The present invention generally relates to systems for storing, cooling and dispensing fluids and, more particularly, to an improved bulk liquid cooling and pressurized dispensing system and method.
It is well known that cryogenic liquids, or liquids having similar properties, have found great use in industrial refrigeration and freezing applications. For example, liquid carbon dioxide has found use as a commercial refrigerant due to its inert (does not react with plastic) and non-toxic nature and desirable range of refrigeration temperatures. It is typically stored at a pressure of 300 psig and a corresponding equilibrium temperature of approximately 0° F. and then, during dispensing, expanded at atmospheric pressure where it transforms into solid phase CO2 “snow” or dry ice and CO2 vapor. In addition to providing refrigeration, it may also be used in various processes to freeze food items such as hamburger patties or chicken nuggets and the like for shipping and/or storage.
When dispensing the liquid CO2 at pressures around 300 psig, it is known that lowering the temperature below 0° F., in other words, subcooling the liquid, produces a larger percentage of CO2 snow and a smaller percentage of CO2 vapor. As a result, a dispensing system derives higher efficiency by being able to deliver subcooled, high pressure CO2. The corresponding economic advantage increases as the temperature of the liquid CO2 decreases.
In recognition of the above, the system of U.S. Pat. No. 4,888,955 to Tyree, Jr. et al. was developed. The system of the Tyree '955 patent stores liquid CO2 in an insulated tank having a height greater than its internal diameter. A pressure of approximately 300 psig is maintained in the head space of the tank via condensation of vapor therein. Liquid CO2 is withdrawn from the upper portion of the tank and is subcooled outside of the tank by a heat exchanger of an external refrigeration system. The resulting subcooled CO2 liquid is returned to the bottom portion of the tank so that stratification of the CO2 in the tank occurs and a thermocline region is created within the bottom portion of the tank. Subcooled liquid CO2 may then be dispensed from the bottom of the tank due to the approximate 300 psig pressure within the top portion of the tank. The refrigeration system operates during “off hours” to replenish the termocline region with subcooled CO2.
While the system of the Tyree '955 patent performs well, some food freezing applications do not permit off hours between refills of liquid CO2. It is therefore desirable to provide a system that can operate continuously between refills, and even during refills, of liquid CO2. Furthermore, the ability to reduce the migration of the chilled liquid from the bottom portion of the tank to the warmer liquid in the top portion of the tank, beyond the insulation provided by stratification, would allow the system to operate more efficiently. This would result in less liquid CO2 usage and a smaller compressor in the refrigeration system.
An embodiment of the system of the present invention is indicated in general at 10 in
When used for food freezing and/or refrigeration processes, the inner tank 14 is preferably constructed of grade T304 stainless steel (food grade). Such an inner tank provides operating temperatures down to −320° F. at pressures of around 350 psig. Outer jacket 16 is preferably constructed of high grade carbon steel. Pre-existing tanks could be retrofitted with stainless steel inner tanks for use in food processing applications of the present invention.
While the invention will be described below in terms of liquid carbon dioxide for use in food refrigeration and/or freezing processes, it should be understood that the invention may be used for other liquids useful in refrigeration and/or freezing related processes, including cryogenic liquids.
As illustrated in
A baffle 30 is positioned within the lower portion of the interior tank 14. The baffle is preferably constructed of stainless steel and has a thickness of approximately 0.105 inches. The baffle features a shallow cone shape and is circumferentially secured to the interior surface of the inner tank 14. The baffle features a number of openings 32 that permit passage of liquid. The functionality of the baffle will be explained below.
An internal heat exchanger coil 34 is positioned in the bottom portion 35 of the tank and is connected by coil inlet line 36 to a refrigeration system 38. A coil outlet line 42 joins the internal heat exchanger coil 34 to the refrigeration system 38 as well. Coil inlet line 36 optionally includes a coil inlet valve 44 while coil outlet line 42 optionally includes a coil outlet valve 46.
While a single coil heat exchanger is indicated at 34 in
A liquid dispensing or feed line 52 exits the bottom 53 of the inner tank 14 and is provided with liquid feed valve 54 and liquid feed check valve 56.
