Bumper reinforcement for automobile

Information

  • Patent Grant
  • 11155224
  • Patent Number
    11,155,224
  • Date Filed
    Wednesday, February 12, 2020
    4 years ago
  • Date Issued
    Tuesday, October 26, 2021
    3 years ago
Abstract
To compensate for a decrease in reaction force of a bumper reinforcement, which is made of an aluminum alloy extrusion having two end portions subjected to bend forming and crushed portions on the respective end portions, against an impact load in end impact involved in crushing, and compensate for a decrease in energy absorption amount of the bumper reinforcement. Assuming a space between two flanges includes a first region from a center line of the thickness between the flanges to an outer flange and a second region from the center line to an inner flange in a cross section of the crushed portion perpendicular to an extrusion direction, area of the webs located in one (for example, the first region) of the two regions is larger than area of the webs located in the other region (for example, the second region).
Description
BACKGROUND

The present invention relates to an automotive bumper reinforcement including an aluminum alloy extrusion having a closed section structure.


A bumper reinforcement including an aluminum alloy extrusion typically includes a pair of flanges (an inner flange located on an inner side (body side) and an outer flange located on an outer side (impact side) in a body longitudinal direction) and a plurality of webs connecting the flanges together. The bumper reinforcement has a closed section structure given by such flanges and webs.


The bumper reinforcement including the aluminum alloy extrusion has two end portions that are each bent toward the body from the request in automotive design or from the requirement of having a certain impact resistance to oblique impact.


The bumper reinforcement having the two end portions bent toward the body has a crushed portion as required on each of the two end portions, for example, as described in Japanese Unexamined Patent Application Publication Nos. 2013-103556 and 2015-168299. The crushed portion has been subjected to crushing in a direction perpendicular to the flanges, and thus, as shown in FIGS. 2A to 2C, has a thickness smaller than an original thickness between the flanges, and has the webs bending-deformed and thus curved between the flanges. The crushed portion has a reduced section modulus due to the decreased thickness between the flanges.


As described in Japanese Unexamined Patent Application Publication No. 2015-51755, the reduction in section modulus and the bending deformation of each web cause a decrease in reaction force against an impact load in end impact and a decrease in energy absorption amount of the bumper reinforcement.


SUMMARY

An object of the invention is to compensate for a decrease in reaction force of a bumper reinforcement, which is made of an aluminum alloy extrusion having two end portions subjected to bend forming and crushed portions on the respective end portions, against an impact load in end impact, and compensate for a resultant decrease in energy absorption amount of the bumper reinforcement.


The invention relates to an improvement in bumper reinforcement including an aluminum alloy hollow extrusion having a closed section structure and configured of an outer flange, an inner flange, and a plurality of webs connecting the flanges together, the aluminum alloy hollow extrusion having two end portions bent toward a body and having a crushed portion in each end portion so as to have a smaller thickness than an original thickness between the flanges and allow the webs to be bending-deformed between the flanges, where assuming a space between the flanges includes a region from a center line of the thickness between the flanges to the outer flange and a region from the center line to the inner flange in a cross section of the crushed portion perpendicular to an extrusion direction, area of the webs located in one of the two regions is larger than area of the webs located in the other region.


In existing bumper reinforcements, the webs exist between the flanges in the crushed portion evenly between the two regions, i.e., the web in one of the two regions has area equal to area of the web in the other. On the other hand, in the bumper reinforcement of the invention, the webs exist between the flanges in the crushed portion unevenly between the two regions, i.e., the web in one of the two regions has area larger than area of the web in the other. In the bumper reinforcement of the invention, therefore, the number of supporting points of the webs supporting the flange in the one region increases in end impact, making it possible to compensate for a decrease in reaction force against an impact load and a resultant decrease in energy absorption amount of the bumper reinforcement.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1A is a plan view illustrating one embodiment of a bumper reinforcement of the invention, FIG. 1B is a sectional view along a line I-I of FIG. 1A, and FIG. 1C is a sectional view along a line II-II of FIG. 1A.



