This application is directed, in general, to the recovery of hydrocarbons, and more particularly to bulkhead igniters with snap-on insulators.
The following discussion of the background is intended to facilitate an understanding of the present disclosure only. It should be appreciated that the discussion is not an acknowledgement or admission that any of the material referred to was part of the common general knowledge at the priority date of the application.
Oil and gas wells are drilled into earth formations by first creating a borehole and then running and cementing casing in the borehole. Well tools such as bridge plugs, packers, cement retainers, and frac plugs are often run into cased wells and set using setting tools powered by flammable power charges. At times, an electrical signal or communications are sent downhole through various components. While practices and equipment have been developed to enable such signals or communications, improvements are desired.
According to an illustrative embodiment, a bulkhead igniter assembly includes a bulkhead igniter having a first end and a second end, a pressure block having a first end and a second end, a setting tool having a first end and a second end, a downhole component having a first end and a second end, and a snap-on insulator. The first end of the bulkhead igniter is formed with at least one ridge or groove and is disposed within a cavity of the pressure block. The pressure block is at least partially disposed within a cavity of the setting tool located proximate to the first end of the setting tool. The second end of the downhole component is attached to the first end of the setting tool or to the first end of the pressure block and the second end of the downhole component is disposed proximate to the first end of the bulkhead igniter. The snap-on insulator includes an annular body having a tubular channel through a center portion. The snap-on insulator has a first end and a second end and an interior of the tubular channel is formed with a ridge or a groove that is sized and configured to be a complimentary member to the ridge or groove on the first end of the bulkhead igniter, whereby the snap-on insulator is held in place on the bulkhead igniter by interaction of the ridge or groove of the snap-on insulator with the ridge or groove on the first end of the bulkhead igniter. The snap-on insulator is formed from a material that allows for enough flexibility for a ridge-and-groove coupling to occur so that the snap-on insulator may be installed onto the bulkhead igniter by pressing the snap-on insulator onto the bulkhead igniter to engage the ridge or groove of the snap-on insulator with the ridge or groove of the first end of the bulkhead igniter, and the snap-on insulator is formed from a material that will not conduct electricity.
According to an illustrative embodiment, a bulkhead igniter assembly includes a bulkhead igniter having a first end and a second end, a pressure block having a first end and a second end, and a snap-on insulator. The first end of the bulkhead igniter is formed with at least one ridge or groove. The bulkhead igniter is disposed within a cavity of the pressure block. The snap-on insulator is attached to the first end of the bulkhead igniter, and includes an annular body having a tubular channel through a center portion. The snap-on insulator has a first end and a second, and an interior of the tubular channel is formed with a ridge or a groove that is sized and configured to be a complimentary member to the ridge or groove on the first end of the bulkhead igniter. The snap-on insulator is held in place on the bulkhead igniter by interaction of the ridge or groove of the snap-on insulator with the ridge or groove on the first end of the bulkhead igniter, and the snap-on insulator is formed from a material that allows for enough flexibility for a ridge-and-groove coupling to occur so that the snap-on insulator may be installed onto the bulkhead igniter by pressing the snap-on insulator onto the bulkhead igniter to engage the ridge or groove of the snap-on insulator with the ridge or groove on the first end of the bulkhead igniter. The snap-on insulator is formed from a material that will not conduct electricity.
According to an illustrative embodiment, a bulkhead igniter assembly includes a pressure bulkhead having a first end and a second end; an annular protrusion formed on the first end of the pressure bulkhead; a pressure block sized and configured to couple to an interior of a setting tool; and a snap-on insulator sized and configured to couple to the annular protrusion with a snap-on connection. The pressure block is sized and configured to receive and hold the pressure bulkhead. The annular protrusion of the pressure bulkhead is formed with a pin cavity. Other devices, systems, and methods are disclosed herein.
Illustrative embodiments of the present invention are described in detail below with reference to the attached drawing FIGURES, which are incorporated by reference herein and wherein:
In the following detailed description of the preferred embodiments, reference is made to the accompanying drawings that form a part hereof, and in which is shown, by way of illustration, specific embodiments in which the invention may be practiced. These embodiments are described in sufficient detail to enable those skilled in the art to practice the invention, and it is understood that other embodiments may be utilized, and that logical structural, mechanical, electrical, and chemical changes may be made without departing from the spirit or scope of the invention. To avoid detail not necessary to enable those skilled in the art to practice the invention, the description may omit certain information known to those skilled in the art. The following detailed description is, therefore, not to be taken in a limiting sense, and the scope of the present invention is defined only by the claims.