A pressure builder inlet line 60 also exits the bottom portion of the inner tank 14 and connects to the inlet of pressure builder 62. The pressure builder inlet line 60 is provided with a pressure builder inlet valve 64, and automated pressure builder valve 66 and a pressure builder check valve 68. A pressure builder outlet line 72 exits that pressure builder 62 and travels to the top of the inner tank 14. The pressure builder outlet line 72 is provided with a pressure switch 74 and a pressure builder outlet valve 76. As will be explained in greater detail below, the pressure switch 74 is connected to the automated pressure builder valve 66.
In operation, with reference to
The pressure switch 74 senses the pressure in headspace 82 via pressure builder outline line 72. If the pressure is below the target pressure of 300 psig, the pressure switch 74 opens automated pressure builder valve 66 so that liquid CO2 flows to the pressure builder 62. The liquid CO2 is vaporized in the pressure builder and the resulting gas travels through line 72 to the headspace 82 so that the pressure in inner tank 14 is increased. Pressure builder check valve 68 prevents burp backs through the pressure builder inlet line 60 and into the bottom of the tank that could cause undesirable mixing between the liquid CO2 below the baffle and the remaining liquid CO2 above the baffle. Pressure building continues until pressure switch 74 detects the target pressure of 300 psig in the inner tank 14. When the pressure switch detects the pressure of 300 psig, it will close the automated pressure builder valve 66 so that pressure building is discontinued. At this pressure, the liquid CO2 80 will have an equilibrium temperature of approximately 0° F.
The bottom portion of the tank is provided with a temperature sensor 90, such as a thermocouple, that communicates electronically with a temperature controller 92. Sensor 90 can alternatively be a pressure sensor or a saturation bulb. The temperature controller 92 controls operation of the refrigeration system 38 and may be a microprocessor or any other electronic control device known in the art. When the temperature controller detects, via the temperature sensor, a temperature that is higher than the desired or target temperature, it activates the refrigeration system 38. Continuing with the present example, the temperature sensor detects the 0° F. temperature of the liquid CO2 in the inner tank and activates the refrigeration system 38. A refrigerant fluid in liquid form then travels through line 36 to the internal heat exchanger coil 34 and is vaporized so as to subcool the liquid CO2 in the bottom portion of inner tank 14. The vaporized refrigerant fluid travels back to the refrigeration system 38 via line 46 for regeneration. More specifically, the refrigeration system 38 includes a condenser for re-liquefying the refrigerant fluid. As an example only, the refrigerant fluid is preferably R-404A/R-507.
The refrigeration system and internal heat exchanger coil continue to subcool the liquid CO2 in the bottom portion of the inner tank until the target temperature, −40° F. for example, is reached. The temperature controller 92 senses that the target temperature has been reached, via the temperature sensor 90, and shuts down the refrigeration system 38.
Due to stratification in the inner tank and the baffle 30, even though the liquid CO2 below the baffle has been subcooled, the pressure remains at 300 psig for pushing the liquid CO2 from the tank during dispensing. The headspace 82 preferably operates at 300 psig to allow direct replacement of older systems so as not to alter the food freezing equipment set up for 300 psig. More specifically, stratification occurs throughout the liquid CO2 80 between the CO2 gas in the headspace 82 of the inner tank and the subcooled liquid CO2 in the bottom portion of the tank. The baffle assists in the stratification by creating a cold zone in the bottom of the tank that is mostly insulated from the remaining liquid CO2 above the baffle. This improves the efficiency of the internal heat exchanger coil in subcooling the liquid beneath the baffle and inhibits migration of the subcooled liquid into the warmer liquid above the baffle. As a result, the tank holds an inventory of high pressure equilibrium liquid CO2 in the region above the baffle, similar to that available from a conventional high pressure storage vessel, and an inventory of high pressure, subcooled liquid CO2 in the region or zone below the baffle.
As an example only, for a tank having an inner tank height of 29 feet, and an inner tank width of 8 feet, the baffle 30 would ideally be positioned 7 feet from the bottom of the tank. In general, the baffle 30 is preferably positioned approximately 24% of the total height of the inner tank from the bottom of the inner tank or at a level where approximately 30% of the tank volume is below the baffle.
