of fabrication are described. One of ordinary skill in the art would appreciate that many variations that are in accordance with the present teachings are possible and remain within the scope of the appended claims. These and other variations would become clear to one of ordinary skill in the art after inspection of the specification, drawings and claims herein. The invention therefore is not to be restricted except within the spirit and scope of the appended claims.
This application is a continuation-in-part application of commonly owned U.S. patent application Ser. No. 13/151,631 to Dariusz Burak et al., entitled “Film Bulk Acoustic Resonator Comprising a Bridge,” filed on Jun. 2, 2011, which is a continuation-in-part application of commonly owned U.S. patent application Ser. No. 13/074,262 to Dariusz Burak et al., entitled “Stacked Acoustic Resonator Comprising a Bridge,” filed on Mar. 29, 2011, which is a continuation-in-part of commonly owned U.S. patent application Ser. No. 13/036,489 to Dariusz Burak, entitled “Coupled Resonator Filter Comprising Bridge” filed on Feb. 28, 2011. The present application claims priority under 35 U.S.C. §120 to U.S. patent application Ser. Nos. 13/151,631, 13/074,262 and 13/036,489, the disclosures of which are hereby incorporated by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
3174122 | Fowler et al. | Mar 1965 | A |
3189851 | Fowler | Jun 1965 | A |
3321648 | Kolm | May 1967 | A |
3422371 | Poirier et al. | Jan 1969 | A |
3568108 | Poirier et al. | Mar 1971 | A |
3582839 | Pim et al. | Jun 1971 | A |
3590287 | Berlincourt et al. | Jun 1971 | A |
3610969 | Clawson et al. | Oct 1971 | A |
3826931 | Hammond | Jul 1974 | A |
3845402 | Nupp | Oct 1974 | A |
4084217 | Brandli et al. | Apr 1978 | A |
4172277 | Pinson | Oct 1979 | A |
4272742 | Lewis | Jun 1981 | A |
4281299 | Newbold | Jul 1981 | A |
4320365 | Black et al. | Mar 1982 | A |
4344004 | Okubo | Aug 1982 | A |
4355408 | Scarrott | Oct 1982 | A |
4456850 | Inoue et al. | Jun 1984 | A |
4529904 | Hattersley | Jul 1985 | A |
4608541 | Moriwaki et al. | Aug 1986 | A |
4625138 | Ballato | Nov 1986 | A |
4640756 | Wang et al. | Feb 1987 | A |
4719383 | Wang et al. | Jan 1988 | A |
4769272 | Byrne et al. | Sep 1988 | A |
4798990 | Henoch | Jan 1989 | A |
4819215 | Yokoyama et al. | Apr 1989 | A |
4836882 | Ballato | Jun 1989 | A |
4841429 | McClanahan et al. | Jun 1989 | A |
4906840 | Zdeblick et al. | Mar 1990 | A |
4975892 | Defranould et al. | Dec 1990 | A |
5048036 | Scifres et al. | Sep 1991 | A |
5048038 | Brennan et al. | Sep 1991 | A |
5066925 | Freitag | Nov 1991 | A |
5075641 | Weber et al. | Dec 1991 | A |
5111157 | Komiak | May 1992 | A |
5118982 | Inoue et al. | Jun 1992 | A |
5129132 | Zdeblick et al. | Jul 1992 | A |
5162691 | Mariani et al. | Nov 1992 | A |
5166646 | Avanic et al. | Nov 1992 | A |
5185589 | Krishnaswamy et al. | Feb 1993 | A |
5214392 | Kobayashi et al. | May 1993 | A |
5233259 | Krishnaswamy et al. | Aug 1993 | A |
5241209 | Sasaki | Aug 1993 | A |
5241456 | Marcinkiewicz et al. | Aug 1993 | A |
5262347 | Sands | Nov 1993 | A |
5270492 | Fukui | Dec 1993 | A |
5294898 | Dworsky et al. | Mar 1994 | A |
5361077 | Weber | Nov 1994 | A |
5382930 | Stokes et al. | Jan 1995 | A |
5384808 | Van Brunt et al. | Jan 1995 | A |
5448014 | Kong et al. | Sep 1995 | A |
5465725 | Seyed-Bolorforosh | Nov 1995 | A |
5475351 | Uematsu et al. | Dec 1995 | A |
5548189 | Williams | Aug 1996 | A |
5567334 | Baker et al. | Oct 1996 | A |
5587620 | Ruby et al. | Dec 1996 | A |
5589858 | Kadowaki et al. | Dec 1996 | A |
5594705 | Connor et al. | Jan 1997 | A |
5603324 | Oppelt et al. | Feb 1997 | A |
5633574 | Sage | May 1997 | A |
5671242 | Takiguchi et al. | Sep 1997 | A |
5692279 | Mang et al. | Dec 1997 | A |
5704037 | Chen | Dec 1997 | A |
5705877 | Shimada | Jan 1998 | A |
5714917 | Ella | Feb 1998 | A |
5729008 | Blalock et al. | Mar 1998 | A |
5789845 | Wadaka et al. | Aug 1998 | A |
5835142 | Nakamura et al. | Nov 1998 | A |
5853601 | Krishaswamy et al. | Dec 1998 | A |
5864261 | Weber | Jan 1999 | A |
5866969 | Shimada et al. | Feb 1999 | A |
5872493 | Ella | Feb 1999 | A |
5873153 | Ruby et al. | Feb 1999 | A |
5873154 | Ylilammi et al. | Feb 1999 | A |
5894184 | Furuhashi et al. | Apr 1999 | A |
5894647 | Lakin | Apr 1999 | A |
