Bundled product and system and method for forming the same

Abstract
A direct-to-consumer heat shrunk bundled product made up of a plurality of paper product rolls each individually packaged by a first package material and arranged relative to one another so as to form a bundle, the bundle being packaged by a second package material, wherein a substantial portion of the inner surface of the second package material is in contact with the first package material of the plurality of paper product rolls and is nonstick relative to the first package material. The bundle includes fused end seals so that the bundle does not include open gussets that might otherwise catch on machinery during sorting and shipping. The packaging material and/or wrapper may include laser energy absorbing material or adhesive.
Description
FIELD OF THE INVENTION

The present invention generally relates to packaging of items in a film material, and in particular to systems and methods for packaging groups of items within a film material.


BACKGROUND

It is known to package rolls of paper products, such as tissue and paper towel rolls, in bundles wrapped in packaging material. It is important for such packaged bundles to have a streamlined profile so as to minimize the amount of space required for storage and shipping of the bundles and also so that any loose packaging material on the bundles do not interfere with machinery during sorting and shipping.



FIG. 9 is a perspective view of a conventional bundle of paper product rolls, generally designated by reference number 3000. The bundle 3000 includes open side gussets 3010 that are formed during the packaging process. These side gussets 3010 may get caught in machinery during shipping and delivery of the bundle 3000, contributing to delays and expense in the overall bundle production and shipping process.


SUMMARY OF THE INVENTION

A direct-to-consumer heat shrunk bundled product according to an exemplary embodiment of the present invention comprises: a plurality of paper product rolls each individually packaged by a first package material and arranged relative to one another so as to form a bundle, the bundle being packaged by a second package material, wherein an entire inner surface of the second package material is exposed to the first package material of the plurality of paper product rolls and is nonstick relative to the first package material. As used herein, “direct-to-consumer” means product delivered from the manufacturer to consumers by shipping individual bundles non-palletized via the last mile or retail tissue products shipped directly to consumers. As known in the art, the term “last mile” refers to the final step of the delivery process from a distribution center or facility to the end user, and can involve a distance from a few blocks to 50 or 100 miles, or even more.


A direct-to-consumer heat shrunk bundled product according to an exemplary embodiment of the present invention comprises: a plurality of paper product rolls each individually packaged by a first package material and arranged relative to one another so as to form a bundle, the bundle being packaged by a wrapper made of a second package material, wherein the wrapper comprises at least one end seal that comprises: a middle portion made up of two overlapping layers of the second package material; and side portions made up of at least three overlapping layers of the second package material that are fused to one another so that there are no openings between the at least three overlapping layers.


A direct-to-consumer heat shrunk bundled product according to an exemplary embodiment of the present invention comprises: a plurality of tissue product rolls arranged in groups with each group individually packaged by a first package material and arranged relative to one another so as to form a bundle, the bundle being packaged by a second package material, wherein each tissue product roll has a Kershaw firmness of 3.5 mm or more and the packaged bundle deflects less than 6 inches under a 150 lb force as tested in accordance with ASTM D 642 where the force was applied perpendicular to a longest side of the bundle.


A direct-to-consumer heat shrunk bundled product according to an exemplary embodiment of the present invention comprises: a plurality of paper towel product rolls each individually packaged by a first package material and arranged relative to one another so as to form a bundle, the bundle being packaged by a second package material, wherein each tissue product roll has a Kershaw firmness of 6.0 mm and the packaged bundle deflects less than 7 inches under a 150 lb force as tested in accordance with ASTM D 642 where the force was applied perpendicular to a longest side of the bundle.


A method of forming a direct-to-consumer heat shrunk bundled product according to an exemplary embodiment of the present invention comprises: individually packaging a plurality of paper product rolls with a first packaging material so as to form a bundle; packaging the bundle with a wrapper made of a second packaging material so as to form a packaged bundle; subjecting the packaged bundle to heat treatment within a heated tunnel, a temperature of the heat treatment applied by the heated tunnel is 300-400° F. and heat is applied to the packaged bundle for 20 to 45 seconds; and applying force to sides of the packaged bundle after heat treatment so as to fuse folded portions of the second packaging material together.