FIG. 2A is a plan view illustrating a bumper reinforcement of an existing example, FIG. 2B is a sectional view along a line of FIG. 2A, and FIG. 2C is a sectional view along a line IV-IV of FIG. 2A.



FIG. 3 is an explanatory view (major-part plan view) of end imp act.



FIG. 4 is a sectional view illustrating another embodiment of the bumper reinforcement of the invention.





DETAILED DESCRIPTION

First, a bumper reinforcement 1 of an existing example is described with reference to FIGS. 2A, 2B, and 2C.


The bumper reinforcement 1 of FIG. 2A includes an aluminum alloy extrusion having a closed section structure as a raw material. As shown in FIG. 2B, the closed section structure includes a pair of flanges (inner flange 2 and outer flange 3) located with a distance on a body side and an impact side, respectively, and a plurality of (three in this example) webs 4 to 6 located with a distance in a body vertical direction and connecting the flanges 2 and 3 together. In the cross section shown in FIG. 2B, the flanges 2 and 3 and the webs 4 to 6 each have a plate-like shape (having a uniform thickness except for a connection having a fillet) and are roughly perpendicular to each other.


In the bumper reinforcement 1, a central portion 1a is parallel to a body width direction, and each of two end portions 1b and 1b is bent toward the body, and part of the end portion is subjected to crushing from the outer flange 3 toward the inner flange 2. In a crushed portion (crushed portion 7), thickness d (thickness between outer surfaces of the flanges 2 and 3) is smaller than an original thickness d0 (d<d0), and the webs 4 to 6 are each bending-deformed and curved between the flanges 2 and 3. In this example, the crushed portion 7 has a larger crushing amount (crushing level) but a smaller thickness d at a point closer to an end of the bumper reinforcement 1.


A cross section (FIG. 2C) of the crushed portion 7 perpendicular to an extrusion direction shows that the webs 4 to 6 are bending-deformed symmetrically with respect to the center line O of the thickness between the flanges 2 and 3, and bending tops 4a, 5a, and 6a are located on the center line O. In other words, assuming the space between the flanges 2 and 3 includes a region Ai from the thickness center line O to the inner flange 2 and a region Ao from the center line O to the outer flange 3, the total area of the webs 4 to 6 includes a first area in the region Ai and a second area in the region Ao while the first area is equal to the second area. It could be said that the center of gravity of the webs 4 to 6 is located on the center line O. The “extrusion direction” of “cross section of the crushed portion 7 perpendicular to an extrusion direction” means an extrusion direction before crushing (in this example, longitudinal direction of the inner flange 2).


Subsequently, a bumper reinforcement 11 of the invention is described with reference to FIGS. 1A, 1B, and 1C. In FIGS. 1A, 1B, and 1C, signs and numbers of respective portions of the bumper reinforcement 11 are the same as those in FIGS. 2A, 2B, and 2C.


The bumper reinforcement 11 includes an aluminum alloy extrusion having the same sectional shape as that of the bumper reinforcement 1, and as with the bumper reinforcement 1, the central portion 1a is parallel to a body width direction, and the two end portions 1b and 1b are bent toward the body, and part of the end portion 1b is subjected to crushing. In a crushed portion (crushed portion 7) of the bumper reinforcement 11, thickness d of the bumper reinforcement 11 is smaller than an original thickness d0 (d<d0), and the webs 4 to 6 are each bending-deformed and curved between the flanges 2 and 3. In the bumper reinforcement 11, as with the bumper reinforcement 1, the crushed portion 7 has a larger crushing amount (crushing level) but a smaller thickness d at a point closer to an end of the bumper reinforcement 11.