5903087 | Mattson et al. | May 1999 | A |
5910756 | Ella | Jun 1999 | A |
5932953 | Drees et al. | Aug 1999 | A |
5936150 | Kobrin et al. | Aug 1999 | A |
5953479 | Zhou et al. | Sep 1999 | A |
5955926 | Uda et al. | Sep 1999 | A |
5962787 | Okada et al. | Oct 1999 | A |
5969463 | Tomita | Oct 1999 | A |
5982297 | Welle | Nov 1999 | A |
6001664 | Swirhun et al. | Dec 1999 | A |
6016052 | Vaughn | Jan 2000 | A |
6040962 | Kanazawa et al. | Mar 2000 | A |
6051907 | Ylilammi | Apr 2000 | A |
6060818 | Ruby et al. | May 2000 | A |
6087198 | Panasik | Jul 2000 | A |
6090687 | Merchant et al. | Jul 2000 | A |
6107721 | Lakin | Aug 2000 | A |
6111341 | Hirama | Aug 2000 | A |
6111480 | Iyama et al. | Aug 2000 | A |
6118181 | Merchant et al. | Sep 2000 | A |
6124678 | Bishop et al. | Sep 2000 | A |
6124756 | Yaklin et al. | Sep 2000 | A |
6131256 | Dydyk | Oct 2000 | A |
6150703 | Cushman et al. | Nov 2000 | A |
6187513 | Katakura | Feb 2001 | B1 |
6198208 | Yano et al. | Mar 2001 | B1 |
6215375 | Larson, III et al. | Apr 2001 | B1 |
6219032 | Rosenberg et al. | Apr 2001 | B1 |
6219263 | Wuidart | Apr 2001 | B1 |
6228675 | Ruby et al. | May 2001 | B1 |
6229247 | Bishop | May 2001 | B1 |
6252229 | Hays et al. | Jun 2001 | B1 |
6262600 | Haigh et al. | Jul 2001 | B1 |
6262637 | Bradley et al. | Jul 2001 | B1 |
6263735 | Nakatani et al. | Jul 2001 | B1 |
6265246 | Ruby et al. | Jul 2001 | B1 |
6278342 | Ella | Aug 2001 | B1 |
6292336 | Horng et al. | Sep 2001 | B1 |
6307447 | Barber et al. | Oct 2001 | B1 |
6307761 | Nakagawa | Oct 2001 | B1 |
6335548 | Roberts et al. | Jan 2002 | B1 |
6355498 | Chan et al. | Mar 2002 | B1 |
6366006 | Boyd | Apr 2002 | B1 |
6376280 | Ruby et al. | Apr 2002 | B1 |
6377137 | Ruby | Apr 2002 | B1 |
6384697 | Ruby | May 2002 | B1 |
6396200 | Misu et al. | May 2002 | B2 |
6407649 | Tikka et al. | Jun 2002 | B1 |
6414569 | Nakafuku | Jul 2002 | B1 |
6420820 | Larson, III | Jul 2002 | B1 |
6424237 | Ruby et al. | Jul 2002 | B1 |
6429511 | Ruby et al. | Aug 2002 | B2 |
6434030 | Rehm et al. | Aug 2002 | B1 |
6437482 | Shibata | Aug 2002 | B1 |
6441539 | Kitamura et al. | Aug 2002 | B1 |
6441702 | Ella et al. | Aug 2002 | B1 |
6462631 | Bradley et al. | Oct 2002 | B2 |
6466105 | Lobl et al. | Oct 2002 | B1 |
6466418 | Horng et al. | Oct 2002 | B1 |
6469597 | Ruby et al. | Oct 2002 | B2 |
6469909 | Simmons | Oct 2002 | B2 |
6472954 | Ruby et al. | Oct 2002 | B1 |
6476536 | Pensala | Nov 2002 | B1 |
6479320 | Gooch | Nov 2002 | B1 |
6483229 | Larson, III et al. | Nov 2002 | B2 |
6486751 | Barber et al. | Nov 2002 | B1 |
6489688 | Baumann et al. | Dec 2002 | B1 |
6492883 | Liang et al. | Dec 2002 | B2 |
6496085 | Ella et al. | Dec 2002 | B2 |
6498604 | Jensen | Dec 2002 | B1 |
6507983 | Ruby et al. | Jan 2003 | B1 |
6515558 | Ylilammi | Feb 2003 | B1 |
6518860 | Ella et al. | Feb 2003 | B2 |
6525996 | Miyazawa | Feb 2003 | B1 |
6528344 | Kang | Mar 2003 | B2 |
6530515 | Glenn et al. | Mar 2003 | B1 |
6534900 | Aigner et al. | Mar 2003 | B2 |
6542055 | Frank et al. | Apr 2003 | B1 |
6548942 | Panasik | Apr 2003 | B1 |
6548943 | Kaitila et al. | Apr 2003 | B2 |
6549394 | Williams | Apr 2003 | B1 |
6550664 | Bradley et al. | Apr 2003 | B2 |
6559487 | Kang et al. | May 2003 | B1 |
6559530 | Hinzel et al. | May 2003 | B2 |
6564448 | Oura et al. | May 2003 | B1 |
6566956 | Ohnishi et al. | May 2003 | B2 |
6566979 | Larson, III et al. | May 2003 | B2 |
6580159 | Fusaro et al. | Jun 2003 | B1 |
6583374 | Knieser et al. | Jun 2003 | B2 |
6583688 | Klee et al. | Jun 2003 | B2 |
6593870 | Dummermuth et al. | Jul 2003 | B2 |
6594165 | Duerbaum et al. | Jul 2003 | B2 |
6600390 | Frank | Jul 2003 | B2 |
6601276 | Barber | Aug 2003 | B2 |
6603182 | Low et al. | Aug 2003 | B1 |
6617249 | Ruby et al. | Sep 2003 | B2 |
6617750 | Dummermuth et al. | Sep 2003 | B2 |
6617751 | Sunwoo et al. | Sep 2003 | B2 |
6621137 | Ma et al. | Sep 2003 | B1 |
6630753 | Malik et al. | Oct 2003 | B2 |
6635509 | Ouellet | Oct 2003 | B1 |
6639872 | Rein | Oct 2003 | B1 |
6651488 | Larson, III et al. | Nov 2003 | B2 |
6657363 | Aigner | Dec 2003 | B1 |
6668618 | Larson, III et al. | Dec 2003 | B2 |
6670866 | Ella et al. | Dec 2003 | B2 |
6677929 | Gordon et al. | Jan 2004 | B2 |
6693500 | Yang et al. | Feb 2004 | B2 |
6710508 | Ruby et al. | Mar 2004 | B2 |
6710681 | Figueredo et al. | Mar 2004 | B2 |
