The present invention relates to vehicle bumper systems, and more particularly relates to a bumper system having an integrated energy absorber and beam, and also relates to novel beam constructions such as those that are shaped for engagement with mating energy absorbers.
Bumper systems using integrated energy absorber and bumper beam arrangements are desired to improve assembly of bumper systems to vehicles, to minimize the number and types of mechanical fasteners overall, and to simplify tooling. In particular, it is desirable to provide a design where the beam and energy absorber can be assembled off-line of the main vehicle assembly line into a unitary subassembly, and then manipulated as a unit for attachment to the vehicle. Also, it is desirable to attach fascia to the subassembly, and to integrate and attach other components to the subassembly, such as headlights, grilles, and other functional and ornamental components. At the same time, impact durability and enhanced energy absorption continue to be high priority items in bumper systems, and accordingly, any subassembly should preferably not detract from the same.
In addition to the above, many vehicle manufacturers and some insurance groups and government entities are pressing for improved crashworthiness of vehicles, and also for bumper systems that will provide for better pedestrian safety. Longer bumper strokes with lower initial energy absorption rates have the possibility of satisfying these desires, but this can result in energy absorbers that are physically larger in size than present bumper systems, and that are not easy to package and carry at a front of the vehicle. Thus, new integrated bumper systems are desired to deal with the conflicting functional and design requirements.
Improvements are also desired in rear bumper systems on vehicles. In particular, vehicle manufacturers are looking increasingly at energy absorbers for rear bumper systems that are not dissimilar in shape and function to energy absorbers for front bumper systems. However, the energy absorber of any such rear bumper system must be integrated into the bumper system such that it does not interfere with other functional and aesthetic requirements at a rear of the vehicle. For example, many rear bumper systems include a step, and/or are adapted to support a ball hitch for hauling a trailer.
Accordingly, bumper systems are desired solving the aforementioned problems and having the aforementioned advantages.
One aspect of the present invention is to provide a bumper system comprising a metal tubular beam, an energy absorber and mounts. The metal tubular beam has a center section having front, rear, top, and bottom walls. The energy absorber includes a rail having a rear surface with a rearwardly-facing C-shaped recess mateably receiving the tubular beam therein, with the energy absorber being configured to crush and absorb impact energy prior to collapse of the tubular beam. The mounts engage a rear of the metal tubular beam.
Another aspect of the present invention is to provide a bumper system comprising a metal tubular beam, a polymeric energy absorber and mounts. The polymeric energy absorber has a rear surface with a recess mateably receiving the tubular beam, with the energy absorber being configured to crush and absorb impact energy prior to collapse of the tubular beam. The mounts engage a rear of the metal tubular beam. The energy absorber includes enlarged structural corner sections that extend outboard of the mounts and outboard of outer ends of the beam for providing impact structure to a corner of the vehicle outboard of the beam and mounts. The corner sections form at least one honeycomb-shaped structure for absorbing impact energy during a vehicle crash, with the corner sections further providing a top surface configured to support a force placed thereon.
Yet another aspect of the present invention is to provide a bumper system comprising a metal tubular beam, an energy absorber and mounts. The energy absorber has a rear surface with a recess mateably receiving the tubular beam, with the energy absorber being configured to crush and absorb impact energy prior to collapse of the tubular beam. The mounts engage a rear of the metal tubular beam. The energy absorber includes enlarged structural corner sections that extend outboard of the mounts and outboard of outer ends of the beam for providing impact structure to a corner of the vehicle outboard of the beam and mounts. The corner sections include a portion located proximate the mounts, with the corner sections being configured to flex, engage and slide on a side of the mounts during a corner impact by an object directed along a line angled with respect of a length of the mounts, whereby the object bounces sideways off the corner section in a direction parallel to a longitudinal direction of the energy absorber upon the corner impact.
In yet another aspect of the present invention, a bumper system comprising a metal tubular beam, an energy absorber and mounts is provided. The metal beam has a center section. The energy absorber includes a rail having the beam therein, with the energy absorber being configured to crush and absorb impact energy prior to collapse of the beam. The mounts engage a rear of the metal beam. The energy absorber includes a top section connected to a top portion of the rail and a bottom section connected to a bottom portion of the rail. The top section has an upwardly angled top first segment extending from the rail and a forwardly extending top second segment extending from the first segment. The bottom section has a downwardly angled bottom first segment extending from the rail and a forwardly extending bottom second segment extending from the first segment. The upwardly angled top first segment folds rearwardly over a top face of the rail during a front impact of the forwardly extending top second segment. The downwardly angled bottom first segment folds rearwardly over a bottom face of the rail during a front impact of the forwardly extending bottom second segment.
