Bullets in subsonic flight struggle with tumbling and other issues that affect their accuracy. By employing certain measures that impart additional angular momentum to the bullet during flight, flight stability may be maintained during the entire flight of the bullet.
Some embodiments relate to a bullet having features that stabilize it during subsonic flight. The bullet includes a nose section, a cylindrical midsection, a cylindrical tail section, and a concave base. The cylindrical tail section has a diameter greater than or equal to the diameter of the cylindrical midsection. Further, the surface of the cylindrical tail section has a material hardness that is less than or equal to the material hardness of the surface of the cylindrical midsection. The material hardness of the surface of the cylindrical tail section is such that the cylindrical tail section is capable of being mechanically formed to include fins.
In some embodiments, the surface of the cylindrical midsection is one of copper or lead. In some embodiments, the surface of the cylindrical tail section is one of aluminum and lead. In some embodiments, the bullet also includes at least one core material, where the core material(s) is one of tungsten, steel, copper, or lead.
Some embodiments relate to a bullet having features that stabilize it during subsonic flight, such as a parabolic nose, a cylindrical midsection, a secant ogive tail, and at least one helical fin protruding from the tail section. The radius of the helical fin(s) is less than or equal to the radius of the cylindrical midsection.
In some embodiments, the bullet has at least one jacket material, where the jacket material(s) is one of copper or lead. In some embodiments, the bullet has at least one core material, where the core material(s) is one of tungsten, steel, copper, or lead.
Some embodiments relate to a method of stabilizing a bullet in subsonic flight. The method includes firing a bullet that includes a nose section, a cylindrical midsection, and a cylindrical tail section capable of forming fins. The method further includes forming fins in the cylindrical tail section. The fins are configured to impart angular momentum onto the bullet via the airflow over the fins during flight. The method further includes imparting angular momentum to the bullet via the airflow over the fins during flight.
In some embodiments, the fins are formed by the rifling of the barrel through which the bullet is fired. In some embodiments, the fins are formed by at least one blade inside the casing in which the bullet is loaded. In some embodiments, the fins are formed during manufacturing of the bullet.
Most commercially available bullets are designed for supersonic flight speeds. As such, when they are fired at subsonic speeds, they may tumble during flight or exhibit other undesirable aerodynamic characteristics. Such problems are typically mitigated by the gyroscopic effect of the angular momentum imparted to the bullet by the rifling of the barrel it is fired through. However, the drag of the air over the bullet can cause a loss of this angular momentum, causing the bullet to lose flight stability.
A solution to this problem may involve the use of helical fins on the bullet. During subsonic flight, the laminar air flow may pass over the bullet, and across the radial surface of the fins. As the air flows over the fins, the fluid flow will apply a force to the fins due to the fins' twist rate. A portion of the force aligned with the linear velocity vector of the bullet may act to slow the bullet. A portion of the force orthogonal to the linear velocity vector of the bullet may apply a moment to the bullet, causing it to maintain its spin. Thus it may cause the bullet to maintain its angular momentum over its entire flight. This in turn may help alleviate some of the problems inherent in subsonic ballistics, such as, but not limited to, tumbling in flight, loss of impact energy, and the changes in both accuracy and precision of the firearm shots fired at subsonic speeds.
In some embodiments, the fins may be formed during the manufacturing of the bullet, and be rigidly affixed to the bullet. Conversely, in some embodiments the fins may be self-forming. In such an embodiment, the fins may be formed by the rifling of the barrel through which the bullet is fired, through a carving mechanism in the casing, or through any other forming means that will activate at some point after the manufacturing of the bullet.
Referring to
In an embodiment having a tail section 3 that is softer and wider than the midsection 2, the fins may be formed as follows. When the bullet is fired, the bullet enters the barrel, and engages with the barrel rifling. When the tail section reaches the rifling, the extended diameter causes the tail section to fill the rifling more completely than the midsection. As the bullet travels down the barrel, the portion of the tail section filling the rifling will protrude, while the rest of the surface will be formed to the internal diameter of the barrel. This will cause helical fins 4 to be formed into the tail section of the bullet. Using a tail section of a softer material than the midsection enhances this forming effect, allowing the rifling to cut fins into the tail section while having little effect on the harder surface of the midsection.
In an embodiment as described above, the tail section material may be a part of the core of the bullet. The nose and midsection may be formed from a jacket of a material having a higher material hardness than that of the core and/or tail section. For example, the bullet may be manufactured with a copper jacket over a lead core. The core may then be formed such that the tail section contains a lip that extends beyond the diameter of the copper jacket. Other materials for the jacket and core are anticipated, and this disclosure is not so limited.
