The present disclosure is relates to Ni—P—B alloys bearing Mn and optionally Cr and/or Mo, capable of forming a metallic glass, and in some aspects bulk metallic glass rods with diameters at least 1 mm and as large as 5 mm or larger.
European Patent Application 0161393 by O'Handley (1981), entitled “Low Magnetostriction Amorphous Metal Alloys”, discloses Ni—Co-based alloys bearing, among other elements, Mn, Cr, P, B, that are capable of forming ultra-thin magnetic objects that are partially amorphous. Alloys disclosed therein that included Mn and Cr had to also include Co, as the O'Handley alloys were designed to create magnetic materials and Co is the only element included in the O'Handley alloys that would make the partially amorphous material magnetic. O'Handley's magnetic materials were only formed in the form of ultra-thin ribbons, splats, wires, etc., and required ultra-high cooling rates (on the order of 105 K/s) to partially form the amorphous phase.
Bulk-glass forming Ni—Cr—Nb—P—B glasses capable of forming bulk metallic glass rods with diameters of 3 mm or greater have been disclosed in the following applications: U.S. patent application Ser. No. 13/592,095, entitled “Bulk Nickel-Based Chromium and Phosphorous Bearing Metallic Glasses”, filed on Aug. 22, 2012, and U.S. Patent Application No. 61/720,015, entitled “Bulk Nickel-Based Chromium and Phosphorous Bearing Metallic Glasses with High Toughness”, filed on Oct. 30, 2012, the disclosures of which are incorporated herein by reference in their entirety. In these applications, Ni-based compositions with a Cr content of between 5 and 9 atomic percent, Nb content of between 3 and 4 atomic percent, B content of about 3 atomic percent, and P content of about 16.5 atomic percent, are capable of forming bulk metallic glass rods with diameters as large as 11 mm or larger. In these earlier applications it was also disclosed that Mn can partially substitute Ni and/or Cr without significantly affecting glass-forming ability.
Bulk-glass forming Ni—Cr—Ta—P—B glasses capable of forming bulk metallic glass rods with diameters of 3 mm or greater have been disclosed in another recent application: U.S. Patent Application No. 61/726,740, entitled “Bulk Nickel-Phosphorus-Boron Glasses bearing Chromium and Tantalum”, filed on Nov. 15, 2012, the disclosures of which is incorporated herein by reference in its entirety. In that earlier application, Ni-based compositions with a Cr content of between 6 and 10 atomic percent, Ta content of between 2.5 and 3 atomic percent, B content of about 3 atomic percent, and P content of about 16.5 atomic percent, were capable of forming bulk metallic glass rods with diameters as large as 7 mm or larger. In this earlier application it was also disclosed that up to 2 atomic percent of Mn can be included in the composition as a replacement for either Ni or Cr without significantly affecting glass-forming ability.
U.S. Patent Application No. 61/847,955, entitled “Bulk Nickel-Phosphorus-Boron Glasses bearing Molybdenum and Niobium”, filed on Oct. 8, 2013, the disclosure of which is incorporated herein by reference in its entirety, disclosed In another application, glass forming Ni—Mo—Nb—P—B alloys. Those alloys comprise Mo in the range of 1 to 5 atomic percent, Nb in the range of 3 to 5 atomic percent, P in the range of 16 to 17 atomic percent, and B in the range of 2.75 and 3.75 atomic percent. In this earlier application it was disclosed that an addition of Mn of up to 2 atomic percent may improve the glass-forming ability of those alloys.
The Ni—Cr—Nb—P—B and Ni—Cr—Ta—P—B bulk-glass forming compositions in earlier disclosures demonstrate good glass forming ability (GFA), high strength and hardness, adequately high toughness and corrosion resistance. These attributes, combined with the low cost and abundance of elements Ni, Cr, P, and B, point to a potential for widespread engineering applications. However, elements Nb and Ta are relatively expensive. Moreover, Nb and Ta are not widely abundant such that their supply is limited and not necessarily secured enough for ultra-high volume manufacturing. The present disclosure provides metallic glass forming alloys that substitute Nb or Ta for more widely abundant and less expensive element(s), and without considerably degrading the bulk-glass forming ability and mechanical and chemical properties demonstrated by the Nb and Ta bearing alloys.