Another aspect of the present invention is to provide a bumper system for a vehicle having a passenger compartment comprising a tubular beam, wherein an energy absorber and mounts are provided. The tubular bumper beam includes a center section, end sections, and bent interconnecting sections that interconnect each end section with an end of the center section, with the center section being at least 25% of a length of the bumper beam and defining a longitudinal primary centerline, and the end sections being at least 15% of the length and each defining a secondary centerline that extends parallel the primary centerline. The energy absorber has at least one recess shaped to receive a portion of the tubular bumper beam, with the energy absorber being configured to crush and absorb impact energy prior to collapse of the tubular beam. The mounts are adapted for attachment to a vehicle and are attached to the end sections. The secondary centerline is spaced horizontally from the primary centerline when in a vehicle-mounted position, with the center section being located partially between the mounts and closer to the passenger compartment than the end sections. The energy absorber includes enlarged structural corner sections that extend outboard of the mounts and outboard of the outer ends of the beam for providing impact structure to a corner of the vehicle outboard of the beam and mounts.
These and other features, advantages, and objects of the present invention will be further understood and appreciated by those skilled in the art by reference to the following specification, claims and appended drawings.
An advantage of the present bumper systems is that some of the traditional front-end support structure can be simplified or eliminated. For example, the present inventive bumper system can include an energy absorber with portions that support the front-of-vehicle fascia in areas in front of the vehicle hood. This allows the front end support structure of the vehicle to be simplified, such as by eliminating fascia-supporting struts, by eliminating forwardly-extending flanges on the radiator cross support, by reducing the strength requirements on the radiator cross support and/or by eliminating or reducing strength requirements on a vehicle's front end panel.
These and other aspects, objects, and features of the present invention will be understood and appreciated by those skilled in the art upon studying the following specification, claims, and appended drawings.
A bumper system 20 (
The beam 21 (
Beam 21 (
Energy absorber 22 (
The center section of the energy absorber 22 includes horizontal upper and lower rails 34 and 35, both of which have rearwardly-facing U-shaped cross sections. The upper rail 34 defines a large portion of the rearwardly-facing recess 25 (FIG. 4), which is shaped to closely receive the center tubular section of the beam 21. The box-shaped sections 33 are molded onto top, front and bottom surfaces of the upper rail 34 at strategic locations along its length. Two such sections 33 are shown, but more or less can be used. The sections 33 provide improved energy absorbing characteristics to the bumper system 20, and further the sections 33 have an upper surface shaped to support the vehicle front fascia 36, which is typically a low stiffness or TPO material that requires support against the forces of gravity.
The energy absorber 22 (
The flattened end section 23 (and 24) (
The energy absorber 22 includes corner sections 52 (
As shown in
When an object 66 is struck in a front impact directly in-line with the mounts 26, the forces 67 are transmitted directly against the mount 26 in a manner permitting the mount 26 to absorb forces in a telescoping manner like it historically is designed. (I.e. the forces are linear and permit the tubular section 47 to telescopingly crush and collapse in a predictable manner.) When the bumper system 20 is struck in a center area between the mounts 26, the impact is primarily transmitted linearly into the mounts 26, due to the strength of the beam 21. Nonetheless, it is noted that with the present beam 21, some bending may occur, depending on a width of the impact area on the bumper system 20 and how nearly it is perfectly centered on the bumper system 20.
In the modified bumper system 20A (FIGS. 6-8), a beam 21A similar to beam 21 is provided, and a “longer stroke” energy absorber 22A is attached to its face. The energy absorber 22A includes upper and lower U-shaped rails 34A and 35A that open rearwardly. The rails 34A and 35A are connected by vertical webs 65A that extend fore/aft, and by a rear wall 66A that extends across a back of the energy absorber 22A. Flanges 67A and 68A extend rearwardly from the rear wall 66A. The flanges 67A and 68A engage and cover top and bottom walls of the beam 21A, and include fingers 67A′ and 68A′ for snap-locking onto the beam 21A for temporary securement of the energy absorber 22A to the beam 21A. In energy absorber 22A, the corner sections 52A also form the mounting section of the energy absorber 22A. Specifically, the corner sections 52A include a flat rear wall 70A, and perpendicular walls 71A forming a box around the flat rear wall 70A. The end section 23A (and 24A) of the beam 21A engage a rear surface of the flat rear wall 70A, and fasteners (i.e. bolts) are extended through aligned holes in the flat rear wall 70A, the flattened sections 23A (and 24A), and the front plate of the mount (26) to which it is attached.