When the tank target pressure and target subcooled liquid temperature have been reached, the liquid feed valve 54 may be opened so that the subcooled liquid CO2 may be dispensed through feed line 52 and expanded at atmospheric pressure to make snow or otherwise used for a food freezing or refrigeration process. In an alternative mode of operation, the liquid feed valve 54 may be left open during filling for operation of the system during filling or prior to full refrigeration at a reduced efficiency. Check valve 56 prevents burp backs through the feed line 52 and into the bottom of the tank that could cause undesirable mixing between the subcooled liquid CO2 and the remaining liquid CO2 above the baffle.
As illustrated in
As illustrated in
It should be noted that alternative automated control arrangements known in the art may be substituted for the temperature sensor and controller 90 and 92 and/or the pressure switch and automated pressure building valve 74 and 66. For example, in an alternative embodiment of the system, a single system programmable logic controller (PLC) is connected to a pressure sensor in the head space 82 of the tank and the temperature sensor 90 so as to control operation of the refrigeration system 38 and the pressure builder 62.
With reference to
It should be noted that liquid may be dispensed to levels lower than 25% above the baffle, but the heat exchanger coil 34 may become less efficient as the liquid level drops lower than the coil.
A tanker truck, or other liquid CO2 delivery source, is connected to the fill vent line 20 and the liquid fill line 22 via fill connections 102. Fill vent valve 24 and liquid fill valve 26 are opened so that the inner tank 14 is refilled with liquid CO2.
As an alternative to shutting feed valve 54, when the level of liquid CO2 in the tank reaches the level 20% above the baffle, 32, the tanker truck, or other CO2 liquid delivery source, may be connected to fill connections 102, and the dispensing of liquid CO2 may continue uninterrupted. The pressure builder 62 and refrigeration system 38 and coil 34 operate under the direction of the pressure switch 74 and automated pressure building valve 66 and the temperature sensor 90 and temperature controller 92 as described above to maintain the approximate 300 psig pressure and −40° F. temperature (below baffle 30) within inner tank 14. As a result, the system permits the delivery of subcooled liquid CO2 to continue uninterrupted.
As noted previously, the baffle 30 helps separate the liquid underneath the baffle from the liquid above so that the liquid below is not disturbed. This increases the efficiency in creating and maintaining the subcooled state of the liquid CO2 below the baffle. Positioning the fill line opening 104 of the liquid fill line 22 above the baffle helps prevent the incoming liquid CO2 from disturbing the subcooled liquid CO2 under the baffle, which further aids in increasing efficiency in creating and maintaining the subcooled state of the liquid CO2 below the baffle.
An example of a suitable pressure builder 62 is the sidearm CO2 vaporizer available from Thermax Inc. of South Dartmouth, Mass. An example of a suitable refrigeration system 38 is the Climate Control model no. CCU1030ABEX6D2 condensing unit available from Heatcraft Refrigeration Products, LLC of Stone Mountain, Ga.
While the baffle of
As yet another alternative embodiment of the baffle, the baffle takes the form of a plurality of glass or STYROFOAM insulation beads, indicated in phantom at 138 in
By dispensing subcooled liquid CO2, the present invention improves snow yield when the liquid is expanded to ambient pressure, as illustrated in
The increase in snow yield and refrigeration capacity of the invention results in less carbon dioxide consumption. As a result, there is less CO2 gas delivered to the environment, which makes the system and method of the invention a “green” technology. In addition, the baffle of the system increases the efficiency of the refrigeration system in subcooling the liquid CO2 below the baffle. This permits smaller, and thus more efficient, compressors to be used in the refrigeration system.
While the preferred embodiments of the invention have been shown and described, it will be apparent to those skilled in the art that changes and modifications may be made therein without departing from the spirit of the invention, the scope of which is defined by the appended claims.
This application claims priority to provisional patent application No. 61/376,884, filed Aug. 25, 2010, currently pending.
Number | Date | Country | |
---|---|---|---|
61376884 | Aug 2010 | US |