Unless otherwise indicated, as used throughout this document, “or” does not require mutual exclusivity. As used herein, “a” refers to at least one.
In efforts to recover hydrocarbons from the ground, wells 100 are drilled to the desired depth and then must be completed to make the well ready for production. An aspect of this involves applying casing 104 to protect the wellbore 108. The casing 104 is cemented in place and then steps are taken to connect to the desired subterranean formation 112 to extract the hydrocarbons. This may involve plugging the well 100 with a plug 116 delivered by a setting tool 120 and then perforating the casing 104 with a perforating gun assembly 124. The perforation process produces channels 128. In this illustration, the setting tool 120 has disconnected from the plug 116.
Reference is made initially to
A wireline 132 may be used to control the perforation gun assembly 124 and the setting tool 120. The wire line 132 may be electrically coupled to a control interface 136 at the surface 140 and allow an operator to control the sending of electrical signals to the perforating gun assembly 124 or the setting tool 120. In the case of activation of a bulkhead igniter 156 (
Also shown symbolically, a fluid 144 (
In providing an electrical signal from the wire line 132 through the perforating gun assembly 124 and aspects of the setting tool 120, electrical connections should be maintained. In this regard, some components may be anodized. If the anodization is compromised, the setting tool 120, for example, electrical circuits therein may be compromised and may not be properly controlled. One place where an issue has been observed is on a first end (uphole) of a pressure bulkhead igniter (see e.g. 156 in
Referring now primarily to
Referring now primarily to
In some embodiments the pressure block 157 is attached to the setting tool 120 and the second end 192 of the adjacent downhole component 188 is attached to the first end 160 of the setting tool 120. In some embodiments, the second end 192 of the adjacent downhole component 188 is also attached to the first end 161 of the pressure block 157. In some embodiments, the second end 192 of the adjacent downhole component 188 is attached to the first end 161 of the pressure block 157, and the pressure block 157 is attached to the first end 160 of the setting tool 120. In some embodiments, the pressure block 157 is omitted and the igniter 156 is incorporated directly into the setting tool 120. All connections herein referenced may be made by connection methods well known in the art such as threaded connections and quick connect connections.
The adjacent downhole component 188 is electrically coupled to the bulkhead igniter 156 by a conductive spring 165 and a conductive pin 167. At the time of assembly of the adjacent downhole component 188 to the setting tool 120, the spring 165 is extended and the pin 167 is inserted into and secured within a pin cavity 169 located on the first end 180 of the bulkhead igniter 156. The spring 165 and the pin 167, both being made of conductive material, provide a way of sending electrical current from the adjacent downhole component 188 to the bulkhead igniter 156. The electrical circuit through the bulkhead igniter 156 is completed by a grounding member 171, which extends from the sides of the bulkhead igniter 156 proximate to the second end 184 of the bulkhead igniter 156, but could be elsewhere. The grounding member 171 is made from a material capable of conducting electricity and contacts the pressure block 157 to provide an electrical pathway from the bulkhead igniter 156 to the pressure block 157.
By this arrangement, when a user desires to activate the bulkhead igniter 156, electrical current may be sent downhole and through the adjacent downhole component 188 to the bulkhead igniter 156 to activate the ignition components within the bulkhead igniter 156, for example by using wire line 132. However, in order to complete the electrical circuit, the bulkhead igniter must be grounded. Grounding is achieved through the grounding member 171 which completes a ground circuit from the bulkhead igniter 156 to the pressure block 157. The grounding member 171, may be any component capable of conducting electricity. In some embodiments, the grounding member 171 is a conductive spring, wire, or block. The grounding circuit is further completed by the pressure block 157 being in contact with the setting tool 120 and the adjacent downhole component 188, all of which are made from metallic conductors.
