This invention relates to medical diagnostic systems and, in particular, to diagnostic systems which analyze and display ECG lead data for cardiac assessment.
An established diagnostic exam of cardiac performance is the stress exam. Two kinds of stress exams are commonly performed. One is the stress echocardiogram study, in which the heart is imaged ultrasonically. In a stress echo exam, ultrasound images of the heart are acquired at the outset when the patient is resting. These images are standard cross-sectional images of long axis and short axis views of the heart during the rest stage. The patient then exercises to raise the heart rate above a given level. This may be done by having the patient run on a treadmill, and it may also be done by injection of a pharmacological agent. The same standard images are acquired during the exercise stage when the heart is beating at a high rate. The pre- and post-exercise images are then compared, generally by first synchronizing the different heartbeats of the image loops so that they move together. Characteristics which are assessed include wall motion and systolic thickening (tissue deformation) of the myocardium. Qualitative and quantitative analysis is performed on the images using tissue Doppler, speckle image analysis, i.e., strain quantification analysis, or any other ultrasonic detection of myocardial deformation. Left ventricular filling, ejection fraction, and ejection velocities may also be assessed.
In ECG stress, the ECG lead signals are likewise recorded during both resting and exercise stages. The ECG lead signals are analyzed for ST-elevation indicative of myocardial infarction. Generally this is a 12-lead exam. The ECG signals acquired by an ultrasound system during the ultrasound exam use only three electrodes for the right arm, left arm, and the left leg. This is because the ultrasound ECG leads are only needed to acquire an R-wave for heartbeat gating. The three leads are insufficient to acquire more subtle waveform characteristics such as the P-wave and the T-wave.
In many cases the stress echo and stress ECG studies are combined. The clinician will then review the information gathered by both techniques, looking for electrical changes and differences in the ECG data and motion and anatomical changes and differences in the ultrasound images. The clinician will often do this by looking at ultrasound images on a monitor while balancing the stripcharts with the ECG data on the clinician's lap and glancing from one to the other to make comparisons and look for correlations.
One technique for viewing ultrasonic image assessment of wall motion and myocardial thickness is to display the data on a bullet scorecard. Bullet scorecards have been standardized for ultrasound diagnosis in which different segments of concentric circles relate to specific sections of the myocardium, with the apex generally at the center of the scorecard. Measurements of the diagnosed parameters can be entered on the different scorecard segments, giving the clinician a quick sense of myocardial performance around the left ventricle, for instance. Another technique is to display the scorecard with the segments color-coded in accordance with the diagnostic data. Heart regions with normal performance have their corresponding segments colored green, for instance, and heart regions exhibiting abnormal performance have their segments colored red, for example. See, for example, the discussion of the bullet scorecard described in U.S. Pat. No. 6,447,453 (Roundhill et al.)
It would be desirable to provide a similar presentation of ECG data. In particular, the presentation should be comparable to the ultrasound bullet scorecard.
In accordance with the principles of the present invention, a bullseye chart for ECG data, particularly ST elevation data, is described. The chart is comprised of concentric circles with the heart apex at the center. Each concentric circle represents a different slice level of an ultrasound image plane in relation to the apex, and each concentric circle is divided into segments corresponding to those used in an ultrasound bullet scorecard. Numeric data such as ST elevation data from leads corresponding anatomically to segments of the chart may be entered in the segment areas. Alternatively, the segments may be shaded or colored in one way to indicate normal ECG data corresponding to the segment, and in a contrasting way to indicate abnormal (e.g., an elevated or depressed ST level) ECG data for a particular location. The ECG bullseye chart may be displayed concurrently with an ultrasound bullet scorecard so that the data of the two displays can be compared and correlated.
In the drawings:
a and 8b illustrate the layout of an ECG bullseye chart of the present invention.
a-9f illustrate ECG bullseye charts which have been annotated with ST-elevation data to indicate regions of the heart which may have experienced infarction.
Referring first to
The ultrasound images used in stress echo are real time (live) images of the heart as it is beating. A nominal display rate for live ultrasound images is 30 frames per second. The images may be either two-dimensional or three-dimensional images of the heart. In the examples shown below, two-dimensional images are shown. The standard views for stress echo studies are parasternal long axis views such as the parasternal 3-chamber view, and parasternal short axis views at the base, mid-cavity, and apical levels of the heart. Parasternal images are acquired by transmitting and receiving ultrasound signals through the intercostal regions between the ribs. Other standard views in stress echo exams include apical 4-chamber, 2-chamber and long axis views. Apical views are acquired by placing the probe below the rib cage and transmitting and receiving ultrasound while the probe is viewing the heart from below, from the apex. The outflow tract of the heart is visible in the 3-chamber view, whereas the outflow tract cannot be seen in a 4-chamber view. A 2-chamber view shows only the left ventricle and the left atrium. The most common short axis view used is the mid-view, which captures the papillary muscle as an anatomical reference in the image.