The present disclosure is directed to Ni—P—B alloys bearing Mn and optionally Cr and Mo that are capable of forming a metallic glass, and in some aspects metallic glass rods with diameters of at least 1 mm, and/or as large as 5 mm, or larger. The present disclosure is also directed to metallic glasses formed of the alloys.
In one aspect, the disclosure is directed to an alloy or metallic glass represented by the following formula (subscripts denote atomic percentages):
Ni(100-a-b-c)MnaXbPc-dBd (1)
In various aspects, the critical rod diameter of the alloys is at least 1 mm.
In another embodiment b is at least 1, and the alloy also comprises Nb and or Ta at a combined atomic concentration of less than 1 percent.
In another embodiment X is Cr and b is at least 3, or X is Mo and b is at least 1, and the combined atomic concentration of Nb and Ta is less than 1 percent.
In another embodiment b=0, and the alloy also comprises Nb and or Ta at a combined atomic concentration of less than 0.5 percent.
In another embodiment, up to 1 atomic percent of P is substituted by Si.
In another embodiment, up to 50 atomic percent of Ni is substituted by Co.
In another embodiment, up to 30 atomic percent of Ni is substituted by Fe.
In another embodiment, up to 10 atomic percent of Ni is substituted by Cu.
In another embodiment, the alloy comprises Ge, V, Sn, W, Ru, Re, Pd, Pt, or combinations thereof at combined atomic concentration of up to 2 percent.
In another embodiment, b=0, a is at least 2 and up to 9.5, c is between 16.5 and 21.5, d is between 1 and 6.5.
In another embodiment, b=0, a is between 3 and 8, and wherein the critical rod diameter is at least 2 mm.
In another embodiment, b=0, a is between 6 and 7.5 and the critical rod diameter is at least 3 mm.
In another embodiment, b=0, c is between 17.25 and 20.75 and the critical rod diameter is at least 2 mm.
In another embodiment, b=0, c is between 18.5 and 20.25 and the critical rod diameter is at least 3 mm.
In another embodiment, b=0, c is between 18.75 and 19.75 and the critical rod diameter is at least 4 mm.
In another embodiment, b=0, d is between 1.75 and 5.75 and the critical rod diameter is at least 2 mm.
In another embodiment, b=0, d is between 2.5 and 3.75 and the critical rod diameter is at least 3 mm.
The disclosure is also directed to a metallic glass or alloy selected from Ni78.5Mn2P16.5B3, Ni78Mn2.5P16.5B3, Ni77Mn3.5P16.5B3, Ni75.5Mn5P16.5B3, Ni74.5Mn6P16.5B3, Ni74Mn6.5P16.5B3, Ni73.5Mn7P16.5B3, Ni73Mn7.5P16.5B3, Ni72.5Mn8P16.5B3, Ni71.5Mn9P16.5B3, Ni73.5Mn7P18B1.5, Ni73.5Mn7P17.5B2, Ni73.5Mn7P17B2.5, Ni73.5Mn7P16B3.5, Ni73.5Mn7P15.5B4, Ni73.5Mn7P15B4.5, Ni73.5Mn7P14.5B5, Ni73.5Mn7P14B5.5, Ni73.5Mn7P13.5B6, Ni75.78Mn7.22P14.38B2.62, Ni75.33Mn7.17P14.81B2.69, Ni74.87Mn7.13P15.23B2.77, Ni74.41Mn7.09P15.65B2.85, Ni73.96Mn7.04P16.08B2.92, Ni73.73Mn7.02P16.29B2.96, Ni73.04Mn6.96P16.92B3.08, Ni72.59Mn6.91P17.35B3.15, and Ni72.13Mn6.87P17.77B3.23.
In another aspect, the present disclosure is directed to metallic glasses, and alloys capable of forming metallic glasses where the parameter b in Eq. 1 is greater than 0.
