The present invention relates to filling equipment for loading powdered or granular material into bulk bags. More particularly, the present invention relates to a bulk bag tie-off assembly and a bulk bag filler with such a device to assist in sealing the top of a bulk bag after filling.
Known bulk bag (flexible intermediate bulk containers or FIBCs) fillers generally require an operator to connect the bag filling spout to a generally downwardly directed fill tube and to hook a hanging loop located on each corner of the bulk bag onto an arm or holder on the support structure. Once filled, the bag loops are released as is the seal that holds the bag filling spout to the fill tube. An operator must then reach the top of the filled bag and tie off the neck of the bag filling spout. This is a manual operation that requires an operator to either climb to the required height, for example using a ladder, or reach over the upper edge of the filled bag, potentially causing spillage of the filled material. This not only takes additional time, but also poses the risk of possible operator injury
It would be desirable to provide a bulk bag filler that is safer, easier and faster to operate, with less likelihood of operator injury.
Briefly stated, the present invention provides a tie-off assembly for closing the neck of a bulk bag having a motor located in a housing, with the housing having a cutting end with a slot therethrough. A drive axle within the housing is adapted to be rotated by operation of the motor and rotates a toothed drive wheel mounted on the drive axle. The slot is adapted to receive an end of a tie wrap which, upon insertion, is engaged by the toothed drive wheel to pull the tie wrap closed. At least one blade is mounted adjacent the cutting end of the housing, with the at least one blade being moveable from a first position, away from the slot, to a second, cutting position, adjacent the slot. The blade is biased to the first position by a spring. At least one first wall is mounted for movement adjacent the cutting end of the housing and is adapted to move from a first, rest position to a second, engaged position adjacent the cutting end. The first wall is adapted to contact and move the blade to the cutting position as the first wall becomes more proximate the cutting end through contact with a knuckle of the tie wrap that is being closed.
In use, a tie wrap positioned around the neck of a bulk bag has its end inserted into the slot of the tie-off assembly as the bulk bag is connected to the bulk bag filler. After the bulk bag is filled, the tie-off assembly is actuated to pull the tie wrap closed, thereby closing and sealing the bulk bag neck. Preferably, the tie-off assembly is mounted for movement on the bulk bag filler frame, so that it can be moved closer to a center of a bulk bag filling spout neck being closed as the tie wrap is tightened. The tail of the tie wrap is automatically cut off by the blade once the tie wrap is fully closed.
Thus, the invention also provides an automated method of tying off the neck of a filled bulk bag. The tie-off assembly can be provided as a part of a bulk bag filler or can be retrofitted to an existing bulk bag filler.
The foregoing summary as well as the following detailed description will be readily understood in conjunction with the appended drawings which illustrate the preferred embodiments of the invention. In the drawings:
Certain terminology is used in the following detailed description for convenience only and is not considered limiting. The words “upper” and “lower” designate directions in the drawings to which reference is made. Additionally, the words “left” and “right” are similarly used to designate directions in the drawings. The terms “a” and “one” are defined as including one or more of the referenced item unless specifically noted.
An exemplary bulk bag filler 10 incorporating the present invention is shown in
A bag inflation/vacuum port 15 is preferably provided which allows for inflation of an empty bag prior to filling, as well as collection of displaced air and particulates which could otherwise be discharged to atmosphere as the bag is filled. In a preferred embodiment, an inflatable seal assembly 21 is provided where the fill tube 20 meets the bag neck 22, for connecting the bag neck 22 to the bulk material fill tube 20. Such inflatable connections are known in the art, and accordingly have not been described here in further detail.
According to the present, a bulk bag tie-off assembly 30 is provided adjacent an upper portion of the support frame 12 or fill head 13, preferably adjacent the position where the bag neck 22 will be when the bulk bag 18 is mounted on the support frame 12 for filling. The tie-off device 30 securely closes an open bulk bag 18 by tightening a tie wrap 32 around the bag neck 22. After closure, the tie-off assembly 30 uses a cutting assembly 34 to cut the free end 24 of the tie wrap 32, as shown in
Another common name for “tie wrap” is “cable tie.” While the present invention preferably utilizes tie wraps, it is appreciated that other types of securing materials, such as cables, wires, plastic wraps, or other closure articles can be used in place of tie wraps.
As shown in
In one embodiment of the present invention, the motor 38 is a pneumatic motor, such as a 500 rpm pneumatic motor. However, it is appreciated that the motor 38 may be electrically driven, mechanically driven, or any other type of motor without departing from the present invention. The motor 38 attaches to the housing 36 via motor clamp 40, or other attachment means. The motor 38 is preferably attached adjacent the bottom 52 of the housing, as shown in
A drive axle 58 is provided within the housing 36, having a first end 60 adjacent the bottom 52 of the housing 36 and a second end 62 adjacent the top 50 of the housing 36, mounted vertically within the housing 36, as shown in
A first upstanding housing wall 66 and a second upstanding housing wall 67 are provided within the housing 36, extending from the upper portion of the motor end 46 of the housing 36 to an upper portion of the cutting end 48 of the housing 36. The housing walls 66, 67 are separated by a receiving space 69, adapted to receive the free end 24 of a tie wrap, as will be discussed in further detail below. Each housing wall 66, 67 has an opening 68a & 68b therethrough. As shown in
As shown in
Referring to
Two slide walls 86a & 86b are provided on opposite sides of the upper rail 78 and the lower rail 80. Each slide wall 86a & 86b has at least one bolt receiving opening therethrough. The bolt receiving openings are aligned with the slots 88a & 88b of the upper rail 78 and the lower rail 80. At least one bolt 90 is provided for securing each slide wall 86a & 86b to opposite sides of the upper rail 78 and the lower rail 80, with the bolts 90 passing through the bolt receiving openings and slots 88a & 88b. This arrangement allows the slide walls 86a & 86b to move freely in relation to the upper rail 78 and the lower rail 80, with each being adapted to move from a first or forward position 92, as shown in
As shown in
A first torsion spring 96 having a first end 98 and a second end 100 is provided adjacent slide wall 86a, and a second torsion spring 102 having a first end 104 and a second end 106 is provided adjacent slide wall 86b. The first torsion spring 96 is positioned about mounting post 112a, with the first end 98 against the cutting end 48, and the second end contacting a portion of the first blade 114, and biasing the first blade 114 to a first or ready position, as shown in
While a preferred tie wrap end cutting arrangement has been shown, those skilled in the art will recognize that other types of cutting arrangements can be utilized that can be actuated in different manners, if desired, and the invention is not limited to the specific cutting arrangement disclosed.