In order to prevent a short circuit and to achieve the desired electrical pathway, the electrically conductive parts of the bulkhead igniter 156 must not electrically contact the pressure block 157 other than at the grounding member 171. Therefore, a contact surface 173 of the bulkhead igniter 156, where the bulkhead igniter 156 contacts the pressure block 157, is coated with an electrical insulating material to prevent a short circuit at the contact surface 173. Grounding contact between the bulkhead igniter 156 and the pressure block 157 is further prevented by the snap-on insulator 172. The snap-on insulator 172 electrically insulates the bulkhead igniter 156 from the pressure block 157 proximate to the first end 180 of the bulkhead igniter 156.
The snap-on insulator 172, as shown clearly in
The annular body 204 may have=an angled surface 224 between the first end 216 and the second end 220 relative to the tubular channel 208. The angled surface 224 presents an angled surface toward the adjacent downhole component 188 and faces the adjacent downhole component 188 when the assembled. In some embodiments the angled surface 224 forms an angle 226 (
An interior 228 of the tubular channel 208 is formed with a groove 232 (
Referring now primarily to
Referring now primarily to
Referring now primarily to
It should be appreciated that in the above described embodiments of the snap-on insulator 172 that snap-on insulator 172 is intended to be snapped or pressed on the first end of the bulkhead igniter 156 to facilitate installation of the snap-on insulator 172 onto the bulkhead igniter 156. The grooves 232 or ridges 236 of the snap-on insulator 172 are intended to compliment and mate with the grooves 200 or ridges 196 of the bulkhead igniter 156, so that the snap-on insulator 172 can be pressed onto the bulkhead igniter 156 and the interaction of the grooves 232 or ridges 236 with the grooves 200 or ridges 196 hold the snap-on insulator 172 in place on the bulkhead igniter 156 without the need for additional attachment methods such as threads, screws, bolts, or glues. In this manner the snap-on insulator 172 is installed onto the bulkhead igniter 156 by pressing the snap-on insulator 172 onto the bulkhead igniter 156 to engage the ridge 236 or groove 232 of the snap-on insulator 172 with the ridge 196 or groove 200 of the first end 180 of the bulkhead igniter 156. It should be appreciated that different shapes and configurations of the grooves 232, ridges 236, grooves 200, and ridges 196 may be used to achieve this desired engagement between the snap-on insulator 172 and the bulkhead igniter 156. for example, the illustrative embodiment of
While shown applied to the first end of the bulkhead igniter, it should be understood that the snap-op insulator may be used on the second end in other applications.
In some embodiments, the snap-on insulator 172 is used may be used on igniters that are not bulkhead igniters, such as igniter 156. In these embodiments, the use of the snap-on insulator 172 in analogous as to the herein provided examples of use of the snap-on insulator 172 for bulkhead igniter 156.
Many examples are possible. More examples follow.
Example 1. A bulkhead igniter assembly comprising:
Example 2. The bulkhead igniter assembly of Example 1, wherein snap-on insulator is formed from NYLON.
Example 3. The bulkhead igniter assembly of Example 1 or 2, wherein the angled surface is a 45-degree angle from the tubular channel.
Example 4. The bulkhead igniter assembly of Example 1, 2, or 3, wherein the tubular channel proximate the second end has a chamfered edge.
Example 5. The bulkhead igniter assembly of Example 1, wherein the first end of the bulkhead igniter is formed with at least one groove and the tubular channel is formed with at least one ridge complementary to the at least one groove.
Example 6. The bulkhead igniter assembly of Example 1, wherein the first end of the bulkhead igniter is formed with at least one ridge and the tubular channel is formed with at least one groove complementary to the at least one groove.
Although the present invention and its advantages have been disclosed in the context of certain illustrative, non-limiting embodiments, it should be understood that various changes, substitutions, permutations, and alterations can be made without departing from the scope of the invention as defined by the claims. It will be appreciated that any feature that is described in a connection to any one embodiment may also be applicable to any other embodiment.
This application claims the benefit of U.S. Provisional Application Ser. No. 63/435,305, filed on Dec. 26, 2022, entitled “Bulkhead Igniter with Snap-On Insulation,” which is incorporated herein by reference in its entirety for all purposes.
Number | Date | Country | |
---|---|---|---|
63435305 | Dec 2022 | US |