In some aspects, the disclosure is directed to an alloy and/or a metallic glass represented by the following formula (subscripts denote atomic percent):
Ni(100-a-b1-b2-c-d)MnaCrb1Mob2PcBd (2)
In various embodiments, the critical rod diameter of the alloy is at least 1 mm.
In another embodiment, a is between 2.25 and 3.75, b1 is between 5 and 10, b2 is up to 2, c is between 15.75 to 18, d is between 1.5 and 4.5, and the critical rod diameter of the alloy is at least 2 mm.
In another embodiment, a is between 2.5 and 3.5, b1 is between 6 and 9, b2 is up to 1.5, c is between 16 to 17.75, d is between 2.25 and 3.75, and the critical rod diameter of the alloy is at least 3 mm.
In another embodiment, a is between 2.75 and 3.25, b1 is between 6 and 8, b2 is between 0.75 and 1.25, c is between 16 to 17.25, d is between 2.5 and 3.5, and the critical rod diameter of the alloy is at least 4 mm.
In another embodiment, the sum of c and d is between 18.5 and 20.5, and the critical rod diameter of the alloy is at least 2 mm.
In another embodiment, the sum of c and d is between 19 and 20, and the critical rod diameter of the alloy is at least 3 mm.
In yet another embodiment of any of the foregoing, up to 1 atomic percent of P is substituted by Si.
In yet another embodiment of any of the foregoing, up to 2 atomic percent of Cr is substituted by Fe, Co, W, Ru, Re, Cu, Pd, Pt, or a combination thereof.
In yet another embodiment, up to 2 atomic percent of Ni is substituted by Fe, Co, W, Ru, Re, Cu, Pd, Pt, or combinations thereof.
In yet another embodiment, the melt is fluxed with a reducing agent prior to rapid quenching.
In yet another embodiment, the temperature of the melt prior to quenching is at least 100° C. above the liquidus temperature of the alloy.
In yet another embodiment, the temperature of the melt prior to quenching is at least 1100° C.
In yet another embodiment, the stress intensity factor at crack initiation when measured on a 3 mm diameter rod containing a notch with length between 1 and 2 mm and root radius between 0.1 and 0.15 mm is at least 60 MPa m1/2.
In yet another embodiment, a wire made of such metallic glass having a diameter of 1 mm can undergo macroscopic plastic deformation under bending load without fracturing catastrophically.
The disclosure is also directed to metallic glass compositions or alloy compositions Ni69Cr8.5Mn3P17.5B2, Ni69Cr8.5Mn3P17B2.5, Ni69Cr8.5Mn3P16.5B3, Ni69Cr8.5Mn3P16B3.5, Ni69Cr8.5Mn3P15.5B4, Ni69Cr9Mn2.5P16.5B3, Ni69Cr8.75Mn2.75P16.5B3, Ni69Cr8.25Mn3.25P16.5B3, Ni69Cr8Mn3.5P16.5B3, Ni72Cr5.5Mn3P16.5B3, Ni71Cr6.5Mn3P16.5B3, Ni70Cr7.5Mn3P16.5B3, Ni68Cr9.5Mn3P16.5B3, Ni69.5Cr8.5Mn3P16B3, Ni69.5Cr8Mn3P16.5B3, Ni68.5Cr8.5Mn3P17B3, Ni68Cr8.5Mn3P17.5B3, Ni71Cr6.5Mn3.5P16.5B3, Ni70.25Cr7Mn3.25P16.5B3, Ni69.83Cr5Mn3.17P16.5B3, Ni69.42Cr8Mn3.08P16.5B3, Ni69.6Cr8Mn2.9P16.5B3, Ni68.5Cr8.5Mn3P16.5B3Si0.5, Ni69Cr8.5Mn3P15.5B3Si1, Ni69Cr8Mn3Mo0.5P16.5B3, Ni69Cr7.5Mn3Mo1P16.5B3, Ni69Cr7Mn3Mo1.5P16.5B3, and Ni69Cr6.5Mn3Mo2P16.5B3.
The disclosure is further directed to a metallic glass having any of the above formulas and/or formed of any of the foregoing alloys.