The difference between the bumper reinforcement 11 and the bumper reinforcement 1 is clearly shown in a cross section (FIG. 1C) of the crushed portion 7 perpendicular to the exclusion direction. In the crushed portion 7 of the bumper reinforcement 11, the webs 4 to 6 are bending-deformed asymmetrically (biased toward the outer flange 3) with respect to the center line O of the thickness between the flanges 2 and 3, and bending tops 4a, 5a, and 6a are each located closer to the outer flange 3 (within a region Ao as describe later) than the center line O. In other words, assuming the space between the flanges 2 and 3 includes a region Ai from the thickness center line O to the inner flange 2 and a region Ao from the center line O to the outer flange 3, the total area of the webs 4 to 6 includes a first area in the region Ai and a second area in the region Ao while the first area is larger than the second area. It could be said that the center of gravity of the webs 4 to 6 is located closer to the outer flange 3 than the center line O. As in the previous example, the “extrusion direction” of “cross section of the crushed portion 7 perpendicular to an extrusion direction” means an extrusion direction before crushing (in this example, longitudinal direction of the inner flange 2).


Deformation forms of the webs 4 to 6 as shown in FIG. 1C are given when bending in crushing starts from a point (bending center) closer to the outer flange 3 than the center of thickness between the flanges 2 and 3. As a specific possible measure to achieve this, for example, a recess is beforehand formed at a position close to the outer flange 3 in a cross section of each of the webs 4 to 6, or an initial imperfection is introduced in each of the webs 4 to 6 before crushing. As shown in FIG. 1C, the bending center of the web 4 or 6 on either end preferably faces the inside of the cross section.


If end impact occurs on the bumper reinforcement 11 as shown in FIG. 3, the crushed portion 7 is deformed. In FIG. 3, 12 denotes a bumper stay, 13 denotes a body frame, and 14 denotes a barrier. In the end impact, the crushed portion 7 is bent and crushed so that the thickness d is reduced, and thus the webs 4 to 6 are further significantly deformed (curved). During such deformation of the webs 4 to 6, the vicinities of the tops 4a, 5a, and 6a of the webs come into contact with the inner surface of the outer flange 3 (see FIG. 4), which increases, from 3 to 6, the number of supporting points of the webs 4 to 6 to support the outer flange 3. For the bumper reinforcement 1, since the webs 4 to 6 are bending-deformed symmetrically with respect to the center line O, even if the webs 4 to 6 are further deformed, the phenomenon of the increase in supporting points of the webs 4 to 6 is less likely to occur compared with for the bumper reinforcement 11. For the bumper reinforcement 11, the number of supporting points of the webs 4 to 6 to support the outer flange 3 thus increases in a relatively early stage of end impact, which increases bending strength of the outer flange 3, reaction force against an impact load, and energy absorption amount.


In the bumper reinforcement 11, although area of the web 4 to 6 is larger in the region Ao than in the region Ai (the center of gravity of the webs 4 to 6 is located closer to the outer flange 3 than the center line O) in the crushed portion 7 so that bending tops 4a, 5a, and 6a are located within the region Ao, this may be reversed. That is, the area of the webs may be larger in the region Ai than in the region Ao (the center of gravity of the webs may be located closer to the inner flange than the center line O) so that the bending tops are located within the region Ai. In such a case, the number of supporting points of the webs to support the inner flange increases from 3 to 6 during deformation of the webs in end impact. Although the bumper reinforcement 11 has three webs 4 to 6, it may have only two (a pair of) webs at both ends.


Another bumper reinforcement 21 of the invention is now described with reference to FIG. 4. FIG. 4 illustrates a cross section of the bumper reinforcement 21 perpendicular to an extrusion direction. The “extrusion direction” described herein means an extrusion direction before crushing (in this example, longitudinal direction of the inner flange 2) as in the previous examples. Signs and numbers of respective portions of the bumper reinforcement 21 are the same as those in FIGS. 1A to 1C. For the bumper reinforcement 21, the curved tops 4a, 5a, and 6a of the webs 4 to 6 are in contact with the inner surface of the outer flange 3 from the first (from before end impact) in a partial region (region having a relatively large crushing amount) of the crushed portion 7. The bumper reinforcement 21 is different from the bumper reinforcement 11 only in this point. The increase from 3 to 6 in the number of supporting points of the webs 4 to 6 to support the outer flange 3 increases bending strength of the outer flange 3, reaction force against an impact load, and the energy absorption amount.


