1. Field of the Invention
The present invention relates generally to equipment for handling food products and other fragile bulk products.
2. Related Art
In food packaging operations, bulk products such as cooked noodles, rice, etc. are frequently transported from the cooking facilities to the packaging facilities via a large container (e.g. 300 liter “bucket”) and dumped into the inlet of a portioning and packaging machine. This machine divides the bulk product into individual portions and places the portions into packages. This sort of operation is widely used for packaging TV dinners and the like.
Many mechanical bulk product portioning and packaging machines cannot receive large quantities of the product all at once, especially where the product is sticky or fragile. This is because of the nature of the products and of bulk product transporting machines. Bulk product transport machines generally include a large tapered hopper into which the product is dumped, with a transport mechanism such as a conveyor or auger at the bottom, to which all product is directed, and which draws the product at some desired rate out of the hopper.
Unfortunately, sticky products tend to bridge across the narrow neck of the hopper, causing the auger or conveyor to “tunnel” through the bottom of the product, thus stopping the flow. This sort of condition requires constant worker attention, which increases the cost of packaging and handling the product. Augers and similar devices can also be damaging to fragile products, and can be dangerous to operators.
It has been recognized that it would be advantageous to develop a product dispensing system that can receive product in relatively large quantities at spaced apart intervals, and dispense the product at a much lower controlled rate.
It has also been recognized that it would be advantageous to have a product dispensing system that is resistant to bridging and clogging of product within a product hopper.
It has also been recognized that it would be advantageous to have a product dispensing system that is gentle to fragile products, such as food products.
In accordance with one embodiment thereof, the present invention provides a bulk product feeding system, including a product hopper, having a bottom, and a ram, positioned in the bottom of the hopper. The hopper has a front end, substantially vertical sidewalls defining a width, and an outlet located at the bottom of the front end. The hopper is configured to receive and hold a bulk quantity of sticky or fragile product, the sidewalls being spaced apart by a distance sufficient to resist bridging of the product. The ram has a width substantially equal to the width of the hopper, and is configured to selectively extend to push product out of the outlet, and to retract to allow product to drop down to the bottom of the hopper.
In accordance with another aspect thereof, the invention provides a product packaging system, including a bulk feeder, and a product measuring and dispensing apparatus. The bulk feeder includes a product hopper with a bottom, and a ram, positioned in the bottom of the hopper. The hopper includes a front end, substantially vertical sidewalls defining a width, and an outlet located at the bottom of the front end, configured to receive and hold a bulk quantity of sticky or fragile product. The sidewalls of the hopper are spaced apart a distance sufficient to resist bridging of the product. The ram has a width substantially equal to the width of the hopper, and is configured to selectively extend to push product out of the outlet, and to retract to allow product to drop down to the bottom of the hopper. The product measuring and dispensing apparatus includes an inlet, positioned to receive the product dispensed from the bulk feeder, and to dispense measured quantities of the product into containers.
In accordance with yet another aspect thereof, the invention provides a method for controllably dispensing a bulk product. The method includes the steps of placing a bulk quantity of the product into a hopper having substantially vertical sidewalls defining a width sufficient to resist bridging of the product, a bottom, a front end, and an outlet located the bottom at the front end, and dispensing a controlled quantity out of the outlet of the hopper with a reciprocal ram positioned in the bottom of the hopper.
Additional features and advantages of the invention will be apparent from the detailed description which follows, taken in conjunction with the accompanying drawings, which together illustrate, by way of example, features of the invention, and wherein:
Reference will now be made to exemplary embodiments illustrated in the drawings, and specific language will be used herein to describe the same. It will nevertheless be understood that no limitation of the scope of the invention is thereby intended. Alterations and further modifications of the inventive features illustrated herein, and additional applications of the principles of the inventions as illustrated herein, which would occur to one skilled in the relevant art and having possession of this disclosure, are to be considered within the scope of the invention.
The inventors have developed a bulk feeding system that allows sticky or fragile products, such as food products, to be loaded in bulk into a feed hopper for a product packaging system, and which avoids or reduces some problems, such as tunneling and damage to the product, that are common with augers or conveyors and other bulk product transport devices. One embodiment of a bulk feeding system 10 is shown in
In use, bulk product 30 is dumped into the inlet 12 of the hopper 11 in large batches, and is pushed out of the outlet 14 opening by the ram 16 at a controlled rate. When the ram retracts (i.e. pulls partially out of the hopper), the bulk product falls down into the bottom of the hopper. When the ram is extended forward, product is pushed out of the outlet. The top surface of the ram is flat and smooth so that the ram can slide beneath the product in the hopper during its extension phase, and so that product cannot become trapped behind the ram during the retraction phase. The ram can vary from about ½ inch high to about 6 inches high, depending upon the product flow and desired feed rate. Where food products are to be dispensed, the bulk feeder (e.g. the hopper, ram, etc.) can be made of food grade acceptable stainless steels and plastics.