Additional embodiments and features are set forth in part in the description that follows, and in part will become apparent to those skilled in the art upon examination of the specification or may be learned by the practice of the disclosed subject matter. A further understanding of the nature and advantages of the present disclosure may be realized by reference to the remaining portions of the specification and the drawings, which forms a part of this disclosure.
The description will be more fully understood with reference to the following figures and data graphs, which are presented as various embodiments of the disclosure and should not be construed as a complete recitation of the scope of the disclosure.
The present disclosure is directed to alloys, metallic glasses, and methods of making and using the same. In some aspects, the alloys are described as capable of forming metallic glasses having certain characteristics. It is intended, and will be understood by those skilled in the art, that the disclosure is also directed to metallic glasses formed of the disclosed alloys described herein.
Description of Alloy Compositions
In accordance with the provided disclosure and drawings, Ni—Mn—P—B alloys optionally containing Cr and Mo are capable of forming metallic glasses. In some aspects, the alloys have glass-forming ability comparable to the Ni—Cr—Nb—P—B, Ni—Cr—Ta—P—B, and Ni—Mo—Nb—P—B alloys. Specifically, in one aspect, the disclosure is directed to alloys and/or metallic glasses represented by the following formula (subscripts denote atomic percentages):
Ni(100-a-b-c)MnaXbPc-dBd (1)
where:
In various aspects, the critical rod diameter of the alloy is at least 1 mm.
In another aspect, the alloys can be Ni-based alloys with a Mn content of between 0.5 and 10 atomic percent, a total metalloid content (i.e. the sum of P and B atomic concentrations) of between 14 and 24 atomic percent, and B content of between 1 and 6.5 atomic percent. In further aspects, the alloys have a Mn content of about 6 to 7.5 atomic percent, P content of about 16 to 16.5 atomic percent, and B content of about 3 atomic percent.
In the present disclosure, the glass-forming ability of each alloy can be quantified by the “critical rod diameter”, defined as largest rod diameter in which the amorphous phase (i.e. the metallic glass) can be formed when processed by the method of water quenching a quartz tube with 0.5 mm thick wall containing a molten alloy.
In the present disclosure, the term “entirely free” of an element means not more than trace amounts of the element found in naturally occurring trace amounts.
The notch toughness, defined as the stress intensity factor at crack initiation Kq, is the measure of the material's ability to resist fracture in the presence of a notch. The notch toughness is a measure of the work required to propagate a crack originating from a notch. A high Kq ensures that the material will be tough in the presence of defects.
The compressive yield strength, σy, is the measure of the material's ability to resist non-elastic yielding. The yield strength is the stress at which the material yields plastically. A high σy ensures that the material will be strong.
Bending ductility is a measure of the material's ability to deform plastically and resist fracture in bending in the absence of a notch or a pre-crack. A high bending ductility ensures that the material will be ductile in a bending overload.
Sample metallic glasses 1-10 showing the effect of substituting Ni by Mn, according to the formula Ni80.5-xMnxP16.5B3, are presented in Table 1 and
Differential calorimetry scans for sample metallic glasses in which Ni is substituted by Mn are presented in
Sample metallic glasses 7 and 11-19 showing the effect of substituting P by B, according to the formula Ni73.5Mn7P19.5-xBx, are presented in Table 2 and
Differential calorimetry scans for several sample metallic glasses in which P is substituted by B are presented in
Sample metallic glasses 7 and 20-28 showing the effect of varying the metal to metalloid ratio, according to the formula (Ni0.913Mn0.087)100-x(P0.846B0.154)x, are presented in Table 3 and
