The present invention relates to a bullet fragment collection tray for collecting and disposing of bullet fragments that have impacted and been stopped by a bullet trap.
In order to maintain their proficiency with various types of firearms, law enforcement officers and others routinely engage in target practice. Because of safety concerns relating to ricocheting of bullets, containment of bullet fragments, and release of lead from bullet fragments into the environment when a bullet fragments upon impact, firing ranges increasingly use bullet traps to stop and capture bullets and bullet fragments. Bullets may be recycled or otherwise disposed of in accordance with environmental regulations, thereby significantly reducing the risks of lead escaping into the environment.
A typical bullet trap comprises a heavy gauge steel back plate that primarily functions to stop the bullet, but also enables collection of the bullet fragments. For safety purposes, a bullet trap may also include such features as a self-sealing resilient rubber panel covering the front of the back plate, which serves to capture the bullet and bullet fragments, as well as preventing bullet fragments from ricocheting or back splattering and injuring shooters. Bullet traps may also include edge shields, which also function to prevent side splattering and assist in collection of bullet fragments. Bullet fragments captured by such bullet traps are trapped between the back plate and the rubber panel, and eventually drop down through an opening between the back plate and the rubber panel at the bottom, and then collected in a collection tray.
The present invention generally relates to an improvement in bullet trap collection trays used in bullet trap devices.
The above and other objects, features and advantages of the invention will become apparent from a consideration of the following detailed description presented in connection with the accompanying drawings in which:
It is appreciated that not all aspects and structures of the present invention are visible in a single drawing, and as such multiple views of the invention are presented so as to clearly show the structures of the invention.
Reference will now be made to the drawings in which the various elements of the present invention will be given numeral designations and in which the invention will be discussed so as to enable one skilled in the art to make and use the invention. It is to be understood that the following description is only exemplary of the principles of the present invention, and should not be viewed as narrowing the pending claims. Additionally, it should be appreciated that the components of the individual embodiments discussed may be selectively combined in accordance with the teachings of the present disclosure. Furthermore, it should be appreciated that various embodiments will accomplish different objects of the invention, and that some embodiments falling within the scope of the invention may not accomplish all of the advantages or objects which other embodiments may achieve.
The present invention is generally directed to a bullet fragment collection tray for collecting and disposing of bullet fragments that have impacted and been stopped by a bullet trap. The bullet fragment collection tray of the present invention may generally be used in conjunction with a bullet trap that is used for stopping the trajectory of a bullet and accumulating or collecting bullet fragments that have impacted the bullet trap.
The bullet traps with which the bullet fragment collection tray of the present invention may be used may be of any one of various configurations. One particular configuration of a bullet trap may comprise a back plate of sufficiently heavy gauge steel that it is able to stop the trajectory of various calibers of ordnance intended to be used with the bullet trap and withstand repeated impacts over the life of the bullet trap. Such bullet traps will be configured to stop the trajectory of bullets and other ordnance and collect bullet fragments resulting from the impact of the bullet with the back plate. In some particular embodiments, bullet traps will include some means for preventing ricocheting or back splatter of bullet fragments, such as a self-sealing resilient panel made of a material such as rubber, which covers the front of the back plate. The self-sealing resilient panel also functions to collect bullet fragments between the back panel and the self-sealing resilient panel, where the bullet fragments can then drop down through an opening and be collected in a bucket or tray. Other particular configurations of bullet traps are possible and it is intended that the bullet fragment collection tray of the present invention may also be used in conjunction with such other configurations. For example, instead of a self-sealing resilient panel, wood or other pliable material may be used to prevent back splatter, though such materials may not have a sufficiently long lifespan for suitable use in commercial or high use applications, nor may such materials be sufficient to safely prevent back splatter.