A rear “root” portion 72A of the inner wall of the rails 34A and 35A is offset slightly from the flanges 67A and 68A (FIG. 8), and also is offset from the corresponding top and bottom walls of the beam 21A. Upon front impact, the rails 34A and 35A are driven rearwardly. Due to the stiffness of the beam 21A, this causes the “root” portion 72A of the energy absorber 22A to buckle and fold onto itself and onto the flanges 67A and 68A, as shown by arrows 73A. The result is a much more predictable and “softer” impact. At such time as the energy absorber 22A is completely crushed, forces from the impact are directly transmitted to the beam 21A, providing a force versus deflection force curve that increases sharply over the initial force versus deflection curve.
The bumper system 20B (
It is noted that a strength of the tubular portion of the beam 21B (or beams 21A or 21) can be substantially increased by press-fitting within the tubular portion an internal energy absorber, such as is illustrated in
It is to be understood that variations and modifications can be made on the aforementioned structure without departing from the concepts of the present invention, and further it is to be understood that such concepts are intended to be covered by the following claims unless these claims by their language expressly state otherwise.
This application is a continuation of U.S. patent application Ser. No. 10/681,806, entitled BUMPER WITH INTEGRALLY FORMED ENERGY ABSORBER, which was filed on Oct. 8, 2003, which is a continuation of U.S. patent application Ser. No. 10/163,838 entitled BUMPER WITH INTEGRATED ENERGY ABSORBER AND BEAM, which was filed on Jun. 6, 2002, now U.S. Pat. No. 6,663,150.
Number | Name | Date | Kind |
---|---|---|---|
3638465 | Lickliter et al. | Feb 1972 | A |
3827740 | Golze et al. | Aug 1974 | A |
4094056 | Takeda et al. | Jun 1978 | A |
4165113 | Casse | Aug 1979 | A |
4221413 | Bonnetain | Sep 1980 | A |
4275912 | Bayer | Jun 1981 | A |
4320913 | Kuroda | Mar 1982 | A |
4328986 | Weller et al. | May 1982 | A |
4466646 | Delmastro et al. | Aug 1984 | A |
4533166 | Stokes | Aug 1985 | A |
4621399 | Qureshi et al. | Nov 1986 | A |
4830416 | Matsuoka | May 1989 | A |
4856833 | Beekman | Aug 1989 | A |
4940270 | Yamazaki et al. | Jul 1990 | A |
4978562 | Wycech | Dec 1990 | A |
5005887 | Kelman | Apr 1991 | A |
5062284 | Kubo et al. | Nov 1991 | A |
5092512 | Sturrus et al. | Mar 1992 | A |
5106137 | Curtis | Apr 1992 | A |
5124186 | Wycech | Jun 1992 | A |
5219197 | Rich et al. | Jun 1993 | A |
5290079 | Syamal | Mar 1994 | A |
5385375 | Morgan et al. | Jan 1995 | A |
5425561 | Morgan | Jun 1995 | A |
5545022 | Rosasco | Aug 1996 | A |
5545361 | Rosasco | Aug 1996 | A |
5756167 | Tamura et al. | May 1998 | A |
5926930 | Tamura et al. | Jul 1999 | A |
5957512 | Inada et al. | Sep 1999 | A |
5984389 | Nuber et al. | Nov 1999 | A |
6065786 | Wheatley | May 2000 | A |
6082792 | Evans et al. | Jul 2000 | A |
6096402 | Tamura | Aug 2000 | A |
6165588 | Wycech | Dec 2000 | A |
6217089 | Goto et al. | Apr 2001 | B1 |
6276105 | Wycech | Aug 2001 | B1 |
6345577 | Cramer et al. | Feb 2002 | B1 |
6406081 | Mahfet et al. | Jun 2002 | B1 |
6609740 | Evans | Aug 2003 | B2 |
6644701 | Weissenborn et al. | Nov 2003 | B2 |
6663150 | Evans | Dec 2003 | B1 |
6669251 | Trappe | Dec 2003 | B2 |
6672635 | Weissenborn et al. | Jan 2004 | B2 |
6685243 | Evans | Feb 2004 | B1 |
6709036 | Evans | Mar 2004 | B1 |
20010017473 | Yamamoto | Aug 2001 | A1 |
20010035658 | Anderson et al. | Nov 2001 | A1 |
20030034661 | Gotanda et al. | Feb 2003 | A1 |
Number | Date | Country | |
---|---|---|---|
20050029821 A1 | Feb 2005 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10681806 | Oct 2003 | US |
Child | 10944233 | US | |
Parent | 10163838 | Jun 2002 | US |
Child | 10681806 | US |