Differential calorimetry scans for several sample metallic glasses in which the metal to metalloid ratio is varied are presented in
An image of a 5 mm metallic glass rod of example alloy Ni73.73Mn7.02P7.02B2.96 is presented in
The measured notch toughness and yield strength of sample metallic glass Ni73.73Mn7.02P16.29B2.96 are listed along with the critical rod diameter in Table 4. The stress-strain diagram for sample metallic glass Ni73.73Mn7.02P16.29B2.96 is presented in
In various embodiments, the metallic glasses according to the disclosure demonstrate bending ductility. Specifically, under an applied bending load, the metallic glasses are capable of undergoing plastic bending in the absence of fracture for diameters up to at least 1 mm. Optical images of plastically bent metallic glass rods at 1-mm diameter section of sample metallic glass Ni73.73Mn7.02P16.29B2.96 is presented in
In other aspects of the present disclosure, Ni—Mn—P—B alloys containing Cr and optionally a very small fraction of Mo, are capable of forming metallic glasses, and in some aspects bulk metallic glasses having glass-forming ability comparable to the Ni—Cr—Nb—P—B and Ni—Cr—Ta—P—B alloys. In some aspects, the disclosure is directed to a metallic glass comprising an alloy represented by the following formula (subscripts denote atomic percent):
Ni(100-a-b1-b2-c-d)MnaCrb1Mob2PcBd (2)
where:
In certain variations, Ni-based compositions with a Mn content of about 3 atomic percent, Cr content of between 6 and 9 atomic percent, Mo content of up to 2 atomic percent, B content of about 3 atomic percent, and P content of about 16.5 atomic percent, are capable of forming bulk metallic glass rods with diameters of at least 1 mm, 2 mm, 3 mm, 4 mm, and as large as 5 mm or larger.
Sample metallic glasses 29-33 showing the effect of substituting P by B, according to the formula Ni69Cr8.5Mn3P19.5-xBx, are presented in Table 5 and
Differential calorimetry scans for sample metallic glasses in which P is substituted by B are presented in
Sample metallic glasses 31 and 34-38 showing the effect of substituting Ni by Cr, according to the formula Ni77.5-xCrxMn3P16.5B3, are presented in Table 6 and
Differential calorimetry scans for several sample metallic glasses in which Ni is substituted by Cr are presented in
Sample metallic glasses 31, and 39-42 showing the effect of substituting Cr by Mn, according to the formula Ni69Cr11.5-xMnxP16.5B3, are presented in Table 7 and
Differential calorimetry scans for several sample metallic glasses in which Cr is substituted by Mn are presented in
Sample metallic glasses 31 and 43-45 showing the effect of substituting Ni by P, according to the formula Ni85.5-xCr8.5Mn3PxB3, are presented in Table 8 and
An optical image of an amorphous 4 mm rod of example alloy Ni68.5Cr8.5Mn3P17B3 is presented in
Differential calorimetry scans for sample metallic glasses in which Ni is substituted by P are presented in
The critical rod diameters for sample metallic glasses showing the effect of substituting Ni by both Cr and Mn, according to the formula Ni80.5-x-yCrxMnyP16.5B3, are presented in a contour plot in
Sample metallic glasses 31 and 51-54 showing the effect of varying the metal to metalloid ratio, according to the formula (Ni0.857Cr0.106Mn0.037)100-x(P0.846B0.154)x, are presented in Table 10 and
Differential calorimetry scans for metallic glasses in which the metal to metalloid ratio is varied are presented in
Sample metallic glasses 31 and 55-58 showing the effect of substituting Cr by Mo, according to the formula Ni69Cr8.5-xMn3MoxP16.5B3, are presented in Table 11 and
Differential calorimetry scans for example metallic glasses in which Cr is substituted by Mo are presented in
An image of a 5 mm metallic glass rod of example alloy Ni69Cr7.5Mn3Mo1P16.5B3 is presented in
Sample metallic glasses 31 and 59-60 showing the effect of substituting P by Si, according to the formula Ni69Cr8.5Mn3P16.5-xB3Six, are listed in Table 12. As shown, Si substitution of P up to about 1% slightly degrades the glass forming ability of Ni—Cr—Mn—P—B alloys.