Once formed, the helical fins may have a larger impact on the flight stability of a bullet in subsonic flight than on one in supersonic flight. This is because subsonic flight is characterized by laminar flow. Thus the air travels smoothly over the length of the bullet, fully engaging with the fins, and imparting angular momentum to the bullet. Conversely, the air does not flow smoothly over a mach wave, and thus at supersonic speeds the air will not fully engage with the fins.
Referring to
In an embodiment described above, the bullet may be made of a solid material, or be made of a jacketed core, or be constructed in any other manner common to the art. If the bullet has a jacket and core, then the jacket may extend rearwards towards the tail of the bullet beyond the core. For example, if the bullet has a copper jacket over a lead core, then the core may stop at the depth of the concavity, with sidewalls formed of the copper jacket. In this case, the fins 4 will be formed from the expanded copper. Other materials and constructions may be used, and this disclosure is not so limited.
Referring to
In such an embodiment, the fins are formed through a combination of the effects described above. When the bullet is fired, the expanding gas in the chamber presses the thin sidewalls of the concavity 5 into the rifling, causing the material to fill the rifling more completely than that of the midsection 2, or than that of a typical bullet. Using a softer material and/or larger diameter for the tail section 3 enhances this effect, providing for more efficient fin 4 formation.
Referring to
The fins 9 may extend the full length of the tail section, or for any portion thereof. They may extend out to the diameter of the midsection 7, or any fraction thereof. The twist of the fins 9 would preferably be timed to the twist of the rifling of the gun in which the bullet is to be used.
The design of this embodiment enhances the flight stability of a bullet at subsonic speed as follows. When the bullet is fired, the rifling of the barrel imparts angular momentum to the bullet, helping it to not tumble during flight. Once the bullet clears the end of the barrel and reaches clean air, the streamline of the airflow will pass smoothly over the nose 6, the midsection 7, and upon reaching the tail section 8 will follow the narrowing curve of the tail. This will provide a large surface of air for the fins 9 to engage with. As the air flows over the fins 9, the fluid flow will apply a force to the fins due to the fins' twist rate. A portion of the force aligned with the linear velocity vector of the bullet will act to slow the bullet. A portion of the force orthogonal to the linear velocity vector of the bullet will apply a moment to the bullet, causing it to maintain its spin. Thus it causes the bullet to maintain its angular momentum over its entire flight. This in turn helps alleviate some of the problems inherent in subsonic ballistics, such as, but not limited to, tumbling in flight, loss of impact energy, and the changes in both accuracy and precision of the firearm shots fired at subsonic speeds.
Referring to
In another embodiment, a bullet with a self-forming stabilizing means may have such means formed in a way other than by the barrel rifling. For example, referring to
The internal blades 17 may be formed through a variety of means, and be of a variety of geometries and dimensions. The internal blades 17 may be attached to the inside of the casing 16. Alternatively, they may be made from the material of the sidewall of the casing 16. In such a situation, they may be pressed, crimped inwards, or formed through any other suitable means. The internal blades 17 may be narrow and sharp, as in a knife blade, such that they cut the material of the bullet 15. Alternatively, they may be wider, such that they press the material of the bullet inwards. In such a case, they may be much wider than the gaps between them, whereby they form fins similar to those illustrated in
Referring to
Because angular momentum is directional, conservation of momentum makes it difficult not only to change the amount of angular momentum in a system, but also its direction. In the present invention, this means that once angular momentum is imparted to the bullet in step three 20, it becomes much more difficult to change the orientation of the bullet during flight. This helps protect against tumbling, and subsequently loss of impact energy, and the changes in both accuracy and precision of the firearm shots fired at subsonic speeds.
The invention here described of novel aerodynamics and construction has been shown to alleviate the problems inherent in subsonic ballistics, such as, but not limited to, tumbling in flight, loss of impact energy, as well as the changes in both accuracy and precision of the firearm shots fired at subsonic speeds. It is understood that the foregoing examples are merely illustrative of the present invention. Certain modifications of the articles and/or methods may be made and still achieve the objectives of the invention. Such modifications are contemplated as within the scope of the claimed invention.
This application is a divisional of U.S. application Ser. No. 17/590,885, filed Feb. 2, 2022, entitled “BULLET STABILIZATION IN SUBSONIC FLIGHT”, which claims priority to U.S. Provisional Application No. 63/165,226, filed Mar. 24, 2021, both of which are hereby incorporated by reference in their entirety.
Number | Date | Country | |
---|---|---|---|
63165226 | Mar 2021 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17590885 | Feb 2022 | US |
Child | 18097520 | US |