The major subsystems of an ECG system are shown at the bottom of the drawing. Electrodes 30 are attached to the skin of the patient at specific locations on the body to acquire ECG signals. Usually the electrodes are disposable conductors with a conductive adhesive gel surface that sticks to the skin. Each conductor has a snap or clip that snaps or clips onto an electrode wire of the ECG system. A typical ECG system will have twelve leads (ten electrodes), which may be expanded with additional leads on the back of the patient for up to sixteen leads. Extended lead sets with up to eighteen leads may be used. In addition, fewer leads such as 3-lead (EASI and other), 5-, and 8-lead sets can also be used to derive 12 leads, but with reduced accuracy The acquired ECG signals, which are on the order of millivolts, are preconditioned by an ECG acquisition module 32 which performs processing such as amplification, filtering and digitizing of the ECG signals. The electrode signals are coupled to an ECG analysis module 36, generally by means of an electrical isolation arrangement 34 that protects the patient from shock hazards and also protects the ECG system when the patient is undergoing defibrillation, for instance. Optical isolators are generally used for electrical isolation. The ECG analysis module combines the signals from the electrodes in various ways to form the desired lead signals, and performs other functions such as signal averaging, heart rate identification, and identifies signal characteristics such as the QRS complex, the P-wave, T-wave, and other characteristics such as elevation seen in the S-T interval. The processed ECG information is then displayed on an image display or printed in an ECG report by an output device 38.
In accordance with the principles of the present invention, the ultrasound images and the ECG lead data are coupled to a combined ultrasound image and ECG display system. In
A bullet scorecard is commonly used in ultrasound to record measurements taken at specific segments of the myocardium which correspond to specific segments of the scorecard. In general, a bullet scorecard is an LV segmental display. Ultrasound measurements which are recorded on a bullet scorecard include wall motion values, strain rate values, and perfusion values. The values may be shown quantitatively, but a qualitative bullseye chart is often used to quickly draw the attention of the clinician to a specific heart region. For example, the bullet scorecard 100 in
In accordance with the principles of the present invention, a bullseye chart has segments filled in with ECG data corresponding to the anatomical regions of the segments of the chart. The segments of a bullseye chart have been numbered in correspondence with the anatomy of the heart in a standardized pattern as shown in
In accordance with a further aspect of the present invention, the bullseye chart is produced with indications of ECG ST elevation values, thus providing an anatomical guide to the location of a possible infarction. The user can consider the ECG bullseye chart alone, or compare it with a bullet scorecard filled in with ultrasonically-derived values for concurrence as to the location, extent, or severity of a heart abnormality. Preferably an ultrasound bullet scorecard and the ECG bullseye chart are displayed side-by-side on the same screen so the user can see the correlation of the results of the two different examinations. Examples of ECG bullseyes illustrating different locations of possible infarction by ST elevation/depression are shown in
In general, the association of abnormal ECG signals to infarcted locations of the heart is as follows:
It is understood that the above tables are general in nature and that specific physicians may have differing views on the association of specific ECG leads with specific heart regions. Lead placement on the chest can affect the location assignment. Furthermore, new research may find different associations to be more relevant to specific disease conditions.
The values of specific leads can be shown on the ECG bullseye for specific disease conditions being diagnosed. For example, when the clinician is diagnosing hypertrophy, a thickening of the LV wall, the bullseye chart can be scored with the R wave amplitude of lead V5 and the S wave amplitude of lead V1. Amplitudes above certain thresholds, which are age and gender specific, will indicate possible LV wall thickening. Another example is diagnosing atrial enlargement. For left atrial enlargement the P wave amplitudes of leads V1 and V2 will be shown on the bullseye chart. For right atrial enlargement the negative P wave amplitudes of leads aVL and aVR are used. For lead sets with a large number of leads, e.g., a sixteen-lead set, certain leads will view specific heart anatomy from opposite sides of the body and will exhibit corresponding waveforms of opposite polarity. Those skilled in the art will recognized that the values of corresponding leads can be substituted for their opposing leads with due consideration of the difference in polarity.
Other examples of use of the bullseye chart for a particular diagnosis include right ventricle thickening, in which the clinician is diagnosing possible enlargement of the right ventricle. For this diagnosis the values of the R wave amplitude on lead V1 and the S wave amplitude on lead V6 are shown on the bullseye chart. When diagnosing conduction abnormalities for possible cardiac resynchronization therapy, the clinician is looking for indications of left and right bundle branch block. Left bundle branch block is examined by considering the value of left axis shift of the frontal plane vector of the QRS complex for a QRS duration in excess of 120 msec. For right bundle branch block the clinician is examining the right axis shift of the QRS vector.
An implementation of an ECG bullseye chart can be automated, for example, by a processor which fills in segments of the ECG bullseye with characters or colors from the ST elevation values given for each ECG lead in column 90 of
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/IB11/51234 | 3/23/2011 | WO | 00 | 10/1/2012 |
Number | Date | Country | |
---|---|---|---|
61320231 | Apr 2010 | US |