The measured notch toughness and yield strength of sample metallic glasses Ni68.5Cr8.5Mn3P17B3 and Ni69Cr7.5Mn3Mo1P16.5B3 are listed along with the critical rod diameter in Table 13. The stress-strain diagrams for sample metallic glasses Ni68.5Cr8.5Mn3P17B3 Ni69Cr7.5Mn3Mo1P16.5B3 are presented in
The metallic glasses demonstrate bending ductility. Specifically, under an applied bending load, the metallic glasses are capable of undergoing plastic bending in the absence of fracture for diameters up to at least 1 mm. Optical images of amorphous plastically bent rods at 1-mm diameter section of example metallic glasses Ni68.5Cr8.5Mn3P17B3 (composition 44) and Ni69Cr7.5Mn3Mo1P16.5B3 (composition 56) are presented in
Lastly, the metallic glasses, Ni—Mn—Cr—Mo—P—B, also exhibit a remarkable corrosion resistance. The corrosion resistance of example metallic glass Ni69Cr7.5Mn3Mo1P16.5B3 (composition 56) is evaluated by immersion test in 6M HCl. A plot of the corrosion depth versus time is presented in
Description of Methods of Processing the Sample Alloys
A method for producing the metallic glasses involves inductive melting of the appropriate amounts of elemental constituents in a quartz tube under inert atmosphere. The purity levels of the constituent elements were as follows: Ni 99.995%, Cr 99.996%, Mo 99.95%, Mn 99.9998%, Si 99.9999%, P 99.9999%, and B 99.5%. A method for producing metallic glass rods from the alloy ingots involves re-melting the ingots in quartz tubes of 0.5-mm thick walls in a furnace at 1100° C. or higher, and particularly between 1200° C. and 1400° C., under high purity argon and rapidly quenching in a room-temperature water bath. In general, amorphous articles from the alloy of the present disclosure can be produced by (1) re-melting the alloy ingots in quartz tubes of 0.5-mm thick walls, holding the melt at a temperature of about 1100° C. or higher, and particularly between 1200° C. and 1400° C., under inert atmosphere, and rapidly quenching in a liquid bath; (2) re-melting the alloy ingots, holding the melt at a temperature of about 1100° C. or higher, and particularly between 1200° C. and 1400° C., under inert atmosphere, and injecting or pouring the molten alloy into a metal mold, particularly made of copper, brass, or steel. Optionally, prior to producing an amorphous article, the alloyed ingots can be fluxed with a reducing agent by re-melting the ingots in a quartz tube under inert atmosphere, bringing the alloy melt in contact with the molten reducing agent and allowing the two melts to interact for about a time period of 1000 seconds at a temperature of about 1100° C. or higher, and subsequently water quenching.
Test Methodology for Measuring Notch Toughness
The notch toughness of sample metallic glasses was performed on 3-mm diameter rods. The rods were notched using a wire saw with a root radius of between 0.10 and 0.13 μm to a depth of approximately half the rod diameter. The notched specimens were placed on a 3-point bending fixture with span distance of 12.7 mm and carefully aligned with the notched side facing downward. The critical fracture load was measured by applying a monotonically increasing load at constant cross-head speed of 0.001 mm/s using a screw-driven testing frame. At least three tests were performed, and the variance between tests is included in the notch toughness plots. The stress intensity factor for the geometrical configuration employed here was evaluated using the analysis by Murakimi (Y. Murakami, Stress Intensity Factors Handbook, Vol. 2, Oxford: Pergamon Press, p. 666 (1987)).
Test Methodology for Measuring Yield Strength
Compression testing of sample metallic glasses was performed on cylindrical specimens 3 mm in diameter and 6 mm in length by applying a monotonically increasing load at constant cross-head speed of 0.001 mm/s using a screw-driven testing frame. The strain was measured using a linear variable differential transformer. The compressive yield strength was estimated using the 0.2% proof stress criterion.
Test Methodology for Measuring Corrosion Resistance
The corrosion resistance of sample metallic glasses was evaluated by immersion tests in hydrochloric acid (HCl). A rod of metallic glass sample with initial diameter of 2.97 mm, and a length of 14.77 mm was immersed in a bath of 6M HCl at room temperature. The density of the metallic glass rod was measured using the Archimedes method to be 7.751 g/cc. The corrosion depth at various stages during the immersion was estimated by measuring the mass change with an accuracy of ±0.01 mg. The corrosion rate was estimated assuming linear kinetics.