6713314 | Wong et al. | Mar 2004 | B2 |
6714102 | Ruby et al. | Mar 2004 | B2 |
6720844 | Lakin | Apr 2004 | B1 |
6720846 | Iwashita et al. | Apr 2004 | B2 |
6724266 | Plazza et al. | Apr 2004 | B2 |
6738267 | Navas Sabater et al. | May 2004 | B1 |
6774746 | Whatmore et al. | Aug 2004 | B2 |
6777263 | Gan et al. | Aug 2004 | B1 |
6787048 | Bradley et al. | Sep 2004 | B2 |
6788170 | Kaitila et al. | Sep 2004 | B1 |
6803835 | Frank | Oct 2004 | B2 |
6812619 | Kaitila et al. | Nov 2004 | B1 |
6820469 | Adkins et al. | Nov 2004 | B1 |
6828713 | Bradley et al. | Dec 2004 | B2 |
6842088 | Yamada et al. | Jan 2005 | B2 |
6842089 | Lee | Jan 2005 | B2 |
6849475 | Kim | Feb 2005 | B2 |
6853534 | Williams | Feb 2005 | B2 |
6861920 | Ishikawa et al. | Mar 2005 | B2 |
6872931 | Liess et al. | Mar 2005 | B2 |
6873065 | Haigh et al. | Mar 2005 | B2 |
6873529 | Ikuta et al. | Mar 2005 | B2 |
6874211 | Bradley et al. | Apr 2005 | B2 |
6874212 | Larson, III | Apr 2005 | B2 |
6888424 | Takeuchi et al. | May 2005 | B2 |
6900705 | Nakamura et al. | May 2005 | B2 |
6903452 | Ma et al. | Jun 2005 | B2 |
6906451 | Yamada et al. | Jun 2005 | B2 |
6911708 | Park | Jun 2005 | B2 |
6917261 | Unterberger | Jul 2005 | B2 |
6924583 | Lin et al. | Aug 2005 | B2 |
6924717 | Ginsburg et al. | Aug 2005 | B2 |
6927651 | Larson, III et al. | Aug 2005 | B2 |
6936837 | Yamada et al. | Aug 2005 | B2 |
6936928 | Hedler et al. | Aug 2005 | B2 |
6936954 | Peczalski | Aug 2005 | B2 |
6941036 | Lucero | Sep 2005 | B2 |
6943647 | Aigner et al. | Sep 2005 | B2 |
6943648 | Maiz et al. | Sep 2005 | B2 |
6946928 | Larson, III et al. | Sep 2005 | B2 |
6954121 | Bradley et al. | Oct 2005 | B2 |
6963257 | Ella et al. | Nov 2005 | B2 |
6970365 | Turchi | Nov 2005 | B2 |
6975183 | Aigner et al. | Dec 2005 | B2 |
6977563 | Komuro et al. | Dec 2005 | B2 |
6985051 | Nguyen et al. | Jan 2006 | B2 |
6985052 | Tikka | Jan 2006 | B2 |
6987433 | Larson, III et al. | Jan 2006 | B2 |
6989723 | Komuro et al. | Jan 2006 | B2 |
6998940 | Metzger | Feb 2006 | B2 |
7002437 | Takeuchi et al. | Feb 2006 | B2 |
7019604 | Gotoh et al. | Mar 2006 | B2 |
7019605 | Larson, III | Mar 2006 | B2 |
7026876 | Esfandiari et al. | Apr 2006 | B1 |
7053456 | Matsuo | May 2006 | B2 |
7057476 | Hwu | Jun 2006 | B2 |
7057478 | Korden et al. | Jun 2006 | B2 |
7064606 | Louis | Jun 2006 | B2 |
7084553 | Ludwiczak | Aug 2006 | B2 |
7091649 | Larson, III et al. | Aug 2006 | B2 |
7098758 | Wang et al. | Aug 2006 | B2 |
7102460 | Schmidhammer et al. | Sep 2006 | B2 |
7109826 | Ginsburg et al. | Sep 2006 | B2 |
7128941 | Lee | Oct 2006 | B2 |
7129806 | Sato | Oct 2006 | B2 |
7138889 | Lakin | Nov 2006 | B2 |
7148466 | Eckman et al. | Dec 2006 | B2 |
7158659 | Baharav et al. | Jan 2007 | B2 |
7161448 | Feng et al. | Jan 2007 | B2 |
7170215 | Namba et al. | Jan 2007 | B2 |
7173504 | Larson, III et al. | Feb 2007 | B2 |
7179392 | Robert et al. | Feb 2007 | B2 |
7187254 | Su et al. | Mar 2007 | B2 |
7199683 | Thalhammer et al. | Apr 2007 | B2 |
7209374 | Noro | Apr 2007 | B2 |
7212083 | Inoue et al. | May 2007 | B2 |
7212085 | Wu | May 2007 | B2 |
7230509 | Stoemmer | Jun 2007 | B2 |
7230511 | Onishi et al. | Jun 2007 | B2 |
7233218 | Park et al. | Jun 2007 | B2 |
7242270 | Larson, III et al. | Jul 2007 | B2 |
7259498 | Nakatsuka et al. | Aug 2007 | B2 |
7268647 | Sano et al. | Sep 2007 | B2 |
7275292 | Ruby et al. | Oct 2007 | B2 |
7276994 | Takeuchi et al. | Oct 2007 | B2 |
7280007 | Feng et al. | Oct 2007 | B2 |
7281304 | Kim et al. | Oct 2007 | B2 |
7294919 | Bai | Nov 2007 | B2 |
7301258 | Tanaka | Nov 2007 | B2 |
7310861 | Aigner et al. | Dec 2007 | B2 |
7313255 | Machida et al. | Dec 2007 | B2 |
7332985 | Larson, III et al. | Feb 2008 | B2 |
7345410 | Grannen et al. | Mar 2008 | B2 |
7358831 | Larson et al. | Apr 2008 | B2 |
7367095 | Larson, III et al. | May 2008 | B2 |
7368857 | Tanaka | May 2008 | B2 |
7369013 | Fazzio et al. | May 2008 | B2 |
7388318 | Yamada et al. | Jun 2008 | B2 |
7388454 | Ruby et al. | Jun 2008 | B2 |
7388455 | Larson, III et al. | Jun 2008 | B2 |
7391286 | Jamneala et al. | Jun 2008 | B2 |
7400217 | Larson, III et al. | Jul 2008 | B2 |
7408428 | Larson, III | Aug 2008 | B2 |
7414349 | Sasaki | Aug 2008 | B2 |
7414495 | Iwasaki et al. | Aug 2008 | B2 |
7423503 | Larson, III et al. | Sep 2008 | B2 |
7425787 | Larson, III | Sep 2008 | B2 |