In one particular embodiment illustrated in the drawings, the bullet trap of the present invention may comprise a back plate made of heavy gauge steel having a perimeter and front side. An edge shield may be disposed on the front side of and around the perimeter of the back plate to prevent side splatter and assist in containment and collection of bullet fragments. The bottom portion of the edge shield may be configured to allow bullet fragments to drop past the edge shield, such as by being angled downwardly away from the back plate, so as to facilitate sloughing or sliding of any bullet fragments that may fall onto the edge shield (rather than being caught on an edge shield that would be mounted perpendicular to the back plate, which would collect bullet fragments and not allow them to slide off). In some embodiment, the bottom portion of the edge shield may have an opening through which bullet fragments can pass through and fall into the bullet fragment collection tray.
In some embodiments, the bullet trap may also include a self-sealing resilient panel covering at least a portion of the front side of the back plate within the perimeter of the edge shield. The self-sealing resilient panel may be made of any suitable material that is capable of allowing bullets to penetrate at high velocity, but then close up behind the bullet to prevent back splatter of bullet fragments that might ricochet back at a lower velocity. Such self-sealing resilient materials may include, for example, rubber, silicone, or other plastic polymers.
The self-sealing resilient panel also forms a space between the back plate, edge shield and self-sealing resilient panel. Typically, the self-sealing resilient panel will not be glued to the back panel, since it is desirable to allow some space between the resilient panel and the back plate where bullet fragments may accumulate and drop down into a collection tray. The space between the resilient panel and the back plate defines a temporary bullet fragment collection chamber where such bullet fragments may accumulate and eventually drop down through the space to a bottom opening through which bullet fragments trapped in the bullet fragment collection chamber may exit and be collected by the bullet fragment collection tray.
In one particular embodiment of the of the present invention, the bullet fragment collection tray is mounted to a bottom of the bullet trap beneath the bullet fragment exit of the bullet trap, which bullet fragment exit is formed by an opening at the bottom portion between the back plate and the resilient panel.
In one embodiment, the bullet fragment collection tray is mounted to the bullet trap via a hinge at a first end, has a releasable latch at a second end and has a top opening configured to receive bullet fragments. As used herein, the term hinge is intended to encompass any suitable means for allowing the bullet fragment tray to be flexibly mounted to the bullet trap, such that one end of the bullet fragment tray may be lowered, while another end (the end on which the hinge is mounted) is not lowered, thereby allowing any bullet fragment contents within the bullet fragment tray to slide out by force of gravity when one end is lowered.
In some embodiments, the bullet fragment collection tray may be mounted beneath and extend along the bottom portion of the edge shield. The collection tray may include a bottom side, a front side, a back side, a first end, a second end, and a top opening for receiving bullet fragments. The first end of the bullet fragment collection tray is mounted via a hinge to the bottom of the bullet trap via the perimeter channel (to which the self-sealing resilient panel is attached), the back plate or the edge shield. The second end of the bullet fragment tray has a releasable latch configured to releasably connect the second end of the collection tray to an opposite end of the bottom of bullet trap, via the perimeter channel, the back plate or the edge shield during bullet fragment collection and to disconnect in order to lower the second side downwardly. Lowering of one end allows bullet fragments collected in the bullet fragment collection tray to slide out of the second end of the bullet fragment collection tray for disposal.
In some embodiments, the second end of the bullet fragment tray may have a side that is angled outwardly to facilitate sliding of bullet fragments out of the second end of the bullet fragment collection tray when the releasable latch is released and the second end is lowered. The angle of the side need only be sufficient to allow bullet fragments to slide out of the tray when one end of the tray is lowered.
In other embodiments, the bullet fragment collection tray may also comprise a top plate covering a portion of the top opening, wherein the top plate is angled downwardly from a rear side toward and terminating at a middle portion of the bullet fragment collection tray, so as to direct bullet fragments falling on the top plate into the bullet fragment collection tray. The top plate may, for example, comprise an extension of the rear side of the collection tray, with a portion of the extension being bent forward to create a lip over a portion of the collection tray. In some embodiments, the bullet fragment collection tray and the top plate may be manufactured from a single piece of material, which is then bent such that the rear side of the collection tray extends upwardly and is bent to form a lip which constitutes the top plate. The lip may be bent such that the top plate is angled downwardly so as to promote sliding of bullet fragments off of the top plate and into the collection tray.