This application claims the benefits of priority to Japanese Patent Application No. 2019-042975, filed Mar. 8, 2019. The entire contents of the above application are herein incorporated by reference.

Claims
  • 1. An automotive bumper reinforcement, comprising an aluminum alloy hollow extrusion having a closed section structure and configured of an outer flange, an inner flange, and a plurality of webs connecting the flanges together, the aluminum alloy hollow extrusion having two end portions bent toward a body and having a crushed portion in each of the end portions so as to have a smaller thickness than an original thickness between the flanges,wherein assuming a space between the flanges includes a region from a center line of the thickness between the flanges to the outer flange and a region from the center line to the inner flange in a cross section of the crushed portion perpendicular to an extrusion direction, area of the webs located in one of the two regions is larger than area of the webs located in the other region.
  • 2. The automotive bumper reinforcement according to claim 1, wherein area of the webs located in the region from the center line to the outer flange is larger than area of the webs located in the region from the center line to the inner flange.
  • 3. The automotive bumper reinforcement according to claim 2, wherein each web is in contact with the outer flange in part of the crushed portion.
Priority Claims (1)
Number Date Country Kind
JP2019-042975 Mar 2019 JP national
US Referenced Citations (39)
Number Name Date Kind
4826226 Klie May 1989 A
5340178 Stewart Aug 1994 A
6209934 Sakuma Apr 2001 B1
6746061 Evans Jun 2004 B1
20100201139 Hashimura Aug 2010 A1
20100230981 Hock Sep 2010 A1
20110204663 Baccouche Aug 2011 A1
20120228889 Haneda Sep 2012 A1
20140091584 McConnell Apr 2014 A1
20150069772 Hashimoto et al. Mar 2015 A1
20150307045 Matecki Oct 2015 A1
20160101753 Higashimachi Apr 2016 A1
20160114747 Ishitobi Apr 2016 A1
20160167609 Corwin Jun 2016 A1
20160207482 Tachibana Jul 2016 A1
20160280163 Matecki Sep 2016 A1
20160347270 Higashimachi Dec 2016 A1
20170043735 Yamaguchi Feb 2017 A1
20170144619 Shamoto May 2017 A1
20180037179 Steinebach Feb 2018 A1
20180056352 Weykamp Mar 2018 A1
20180162302 Kitakata Jun 2018 A1
20180208138 Wakabayashi Jul 2018 A1
20180257586 Kitakata Sep 2018 A1
20180257589 Kawamura Sep 2018 A1
20180361968 Yatsunami Dec 2018 A1
20180370469 Shibata Dec 2018 A1
20190084512 Takayanagi Mar 2019 A1
20190256023 Tashiro Aug 2019 A1
20190270421 Tashiro Sep 2019 A1
20200031087 Miura Jan 2020 A1
20200086815 Koga Mar 2020 A1
20200139910 Maeda May 2020 A1
20200339052 Rebstock Oct 2020 A1
20200353987 Yoshida Nov 2020 A1
20200353993 Yoshida Nov 2020 A1
20210024022 Matecki Jan 2021 A1
20210039574 Unal Feb 2021 A1
20210094495 Park Apr 2021 A1
Foreign Referenced Citations (4)
Number Date Country
7-81504 Mar 1995 JP
2013-103556 May 2013 JP
2015-051755 Mar 2015 JP
2015-168299 Sep 2015 JP
Related Publications (1)
Number Date Country
20200282932 A1 Sep 2020 US