7439824 | Aigner | Oct 2008 | B2 |
7463118 | Jacobsen | Dec 2008 | B2 |
7466213 | Lobl et al. | Dec 2008 | B2 |
7468608 | Feucht et al. | Dec 2008 | B2 |
7482737 | Yamada et al. | Jan 2009 | B2 |
7508286 | Ruby et al. | Mar 2009 | B2 |
7535154 | Umeda et al. | May 2009 | B2 |
7535324 | Fattinger et al. | May 2009 | B2 |
7545532 | Muramoto | Jun 2009 | B2 |
7561009 | Larson, III et al. | Jul 2009 | B2 |
7576471 | Solal | Aug 2009 | B1 |
7602101 | Hara et al. | Oct 2009 | B2 |
7616079 | Tikka et al. | Nov 2009 | B2 |
7619493 | Uno et al. | Nov 2009 | B2 |
7629865 | Ruby | Dec 2009 | B2 |
7649304 | Umeda et al. | Jan 2010 | B2 |
7684109 | Godshalk et al. | Mar 2010 | B2 |
7758979 | Akiyama | Jul 2010 | B2 |
7768364 | Hart et al. | Aug 2010 | B2 |
7795781 | Barber et al. | Sep 2010 | B2 |
7869187 | McKinzie et al. | Jan 2011 | B2 |
7889024 | Bradley et al. | Feb 2011 | B2 |
7966722 | Hart et al. | Jun 2011 | B2 |
7978025 | Yokoyama et al. | Jul 2011 | B2 |
8384497 | Zhang | Feb 2013 | B2 |
8456257 | Fattinger | Jun 2013 | B1 |
8575820 | Shirakawa et al. | Nov 2013 | B2 |
20010045793 | Misu et al. | Nov 2001 | A1 |
20020000646 | Gooch et al. | Jan 2002 | A1 |
20020030424 | Iwata | Mar 2002 | A1 |
20020063497 | Panasik | May 2002 | A1 |
20020070463 | Chang et al. | Jun 2002 | A1 |
20020121944 | Larson, III et al. | Sep 2002 | A1 |
20020121945 | Ruby et al. | Sep 2002 | A1 |
20020126517 | Matsukawa et al. | Sep 2002 | A1 |
20020140520 | Hikita et al. | Oct 2002 | A1 |
20020152803 | Larson, III et al. | Oct 2002 | A1 |
20020190814 | Yamada et al. | Dec 2002 | A1 |
20030001251 | Cheever et al. | Jan 2003 | A1 |
20030006502 | Karpman | Jan 2003 | A1 |
20030011285 | Ossmann | Jan 2003 | A1 |
20030011446 | Bradley | Jan 2003 | A1 |
20030051550 | Nguyen et al. | Mar 2003 | A1 |
20030087469 | Ma | May 2003 | A1 |
20030102776 | Takeda et al. | Jun 2003 | A1 |
20030111439 | Fetter et al. | Jun 2003 | A1 |
20030128081 | Ella et al. | Jul 2003 | A1 |
20030132493 | Kang et al. | Jul 2003 | A1 |
20030132809 | Senthilkumar et al. | Jul 2003 | A1 |
20030141946 | Ruby et al. | Jul 2003 | A1 |
20030179053 | Aigner et al. | Sep 2003 | A1 |
20030205948 | Lin et al. | Nov 2003 | A1 |
20030227357 | Metzger et al. | Dec 2003 | A1 |
20040016995 | Kuo et al. | Jan 2004 | A1 |
20040017130 | Wang et al. | Jan 2004 | A1 |
20040027216 | Ma et al. | Feb 2004 | A1 |
20040056735 | Nomura et al. | Mar 2004 | A1 |
20040092234 | Pohjonen | May 2004 | A1 |
20040099898 | Grivna et al. | May 2004 | A1 |
20040124952 | Tikka | Jul 2004 | A1 |
20040129079 | Kato et al. | Jul 2004 | A1 |
20040150293 | Unterberger | Aug 2004 | A1 |
20040150296 | Park et al. | Aug 2004 | A1 |
20040166603 | Carley | Aug 2004 | A1 |
20040195937 | Matsubara et al. | Oct 2004 | A1 |
20040212458 | Lee | Oct 2004 | A1 |
20040257171 | Park et al. | Dec 2004 | A1 |
20040257172 | Schmidhammer et al. | Dec 2004 | A1 |
20040263287 | Ginsburg et al. | Dec 2004 | A1 |
20050012570 | Korden et al. | Jan 2005 | A1 |
20050012716 | Mikulin et al. | Jan 2005 | A1 |
20050023931 | Bouche et al. | Feb 2005 | A1 |
20050030126 | Inoue et al. | Feb 2005 | A1 |
20050036604 | Scott et al. | Feb 2005 | A1 |
20050057117 | Nakatsuka et al. | Mar 2005 | A1 |
20050057324 | Onishi et al. | Mar 2005 | A1 |
20050068124 | Stoemmer | Mar 2005 | A1 |
20050093396 | Larson, III et al. | May 2005 | A1 |
20050093397 | Yamada et al. | May 2005 | A1 |
20050093653 | Larson, III | May 2005 | A1 |
20050093654 | Larson, III et al. | May 2005 | A1 |
20050093655 | Larson, III et al. | May 2005 | A1 |
20050093657 | Larson, III et al. | May 2005 | A1 |
20050093658 | Larson, III et al. | May 2005 | A1 |
20050093659 | Larson, III et al. | May 2005 | A1 |
20050104690 | Larson, III et al. | May 2005 | A1 |
20050110598 | Larson, III | May 2005 | A1 |
20050128030 | Larson, III et al. | Jun 2005 | A1 |
20050140466 | Larson, III et al. | Jun 2005 | A1 |
20050167795 | Higashi | Aug 2005 | A1 |
20050193507 | Ludwiczak | Sep 2005 | A1 |
20050206271 | Higuchi et al. | Sep 2005 | A1 |
20050206479 | Nguyen et al. | Sep 2005 | A1 |
20050206483 | Pashby et al. | Sep 2005 | A1 |
20050218488 | Matsuo | Oct 2005 | A1 |
20050248232 | Itaya et al. | Nov 2005 | A1 |
20050269904 | Oka | Dec 2005 | A1 |
20050275486 | Feng | Dec 2005 | A1 |
20060017352 | Tanielian | Jan 2006 | A1 |
