This invention relates generally to microelectromechanical system switches.
Microelectromechanical system (MEMS) switches are mechanical switches that are fabricated using integrated circuit techniques at very small dimensions. Typically, MEMS switches use a tip configuration. The switch may consist of a cantilevered arm extending over a semiconductor substrate. Near the end of the cantilevered arm is a tip with a contact. The tip contact makes an electrical connection when the cantilevered arm is deflected towards the semiconductor substrate so as to electrically touch a contact formed on the substrate.
Other MEMS switches may use a beam instead of an arm. Here, too, a movable element over the substrate includes a protrusion that makes an electrical connection to a contact on the substrate when the beam is electrostatically deflected towards said substrate.
The manufacturing process flow for a tip-based switch may include timed etch steps. In high volume manufacturing, it is not desirable to work with timed etch processes since they may not be repeatable. The constituents that are used, such as acids, may change with time and etched layers may change from batch to batch. In high volume manufacturing, etch stop layers may be utilized to reduce the affect of timed etches. However, the use of etch stops also yields quite sensitive and complex process flows.
Thus, it would be desirable to provide a different type of MEMS switch.
In accordance with some embodiments of the present invention, a microelectromechanical system (MEMS) switch is formed which uses what may be called a bump configuration. In a bump configuration the protrusion is formed on the substrate and no such protrusion need be formed on the deflectable arm or beam. As used herein, the term “deflectable member” will refer to an extended beam or cantilevered arm that moves relative to the substrate to make and break an electrical contact. While the ensuing description describes a cantilevered type structure, the present invention is applicable to any MEMS switch with a deflectable member.
In some embodiments of the present invention, the use of timed etch steps may be eliminated which may improve repeatability in high volume manufacturing. However, the present invention is not necessarily limited to embodiments that preclude the use of timed etch steps.
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
The remaining portion of the metal 28 may act as a deflectable member. The metal 28 may be deflected towards and away from the substrate 10 in response to an electrostatic force applied by the portion 18a to the overlying portion of the seed layer 20. Thus, as shown in
While the bump 16 is illustrated as being formed from a field oxide-like technique, the bump oxide 16 may be formed in other ways, including deposition and wet etching. In some embodiments of the present invention, the use of a bump rather than a tip configuration may reduce or eliminate timed etch steps which may result in repeatability problems. One sacrificial layer may be utilized instead of two sacrificial layers in some embodiments. The sacrificial layer release may be simplier since there is only one sacrificial layer in some embodiments. Also, in fabrication facilities that run both complementary metal oxide semiconductor technologies and MEMS technologies, wafer that have gold on them may run in an isolated area. The isolated area may have a limited set of equipment. By moving from the tip to the bump configuration, more activities may be done in the non-isolated fab areas before the wafers are moved to the isolated fab areas. Thus, conventional CMOS equipment may be utilized in MEMS processes.
While the present invention has been described with respect to a limited number of embodiments, those skilled in the art will appreciate numerous modifications and variations therefrom. It is intended that the appended claims cover all such modifications and variations as fall within the true spirit and scope of this present invention.
Number | Name | Date | Kind |
---|---|---|---|
5472916 | Bertagnolli et al. | Dec 1995 | A |
5789269 | Mehta et al. | Aug 1998 | A |
5940711 | Zambrano | Aug 1999 | A |
20020055260 | Chow et al. | May 2002 | A1 |
20020097118 | Siekkinen et al. | Jul 2002 | A1 |
20030127698 | Lee | Jul 2003 | A1 |
Number | Date | Country |
---|---|---|
WO 02073645 | Sep 2002 | WO |
Number | Date | Country | |
---|---|---|---|
20040188781 A1 | Sep 2004 | US |