Having described several embodiments, it will be recognized by those skilled in the art that various modifications, alternative constructions, and equivalents may be used without departing from the spirit of the disclosure. Those skilled in the art will appreciate that the presently disclosed embodiments teach by way of example and not by limitation. Therefore, the matter contained in the above description or shown in the accompanying drawings should be interpreted as illustrative and not in a limiting sense. Additionally, a number of well-known processes and elements have not been described in order to avoid unnecessarily obscuring the disclosure. The following claims are intended to cover all generic and specific features described herein, as well as all statements of the scope of the present method and system, which, as a matter of language, might be said to fall therebetween.
The present application claims the benefit of U.S. Provisional Patent Application No. 61/769,707, entitled “Bulk Nickel-Phosphorus-Boron Glasses Bearing Chromium and Manganese”, filed on Feb. 26, 2013, which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3856513 | Chen et al. | Dec 1974 | A |
4116682 | Polk | Sep 1978 | A |
4126284 | Ichikawa et al. | Nov 1978 | A |
4144058 | Chen et al. | Mar 1979 | A |
4152144 | Hasegawa et al. | May 1979 | A |
4385932 | Inomata et al. | May 1983 | A |
4582536 | Raybould | Apr 1986 | A |
4892628 | Guilinger | Jan 1990 | A |
4900638 | Emmerich | Feb 1990 | A |
4968363 | Hashimoto et al. | Nov 1990 | A |
5338376 | Liu et al. | Aug 1994 | A |
5429725 | Thorpe et al. | Jul 1995 | A |
5634989 | Hashimoto et al. | Jun 1997 | A |
6004661 | Sakai et al. | Dec 1999 | A |
6303015 | Thorpe | Oct 2001 | B1 |
6325868 | Kim et al. | Dec 2001 | B1 |
6695936 | Johnson | Feb 2004 | B2 |
8052923 | Langlet | Nov 2011 | B2 |
8287664 | Brunner | Oct 2012 | B2 |
20050263216 | Chin et al. | Dec 2005 | A1 |
20060213586 | Kui | Sep 2006 | A1 |
20070175545 | Urata | Aug 2007 | A1 |
20090110955 | Hartmann et al. | Apr 2009 | A1 |
20120073710 | Kim et al. | Mar 2012 | A1 |
20120168037 | Demetriou et al. | Jul 2012 | A1 |
20130048152 | Na et al. | Feb 2013 | A1 |
20130263973 | Kurahashi et al. | Oct 2013 | A1 |
20140213384 | Johnson et al. | Jul 2014 | A1 |
20150047755 | Na et al. | Feb 2015 | A1 |
20150158126 | Hartmann et al. | Jun 2015 | A1 |
20150159242 | Na et al. | Jun 2015 | A1 |
20150176111 | Na et al. | Jun 2015 | A1 |
20150197837 | Schramm et al. | Jul 2015 | A9 |
20150240336 | Na et al. | Aug 2015 | A1 |
Number | Date | Country |
---|---|---|
1354274 | Jun 2002 | CN |
1653200 | Aug 2005 | CN |
3929222 | Mar 1991 | DE |
10 2011 001 784 | Oct 2012 | DE |
102011001783 | Oct 2012 | DE |
0014335 | Aug 1980 | EP |
0161393 | Nov 1985 | EP |
0260706 | Mar 1988 | EP |
1077272 | Feb 2001 | EP |
1108796 | Jun 2001 | EP |
1522602 | Apr 2005 | EP |
54-76423 | Jun 1979 | JP |
S55-148752 | Nov 1980 | JP |
S57-13146 | Jan 1982 | JP |
63-079930 | Apr 1988 | JP |
63079931 | Apr 1988 | JP |
63-277734 | Nov 1988 | JP |
1-205062 | Aug 1989 | JP |
08-269647 | Oct 1996 | JP |
11-71659 | Mar 1999 | JP |
2001-049407 | Feb 2001 | JP |
2007-075867 | Mar 2007 | JP |
WO 2012053570 | Apr 2012 | WO |