20060071736 | Ruby et al. | Apr 2006 | A1 |
20060081048 | Mikado et al. | Apr 2006 | A1 |
20060087199 | Larson, III et al. | Apr 2006 | A1 |
20060103492 | Feng et al. | May 2006 | A1 |
20060114541 | Van Beek | Jun 2006 | A1 |
20060119453 | Fattinger et al. | Jun 2006 | A1 |
20060125489 | Feucht et al. | Jun 2006 | A1 |
20060132262 | Fazzio et al. | Jun 2006 | A1 |
20060164183 | Tikka et al. | Jul 2006 | A1 |
20060176126 | Wang et al. | Aug 2006 | A1 |
20060185139 | Larson, III et al. | Aug 2006 | A1 |
20060197411 | Hoen et al. | Sep 2006 | A1 |
20060238070 | Costa et al. | Oct 2006 | A1 |
20060284706 | Ginsburg et al. | Dec 2006 | A1 |
20060284707 | Larson, III et al. | Dec 2006 | A1 |
20060290446 | Aigner et al. | Dec 2006 | A1 |
20070035364 | Sridhar et al. | Feb 2007 | A1 |
20070037311 | Izumi et al. | Feb 2007 | A1 |
20070080759 | Jamneala et al. | Apr 2007 | A1 |
20070085447 | Larson, III | Apr 2007 | A1 |
20070085631 | Larson, III et al. | Apr 2007 | A1 |
20070085632 | Larson, III et al. | Apr 2007 | A1 |
20070086080 | Larson, III et al. | Apr 2007 | A1 |
20070086274 | Nishimura et al. | Apr 2007 | A1 |
20070090892 | Larson, III | Apr 2007 | A1 |
20070170815 | Unkrich | Jul 2007 | A1 |
20070171002 | Unkrich | Jul 2007 | A1 |
20070176710 | Jamneala et al. | Aug 2007 | A1 |
20070205850 | Jamneala et al. | Sep 2007 | A1 |
20070279153 | Ruby | Dec 2007 | A1 |
20070291164 | Goh et al. | Dec 2007 | A1 |
20080055020 | Handtmann et al. | Mar 2008 | A1 |
20080129414 | Lobl et al. | Jun 2008 | A1 |
20080143215 | Hara et al. | Jun 2008 | A1 |
20080258842 | Ruby et al. | Oct 2008 | A1 |
20080297278 | Handtmann et al. | Dec 2008 | A1 |
20080297279 | Thalhammer et al. | Dec 2008 | A1 |
20080297280 | Thalhammer et al. | Dec 2008 | A1 |
20090001848 | Umeda et al. | Jan 2009 | A1 |
20090079302 | Wall et al. | Mar 2009 | A1 |
20090096550 | Handtmann et al. | Apr 2009 | A1 |
20090102319 | Nakatsuka et al. | Apr 2009 | A1 |
20090127978 | Asai et al. | May 2009 | A1 |
20090153268 | Milsom et al. | Jun 2009 | A1 |
20090201594 | Smith | Aug 2009 | A1 |
20090267457 | Barber et al. | Oct 2009 | A1 |
20100033063 | Nishihara et al. | Feb 2010 | A1 |
20100039000 | Milson et al. | Feb 2010 | A1 |
20100052815 | Bradley et al. | Mar 2010 | A1 |
20100091370 | Mahrt et al. | Apr 2010 | A1 |
20100107389 | Nessler et al. | May 2010 | A1 |
20100148637 | Satou | Jun 2010 | A1 |
20100176899 | Schaufele et al. | Jul 2010 | A1 |
20100187948 | Sinha et al. | Jul 2010 | A1 |
20100260453 | Block | Oct 2010 | A1 |
20100327697 | Choy et al. | Dec 2010 | A1 |
20100327994 | Choy et al. | Dec 2010 | A1 |
20110084779 | Zhang | Apr 2011 | A1 |
20110121916 | Barber et al. | May 2011 | A1 |
20110148547 | Zhang | Jun 2011 | A1 |
20120161902 | Feng et al. | Jun 2012 | A1 |
20120194297 | Choy | Aug 2012 | A1 |
20120218055 | Burak et al. | Aug 2012 | A1 |
20120218058 | Burak et al. | Aug 2012 | A1 |
20120218059 | Burak et al. | Aug 2012 | A1 |
20120280767 | Burak et al. | Nov 2012 | A1 |
20130038408 | Burak et al. | Feb 2013 | A1 |
Number | Date | Country |
---|---|---|
10160617 | Jun 2003 | DE |
231892 | Aug 1987 | EP |
0637875 | Feb 1995 | EP |
689254 | Dec 1995 | EP |
0865157 | Sep 1998 | EP |
880227 | Nov 1998 | EP |
1047189 | Oct 2000 | EP |
1096259 | May 2001 | EP |
1100196 | May 2001 | EP |
1180494 | Feb 2002 | EP |
1249932 | Oct 2002 | EP |
1258989 | Nov 2002 | EP |
1258990 | Nov 2002 | EP |
1517443 | Mar 2005 | EP |
1517444 | Mar 2005 | EP |
1528674 | May 2005 | EP |
1528675 | May 2005 | EP |
1528676 | May 2005 | EP |
1528677 | May 2005 | EP |
1542362 | Jun 2005 | EP |
1557945 | Jul 2005 | EP |
1575165 | Sep 2005 | EP |
0973256 | Sep 2006 | EP |
2299593 | Mar 2011 | EP |
1207974 | Oct 1970 | GB |
2013343 | Aug 1979 | GB |
2411239 | Aug 2005 | GB |
2418791 | Apr 2006 | GB |
2427773 | Jan 2007 | GB |
59023612 | Feb 1984 | JP |
61054686 | Mar 1986 | JP |
6165507 | Apr 1986 | JP |
62-109419 | May 1987 | JP |
62-200813 | Sep 1987 | JP |
1-295512 | Nov 1989 | JP |
2-10907 | Jan 1990 | JP |
06005944 | Jan 1994 | JP |
8-330878 | Dec 1996 | JP |
09-027729 | Jan 1997 | JP |
9-83029 | Mar 1997 | JP |
10-32456 | Feb 1998 | JP |
2000-31552 | Jan 2000 | JP |
2000-232334 | Aug 2000 | JP |
2001-102901 | Apr 2001 | JP |
2001-508630 | Jun 2001 | JP |
2002217676 | Aug 2002 | JP |
2003017964 | Jan 2003 | JP |