As shown in
Alternatively, the tie-off assembly 30 of the present invention can be mounted on the bulk bag filler 10 using a frame and/or track, and thereby move using the tie wrap as a traction medium. The tie-off assembly 30 can also be adapted to move in relation to the bulk bag 18 such as on a slide rail or linear slide arrangement, or the tie-off assembly 30 could be mounted for both linear and rotational movement (for example, up to about 180 degrees) so that the tie-off assembly 30 twists the bag neck 22 as it tightens.
In operation, a bulk bag 18 is suspended from the support frame 12 of the bulk bag filler 10, and the fill tube 20 is inserted into the filling spout or neck 22 of the bulk bag 18. The end of the tie wrap 32, located around the bag neck 22 with a free end 24 of the tie wrap 32 fed through the knuckle (tie wrap locking portion) 26, is inserted through the space between the upper rail 78 and a lower rail 80 and into the slot 84. The free end 24 is positioned extending through the cutting slot 84 and extends into space 69, between the toothed drive wheel 70 and pinch wheel 76. and engaged between the drive wheel 70 and the pinch wheel 76. The inflatable seal 21 inflates to seal the neck 22 about the fill tube 20. After the bulk bag 18 is filled, the inflatable seal 21 deflates, and the fill tube 20 is withdrawn from the bag neck 22.
The tie wrap 32 is preferably pre-positioned on the bag neck 22 during suspension of the empty bulk bag 18. Alternately, the tie wrap 32 can be positioned about the bag neck 22 after the bulk bag 18 is filled.
Operating the motor 38 rotates drive shaft 54, thereby rotating the drive gear 56, which in turn rotates the gear 64, which in turn rotates drive axle 58, thereby turning toothed drive wheel 70. The free end 24 of the tie wrap 32 is frictionally gripped through the openings 68a & 68b between toothed drive wheel 70 and pinch wheel 76, drawing the free end 24 into the housing 36, within space 69. This movement will tighten the tie wrap 32 about the neck 22 of the bulk bag 18, with the tie-off assembly 30 moving inwardly as it pulls the tie wrap 32 through pivoting movement of the support arm 130 about the axis 132.
When the tie wrap 32 is tightened to a selected degree around the bag neck 22, the knuckle 26 of the tie wrap 32 will press against the slide walls 86a & 86b, as shown in
Once the tie wrap 32 is cut, the springs 96, 102 bias the blades 114, 116 back to a first or ready position. The tie-off assembly 30 is now ready to close off another bulk bag 18 after it is loaded onto and filled by the bulk bag filler 10.
It will be appreciated by those skilled in the art that changes can be made to the embodiment of the invention described above without departing from the broad inventive concept thereof. It is also understood that various portions of the invention can be used alone or in combination and that not all of the components are required for any particular application. It is therefore understood that this invention is not limited to the particular embodiment disclosed, but is intended to cover modifications within the spirit and scope of the present invention.
This application claims the benefit of U.S. Provisional application 60/696,925, filed Jul. 6, 2005, which is incorporated herein by reference as if fully set forth.
Number | Name | Date | Kind |
---|---|---|---|
2267532 | Moberg | Dec 1941 | A |
2488432 | Paynter | Nov 1949 | A |
4062383 | Saito | Dec 1977 | A |
4621479 | Hoyland | Nov 1986 | A |
4934416 | Tonkiss | Jun 1990 | A |
5163482 | Wolcott | Nov 1992 | A |
5174094 | Powell, Jr. | Dec 1992 | A |
5212928 | Scott et al. | May 1993 | A |
5444962 | Bonnet | Aug 1995 | A |
5544466 | Bonnet | Aug 1996 | A |
5628348 | Scott et al. | May 1997 | A |
5647407 | Scott et al. | Jul 1997 | A |
5771664 | Recchia, Jr. | Jun 1998 | A |
5909751 | Teagno | Jun 1999 | A |
5957165 | Watanabe et al. | Sep 1999 | A |
6112499 | Lyskawa et al. | Sep 2000 | A |
6176278 | Gill et al. | Jan 2001 | B1 |
20030005664 | Topfer | Jan 2003 | A1 |
Number | Date | Country | |
---|---|---|---|
20070017185 A1 | Jan 2007 | US |
Number | Date | Country | |
---|---|---|---|
60696925 | Jul 2005 | US |