WO 2013028790 | Feb 2013 | WO |
Entry |
---|
U.S. Appl. No. 14/501,779, filed Sep. 30, 2014, Na et al. |
U.S. Appl. No. 14/824,733, filed Aug. 12, 2015, Na et al. |
U.S. Appl. No. 14/797,878, filed Jul. 13, 2015, Na et al. |
U.S. Appl. No. 14/029,719, filed Sep. 17, 2013, Na et al. |
U.S. Appl. No. 14/048,894, filed Oct. 8, 2013, Na et al. |
U.S. Appl. No. 14/067,521, filed Oct. 30, 2013, Na et al. |
U.S. Appl. No. 14/077,830, filed Nov. 12, 2013, Na et al. |
U.S. Appl. No. 14/149,035, filed Jan. 7, 2014, Na et al. |
Habazaki et al., “Preparation of corrosion-resistant amorphous Ni—Cr—P—B bulk alloys containing molybdenum and tantalum,” Material Science and Engineering, A304-306, 2001, pp. 696-700. |
Zhang et al., “The Corrosion Behavior of Amorphous Ni—Cr—P Alloys in Concentrated Hydrofluoric Acid,” Corrosion Science, vol. 33, No. 10, pp. 1519-1528, 1992. |
Katagiri et al., “An attempt at preparation of corrosion-resistant bulk amorphous Ni—Cr—Ta—Mo—P—B alloys,” Corrosion Science, vol. 43, No. 1, pp. 183-191, 2001. |
Habazaki et al., “Corrosion behaviour of amorphous Ni—Cr—Nb—P—B bulk alloys in 6M HCI solution,” Material Science and Engineering, A318, 2001, pp. 77-86. |
Murakami (Editor), Stress Intensity Factors Handbook, vol. 2, Oxford: Pergamon Press, 1987, 4 pages. |
Yokoyama et al., “Viscous Flow Workability of Ni—Cr—P—B Metallic Glasses Produced by Melt-Spinning in Air,” Materials Transactions, vol. 48, No. 12, 2007, pp. 3176-3180. |
Park T.G. et al., “Development of new Ni-based amorphous alloys containing no metalloid that have large undercooled liquid regions,” Scripta Materialia, vol. 43, No. 2, 2000, pp. 109-114. |
Mitsuhashi A. et al., “The corrosion behavior of amorphous nickel base alloys in a hot concentrated phosphoric acid,” Corrosion Science, vol. 27, No. 9, 1987, pp. 957-970. |
Kawashima A. et al., “Change in corrosion behavior of amorphous Ni—P alloys by alloying with chromium, molybdenum or tungsten,” Journal of Non-Crystalline Solids, vol. 70, No. 1, 1985, pp. 69-83. |
Abrosimova G. E. et al., “Phase segregation and crystallization in the amorphous alloy Ni70Mo10P20,” Physics of the Solid State, vol. 40., No. 9, 1998, pp. 1429-1432. |
Yokoyama M. et al., “Hot-press workability of Ni-based glassy alloys in supercooled liquid state and production of the glassy alloy separators for proton exchange membrane fuel cell,” Journal of the Japan Society of Powder and Powder Metallurgy, vol. 54, No. 11, 2007, pp. 773-777. |
Rabinkin et al., “Brazing Stainless Steel Using New MBF-Series of Ni—Cr—B—Si Amorphous Brazing Foils: New Brazing Alloys Withstand High-Temperature and Corrosive Environments,” Welding Research Supplement, 1998, pp. 66-75. |
Chen S.J. et al., “Transient liquid-phase bonding of T91 steel pipes using amorphous foil,” Materials Science and Engineering A, vol. 499, No. 1-2, 2009, pp. 114-117. |
Hartmann, Thomas et al., “New Amorphous Brazing Foils for Exhaust Gas Application,” Proceedings of the 4th International Brazing and Soldering Conference, Apr. 26-29, 2009, Orlando, Florida, USA. |
Number | Date | Country | |
---|---|---|---|
20140238551 A1 | Aug 2014 | US |
Number | Date | Country | |
---|---|---|---|
61769707 | Feb 2013 | US |