2003124779 | Apr 2003 | JP |
2006-109472 | Apr 2006 | JP |
2006-295924 | Oct 2006 | JP |
2007-006501 | Jan 2007 | JP |
2007028669 | Feb 2007 | JP |
2007-208845 | Aug 2007 | JP |
2007-295306 | Nov 2007 | JP |
2008-131194 | Jun 2008 | JP |
2008-211394 | Sep 2008 | JP |
WO-9816957 | Apr 1998 | WO |
WO-9856049 | Dec 1998 | WO |
WO-9937023 | Jul 1999 | WO |
WO-0106646 | Jan 2001 | WO |
WO-0106647 | Jan 2001 | WO |
WO-0199276 | Dec 2001 | WO |
WO-02103900 | Dec 2002 | WO |
WO-03030358 | Apr 2003 | WO |
WO-03043188 | May 2003 | WO |
WO-03050950 | Jun 2003 | WO |
WO-03058809 | Jul 2003 | WO |
WO-2004034579 | Apr 2004 | WO |
WO-2004051744 | Jun 2004 | WO |
WO-2004102688 | Nov 2004 | WO |
WO-2005043752 | May 2005 | WO |
WO-2005043753 | May 2005 | WO |
WO-2005043756 | May 2005 | WO |
WO-2006018788 | Feb 2006 | WO |
Entry |
---|
Definitions of “within” from “Collins English Dictionary-Complete and Unabridged”, Harper Collins publishers copyright 1991, 1994, 1998, 2000, 2003 and “Random House Kernerman Webster's College Dictionary”, 2010 K Dictionaries Ltd. copyright 2005, 1997, 1991 by Random House, Inc., as found online at www.thefreedictionary.com, one page. |
“Co-pending U.S. Appl. No. 13/036,489, filed Feb. 28, 2011”. |
“Co-pending U.S. Appl. No. 13/074,262, filed Mar. 29, 2011”. |
“Co-pending U.S. Appl. No. 13/101,376, filed May 5, 2011”. |
Pensala, et al., “Spurious resonance supression in gigahertz-range ZnO thin-film bulk acoustic wave resonators by the boundary frame method: modeling and experiment”, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 56, No. 8 Aug. 2009 , 1731-1744. |
Pensala, , “Thin film bulk acoustic wave devices: performance optimization and modeling”, http://www.vtt.fi/inf/pdf/publications/2011/P756.pdf, Dissertation presented Feb. 25, 2011, Espoo Finland, 108 pages. |
Co-pending U.S. Appl. No. 12/710,640, filed Feb. 23, 2010. |
Co-pending U.S. Appl. No. 13/074,094, filed Mar. 29, 2011. |
Linnell Martinez, “High confinement suspended micro-ring resonators in silicon-on-insulator,” Optics Express, Jun. 26, 2006, vol. 14, No. 13, pp. 6259-6263. |
U.S. Appl. No. 10/971,169, filed Oct. 22, 2004, Larson III, John D., et al. |
Akiyama, et al., “Enhancement of Piezoelectric Response in Scandium Aluminum Nitride Alloy Thin Films Prepared by Dual Reactive Cosputtering”, Adv. Mater 2009 , 593-596. |
Al-Ahmad, M. et al., “Piezoelectric-Based Tunable Microstrip Shunt Resonator”, Proceedings of Asia-Pacific Microwave Conference 2006. |
Aoyama, Takayuki et al., “Diffusion of Boron, Phosphorous, Arsenic and Antimony in Thermally Grown SiliconDioxide”, Journal of the Electrochemical Society, vol. 146, No. 5 1999 , 1879-1883. |
Auld, B. A. , “Acoustic Resonators”, Acoustic Fields and Waves in Solids, Second Edition, vol. II 1990 , 250-259. |
Bauer, L. O. et al., “Properties of Silicon Implanted with Boron Ions through Thermal Silicon Dioxide”, Solid State Electronics, vol. 16, No. 3 Mar. 1973 , 289-300. |
BI, F.Z. , “Bulk Acoustic Wave RF Technology”, IEEE Microwave Magazine, vol. 9, Issue 5. 2008 , 65-80. |
Choi, Sungjin et al., “Design of Half-Bridge Piezo-Transformer Converters in the AC Adapter Applications”, APEC 2005, IEEE Mar. 2005 , 244-248. |
Coombs, Clyde F. , “Electronic Instrument Handbook”, Second Edition, McGraw-Hill, Inc. 1995 , pp. 5.1-5.29. |
Denisse, C.M.M. et al., “Plasma-Enhanced Growth and Composition of Silicon Oxynitride Films”, J. Appl. Phys., vol. 60, No. 7. Oct. 1, 1986 , 2536-2542. |
Fattinger, G. G. et al., “Coupled Bulk Acoustic Wave Resonator Filters: Key technology for single-to-balanced RF filters”, 0-7803-8331-1/4/W20.00; IEEE MTT-S Digest 2004 , 927-929. |
Fattinger, G.G. et al., “Single-To-Balance Filters for Mobile Phones Using Coupled Resonator BAW Technology”, 2004 IEEE Ultrasonics Symposium Aug. 2004 , 416-419. |
Fattinger, G. B. et al., “Spurious Mode Suppression in Coupled Resonator Filters”, IEEE MTT-S International Microwave Symposium Digest 2005 , 409-412. |
Gilbert, S. R. , “An Ultra-Miniature, Low Cost Single Ended to Differential Filter for ISM Band Applications”, Micro. Symp. Digest, 2008 IEEE MTT-S Jun. 2008 , 839-842. |
Grill, A. et al., “Ultralow-K Dielectrics Prepared by Plasma-Enhanced Chemical Vapor Deposition”, App. Phys. Lett. vol. 79 2001 , 803-805. |