A view of the forward end of the hopper 11 and ram 16 is shown in
The outlet 14 can include an adjustable choke plate 26 that can be raised or lowered within the outlet opening and secured at a desired elevation (e.g. via wing nuts 28) to allow the size of the outlet opening to be adjusted. The outlet opening can vary from approximately the same height as the ram 16, up to about 6 times the height of the ram. In addition, a given bulk feeding system can be provided with multiple rams of different heights, allowing a user to interchange the ram at will to use a different ram for a different product, with the height of the outlet adjusted accordingly. The size of the outlet opening and how much clearance is provided around the forward face of the ram at maximum extension are factors that can vary depending upon the nature of the product being discharged. Typically, the outlet of the hopper is slightly higher than the ram, so that if the ram is fully extended (i.e. extended so that the forward face 22 of the ram becomes substantially aligned with the forward wall 24 of the hopper) any product that might be hanging in the outlet opening will not be cut off.
Side, cross-sectional views of one embodiment of a bulk feeding system 10 having a hopper and ram like that of
Referring back to
Compressed air is provided to the pneumatic cylinder via air lines 56, 58. A system controller (not shown) can control the compressed air that is provided to the pneumatic cylinder (and control valves, etc.) to allow the direction, speed, and other aspects of the motion of the ram 16 to be very accurately controlled. For example, the ram can be caused to extend or retract with a pulsatile motion, having very long or very short dwell times between pulses. Pulsatile motion can be desirable for inducing vibration into the product to prevent sticking, encourage loosening, etc. A wide variety of other motions can also be provided.
The system shown in
A ram cover 68 can also be provided to encase the ram and cover at least some of the moving parts associated with it. This cover can also help to protect the ram from damage and from contact with foreign materials. For example, since the ram comes into direct contact with the product that is dispensed from the hopper 10, it can be desirable to protect the ram from dirt or debris that might contaminate a food product.
Two exemplary installations of bulk feeding systems 10 are shown in
As an alternative to the horizontal conveyor 60 shown in
The bulk feeding system 10 can also include a product separator device that helps to break up and loosen product as the ram retracts. Some bulk products, especially sticky food products such as cooked noodles, rice, etc., can tend to stick or clump together, especially when located near the bottom of a hopper filled with the product. The inventors have found that the motion of the bulk feeding ram can be used to help break up and loosen the product so that it will be easier to discharge from the bulk feeding system. One embodiment of a product separator device is shown in
The pivot mount 92 can be provided with a stop (not shown) so that the rake 90 will pivot between an approximately upright position, shown in
A cross-sectional view of another embodiment of a bulk feeding system is shown in
The upper and lower support pins 170, 172 can be selectively positionable within a series of mounting holes 171, 173, respectively. This allows the positions of the support pins to be adjusted so that the position and slope of the baffle can vary. The desired position and slope of the baffle within the hopper 11I can vary depending upon the nature of the product that is to be dispensed with the bulk-feeding system. It will be apparent that other methods for adjustably attaching a baffle or comparable device within the hopper can be used, as can other systems for selectively adjusting the internal geometry and volume of the hopper. It should also be noted that a fixed baffle can be disposed in the hopper, as an alternative to an adjustable one. A fixed baffle can have the effect of structurally stiffening the hopper, though it does not have the flexibility of use of the adjustable baffle.
In the embodiment depicted in
The invention thus provides a system that dispenses bulk products that may be sticky and/or fragile (e.g. not suitable for auger or direct conveyor withdrawal), and also allows the input of large quantities, while dispensing small quantities at a controlled rate. In various embodiments produced and tested by the inventors, the feeder can deliver product at a rate of more than 1,000 gallons per hour or 4,000 lbs. per hour, depending upon the nature of the product. The configuration of the hopper and ram prevents bridging and sticking of the product, thus allowing large quantities to be placed into the hopper while not requiring worker attention to prevent clogs, etc. Additionally, controlling the rate of extension of the ram allows control of the rate of dispensing of the product out of the bulk feeding system.
It is to be understood that the above-referenced arrangements are illustrative of the application of the principles of the present invention. It will be apparent to those of ordinary skill in the art that numerous modifications can be made without departing from the principles and concepts of the invention as set forth in the claims.