In some embodiments, the top plate covering the portion of the top opening of the collection tray may also comprise a shield plate covering at least a portion of the top plate that is exposed to bullet impacts. The shield plate is intended to protect the top plate of the collection tray from bullet impacts, which top plate may be made of a thinner gauge material (i.e., the same material from which the collection tray is made). In another embodiment, another shield plate may also cover the front side of the bullet fragment collection tray so as to protect the front side of the collection tray from bullet impacts.
In other embodiments, the bullet fragment collection tray further comprises a resilient gasket disposed on the shield plate and configured to form a seal between the bullet fragment tray and the bullet trap. The resilient gasket may be disposed between and abut the bullet fragment collection tray and one or more of the back plate and edge shield. The resilient gasket may be made of any suitable material that is flexible and is able to prevent bullet fragments and/or lead dust from such bullet fragments, from falling between the back portion of the collection tray and the front side of the back plate, which could contribute to unwanted lead dust falling through the bullet trap to the floor and disseminating into the environment.
In yet another embodiment of the invention, the bottom portion of the edge shield (at the bottom perimeter of the back plate) is angled downwardly from the back plate toward a middle portion of the bullet fragment tray so as to direct bullet fragments into the bullet fragment collection tray. The downward angling of the bottom portion of the edge shield functions to direct bullet fragments falling from the bottom opening between the resilient panel and the back plate into a middle portion of the bullet fragment collection tray.
In yet another embodiment, the bullet trap further comprises a perimeter channel configured to be mounted to a backside of the self-sealing resilient panel and to the back plate. The perimeter channel is configured as a C-shaped channel. The self-sealing resilient panel can be attached on the front side of the perimeter channel, and the back side of the perimeter channel can be attached to the back plate having the edge shield inside its perimeter. In this configuration, the self-sealing resilient panel abuts against the front edges of the edge shield, forming a space between the self-sealing resilient panel and the back plate equal to the height of the edge shield on the backplate. In one embodiment, the bullet fragment tray hinge is mounted to the perimeter channel. It is understood that in other embodiments the bullet fragment tray could be mounted to the edge shield or directly to the back plate.
As described herein and shown in the figures herein, the various embodiments of the present invention are directed to bullet trap systems for trapping and collecting bullet fragments. In particular, the present invention relates to bullet fragment collection trays. Some embodiments described herein illustrate the use of a bullet fragment collection tray used in conjunction with a portable bullet trap comprising a heavy duty steel back plate, an edge shield and a self-sealing rubber resilient panel covering the front side of the back plate. Such bullet trap systems may be supported on wheeled structures to make them moveable within an area used for target practice, such as inside a tactical gun house that simulates a home, office or building environment where law enforcement or military personnel may practice their shooting.
One particular embodiment of the present invention is shown in
As shown in
In particular,
Thus, there is disclosed an improved bullet trap. Those skilled in the art will appreciate numerous modifications which can be made without departing from the scope and spirit of the present invention. The appended claims are intended to cover such modifications.
Number | Name | Date | Kind |
---|---|---|---|
2535280 | Gartrell | Dec 1950 | A |
4509301 | Head | Apr 1985 | A |
4786059 | Barini | Nov 1988 | A |
4819946 | Kahler | Apr 1989 | A |
5259291 | Wilson | Nov 1993 | A |
6311980 | Sovine | Nov 2001 | B1 |
6543778 | Baker | Apr 2003 | B2 |
9651344 | Chiu | May 2017 | B1 |
20110233870 | Oh | Sep 2011 | A1 |
20120181752 | Bavaro | Jul 2012 | A1 |
20130187336 | Dreiband | Jul 2013 | A1 |
20160003584 | Durynski | Jan 2016 | A1 |
20160116260 | Oh | Apr 2016 | A1 |
Number | Date | Country | |
---|---|---|---|
20170205211 A1 | Jul 2017 | US |
Number | Date | Country | |
---|---|---|---|
62279158 | Jan 2016 | US |