Hadimioglu, B. et al., ““Polymer Films As Acoustic Matching Layers”.”, 1990 IEEE Ultrasonics Symposium Proceedings, vol. 3 PP. [Previously submitted as “Polymer Files As Acoustic Matching Layers, 1990 IEEE Ultrasonics Symposium Proceeding. vol. 4 PP. 1227-1340, Dec. 1990”. Considered by Examiner on Mar. 20, 2007 Dec. 1990 , 1337-1340. |
Hara, K. , “Surface Treatment of Quartz Oscillator Plate by Ion Implantation”, Oyo Buturi, vol. 47, No. 2 Feb. 1978 , 145-146. |
Holzlohner, Ronald et al., “Accurate Calculation of Eye Diagrams and Bit Error Rates in Optical Transmission Systems Using Linearization”, Journal of Lightwave Technology, vol. 20, No. 3, Mar. 2002 , pp. 389-400. |
Ivensky, Gregory et al., “A Comparison of Piezoelectric Transformer AC/DC Converters with Current Doubler and voltage Doubler Rectifiers”, IEEE Transactions on Power Electronics, vol. 19, No. 6. Nov. 2004. |
Jamneala, T. et al., “Coupled Resonator Filter with Single-Layer Acoustic Coupler”, IEEE Transaction on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 55 Oct. 2008 , 2320-2326. |
Jamneala, Tiberiu et al., “Ultra-Miniature Coupled Resonator Filter with Single-Layer Acoustic Coupler”, IEEE Transactions on Ultrasonics Ferroelectrics, and Frequency Control, vol. 56, No. 11. Nov. 2009 , 2553-2558. |
Jiang, Yimin et al., “A Novel Single-Phase Power Factor Correction Scheme”, IEEE 1993 , 287-292. |
Jung, Jun-Phil et al., “Experimental And Theoretical Investigation On The Relationship Between AIN Properties and AIN-Based FBAR Characteristics”, 2003 IEEE International Frequency Control Symposium and PDA Exhibition Jointly with the 17th European Frequency and Time Forum Sep. 3, 2003 , 779-784. |
Kaitila, J. et al., “Measurement of Acoustical Parameters of Thin Films”, 2006 IEEE Ultrasonics Symposium Oct. 2006 , 464-467. |
Krishnaswamy, S.V. et al., “Film Bulk Acoustic Wave Resonator Technology”, May 29, 1990 , 529-536. |
Lakin, K.M. , “Bulk Acoustic Wave Coupled Resonator Filters”, 2002 IEEE International Frequency Control Symposium and PDA Exhibition May 2002 , 8-14. |
Lakin, K.M. , “Coupled Resonator Filters”, 2002 IEEE Ultrasonics Symposium Mar. 2, 2002 , 901-908. |
Lakin, K.M. et al., “High Performance Stacked Crystal Filters for GPS and Wide Bandwidth Applications”, 2001 IEEE Ultrasonics Symposium Jan. 1, 2001 , 833-838. |
Lakin, K. M. et al., “Temperature Compensated Bulk Acoustic Thin Film Resonators”, IEEE Ultrasonics Symposium, San Juan, Puerto Rico Oct. 2000 , 855-858. |
Lakin, K.M. , “Thin Film BAW Filters for Wide Bandwidth and High Performance Applications”, IEEE Microwave Symposium Digest; vol. 2 Jun. 6-11, 2004 , 923-926. |
Lakin, K. M. , “Thin Film Resonators and Filters”, IEEE Untrasonics Symposium, Caesar's Tahoe, NV Oct. 1999 , 895-906. |
Lakin, et al., “Wide Bandwidth Thin Film BAW Filters”, 2004 IEEE Ultrasonics Symposium, vol. 1, Aug. 2004 , 407-410. |
Larson III, John D. et al., “Measurement of Effective Kt2,Q,Rp,Rs vs. Temperature for Mo/AIN FBAR Resonators”, IEEE Ultrasonics Symposium 2002 , 939-943. |
Lee, Jiunn-Homg et al., “Optimization of Frame-Like Film Bulk Acoustic Resonators for Suppression of Spurious Lateral Modes Using Finite Element Method”, IEEE Ultrasonic Symposium, vol. 1, 2004 , 278-281. |
Li, Yunxiu et al., “AC-DC Converter with Worldwide Range Input Voltage by Series and Parallel Piezoelectric Transformer Connection”, 35th Annual IEEE Power Electronics Specialists Conference 2004. |
Lobl, H.P. et al., “Piezoelectric Materials for BAW Resonators and Filters”, 2001 IEEE Ultrasonics Symposium Jan. 1, 2001 , 807-811. |
Loboda, M. J. , “New Solutions for Intermetal Dielectrics Using Trimethylsilane-Based PECVD Processes”, Microelectronics Eng., vol. 50. 2000 , 15-23. |
Martin, Steven J. et al., “Development of a Low Dielectric Constant Polymer For The Fabrication of Integrated Circuit Interconnect”, 12 Advanced Materials Dec. 23, 2000 , 1769-1778. |
Merriam-Webster, “Collegiate Dictionary”, tenth edition 2000 , 2 pages, definition of frame. |
Navas, J. et al., “Miniaturised Battery Charger using Piezoelectric Transformers”, IEEE 2001 , 492-496. |
NG, J. et al., “The Diffusion Ion-Implanted Boron in Silicon Dioxide”, AIP Conf. Proceedings, No. 122 1984 , 20-33. |
Ohta, S. et al., “Temperature Characteristics of Solidly Mounted Piezoelectric Thin Film Resonators”, IEEE Ultrasonics Symposium, Honolulu, HI Oct. 2003 , 2011-2015. |
Pandey, et al., “Anchor Loss Reduction in Resonant MEMS using MESA Structures”, Proceedings of the 2nd IEEE International Conference on Nano/Micro Engineered and Molecular Systems, Bangkok, Thailand Jan. 16-19, 2007 , 880-885. |
Pang, W. et al., “High Q Single-Mode High-Tone Bulk Acoustic Resonator Integrated With Surface-Machined FBAR Filter”, Microwave Symposium Digest, IEEE MTT-S International 2005 , 413-416. |
Parker, T. E. et al., “Temperature-Compensated Surface Acoustic-Wave Devices with SiO2 Film Overlays”, J. Appl. Physics, vol. 50 1360-1369 , Mar. 1979. |
Reinhardt, Alexandre et al., “Design of Coupled Resonator Filters Using Admittance and Scattering Matrices”, 2003 IEEE Ultrasonics Symposium May 3, 2003 , 1428-1431. |
Ruby, R. C. , “MicroMachined Thin Film Bulk Acoustic Resonators”, IEEE International Frequency Control Symposium 1994 , 135-138. |
Ruby, R. et al., “The Effect of Perimeter Geometry on FBAR Resonator Electrical Performance”, Microwave Symposium Digest, 2005 IEEE MTT-S International Jun. 12, 2005 , 217-221. |
Sanchez, A.M. et al., “Mixed Analytical and Numerical Design Method for Piezoelectric Transformers” IEEE Xplore 2003 , 841-846. |
Schoenholz, J.E. et al., “Plasma-Enhanced Deposition of Silicon Oxynitride Films”, Thin Solid Films 1987 , 285-291. |
Schuessler, Hans H. , “Ceramic Filters and Resonators”, Reprinted from IEEE Trans. Sonics Ultrason., vol. SU-21 Oct. 1974 , 257-268. |
Shirakawa, A. A. et al., “Bulk Acoustic Wave Coupled Resonator Filters Synthesis Methodology”, 2005 European Microwave Conference, vol. 1 Oct. 2005. |
Small, M. K. et al., “A De-Coupled Stacked Bulk Acoustic Resonator (DSBAR) Filter with 2 dB Bandwidth >4%”, 2007 IEEE Ultrasonics Symposium Oct. 2007 , 604-607. |
Spangenberg, B. et al., “Dependence of the Layer Resistance of Boron Implantation in Silicon and the Annealing Conditions”, Comptus Rendus de I'Academic Bulgare des Sciences, vol. 33, No. 3 1980 , 325-327. |
Tas, et al., “Reducing Anchor Loss in Micromechanical Extensional Mode Resonators”, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, vol. 57, No. 2. Feb. 2010 , 448-454. |
Thomsen, C. et al., “Surface Generation and Detection of Phonons by Picosecond Light Pulses”, Phys. Rev. B, vol. 34 1986 , 4129. |
Tiersten, H. F. et al., “An Analysis of Thickness-Extensional Trapped Energy Resonant Device Structures with Rectangular Electrodes in the Piezoelectric Thin Film on Silicon Configuration”, J. Appl. Phys. 54 (10) Oct. 1983 , 5893-5910. |
Topich, J. A. et al., “Effects of Ion Implanted Fluorine in Silicon Dioxide”, Nuclear Instr. and Methods, Cecon Rec, Cleveland, OH May 1978 , 70-73. |
Tsubbouchi, K. et al., “Zero Temperature coefficient Surface Acoustic Wave Devices using Epitaxial AIN Films”, IEEE Ultrasonic symposium, San Diego, CA, 1082 1982 , 240-245. |
Vasic, D et al., “A New Method to Design Piezoelectric Transformer Used in MOSFET & IGBT Drive Circuits”, IEEE 34th Annual Power Electronics Specialists Conference, 2003 vol. 1 Jun. 15-19, 2003 , 307-312. |
Vasic, D et al., “A New MOSFET & IGBT Gate Drive Insulated By a Piezoelectric Transformer”, IEEE 32 nd Annual Power Electronics Specialists Conference, 2001 vol. 3 2001 , 1479-1484. |
Yanagitani, et al., “Giant Shear Mode Electromechanical Coupling Coefficient k15 in C-Axis Tilted ScAIN Films”, IEEE International Ultrasonics Symposium 2010. |
Yang, C.M. et al., “Highly C Axis Oriented AIN Film Using MOCVD for 5GHx Band FBAR Filter”, 2003 IEEE Ultrasonics Symposium Oct. 5, 2003 , pp. 170-173. |
“IEEE Xplore Abstract for Suppression of Acoustic Energy Leakage in FBARS with AI Bottom Electrode: FEM Simulation and Experimental Results”, Oct. 28-31, 2007, 2 pages. |
“Machine Translation of JP 2007-208845”, Aug. 16, 2007, 1-9. |
“Machine Translation of JP 2008-211394”, Sep. 11, 2008, 1-8. |
Ohara, et al., “Suppression of Acoustic Energy Leakage in FBARs with AI Bottom Electrode: FEM Simulation and Experimental Results”, 2007 IEEE Ultrasonics Symposium, Oct. 28-31, 2007, 1657-1660. |
Number | Date | Country | |
---|---|---|---|
20120218060 A1 | Aug 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13151631 | Jun 2011 | US |
Child | 13208909 | US | |
Parent | 13074262 | Mar 2011 | US |
Child | 13151631 | US | |
Parent | 13036489 | Feb 2011 | US |
Child | 13074262 | US |