These and other features and advantages of the present invention will be presented in more detail in the following detailed description and the accompanying figures which illustrate by way of example principles of the invention.





DESCRIPTION OF THE DRAWINGS

Various exemplary embodiments of this invention will be described in detail, with reference to the following figures, wherein:



FIG. 1 is a perspective view of a paper product roll according to an exemplary embodiment of the present invention;



FIG. 2 is a perspective view of a paper product roll bundle according to an exemplary embodiment of the present invention;



FIG. 3 is a side view of a paper product roll bundle according to an exemplary embodiment of the present invention;



FIG. 4 is a block diagram of a heat tunnel assembly according to an exemplary embodiment of the present invention;



FIG. 5 is a perspective view of an infeed system according to an exemplary embodiment of the present invention;



FIG. 6 is a perspective view of an outfeed system according to an exemplary embodiment of the present invention;



FIG. 7 is a top plan view of a roller assembly according to an exemplary embodiment of the present invention;



FIGS. 8A-8C are various views of a core insert according to an exemplary embodiment of the present invention;



FIG. 9 is a perspective view of a conventional bundle;



FIG. 10 is a side view of a bundle according to an exemplary embodiment of the present invention;



FIG. 11 is a top view of a bundle according to an exemplary embodiment of the present invention;



FIG. 12 is a bottom view of a bundle according to an exemplary embodiment of the present invention;



FIG. 13 is a perspective view of a bundle according to an exemplary embodiment of the present invention; and



FIGS. 14A-14C are side views showing a bundle being conveyed through a heat tunnel assembly according to an exemplary embodiment of the present invention.





DETAILED DESCRIPTION

The present invention is directed to the packaging of sheet products within a film material, and in particular is directed to a packaged bundle of sheet products that has enhanced properties for effective and efficient shipping. In embodiments, the packaged bundle includes an outer layer of film material (i.e., “wrapper”) that is shrink wrapped through a heat treatment process around an inner layer of film material. In embodiments, as the packaged bundle is conveyed through a heated tunnel as part of the heat treatment process, the bundle is specifically positioned within the heated tunnel and subjected to side pressure from rollers so as to form a unitary folded seam that extends outwardly relative to the plane of the outer film material. This differs from conventional bundles that may have gusset seals made up of separate layers of film material (i.e., not unitary relative to one another) that protrude outwardly from the bundle, which create openings in the bundle that may catch on machinery during bundle transport.


The term “sheet products” as used herein is inclusive of natural and/or synthetic cloth or paper sheets. Sheet products may include both woven and non-woven articles. There is a wide variety of nonwoven processes and these processes can be, for example, either wetlaid or drylaid. Some examples include hydroentangled (sometimes called spunlace), DRC (double re-creped), airlaid, spunbond, carded, paper towel, and meltblown sheet products. Further, sheet products may contain fibrous cellulosic materials that may be derived from natural sources, such as wood pulp fibers, as well as other fibrous material characterized by having hydroxyl groups attached to the polymer backbone. These include glass fibers and synthetic fibers modified with hydroxyl groups. Examples of sheet products include, but are not limited to, wipes, napkins, tissues, rolls, towels or other fibrous, film, polymer, or filamentary products.


In general, sheet products are thin in comparison to their length and breadth and exhibit a relatively flat planar configuration and are flexible to permit folding, rolling, stacking, and the like. The sheet product may have perforations extending in lines across its width to separate individual sheets and to facilitate separation or tearing of individual sheets from a roll or folded arrangement at discrete intervals. Individual sheets may be sized as desired to accommodate the many uses of the sheet products. For example, perforation lines may be formed every thirteen inches, or other defined interval, to define a universally sized sheet. Multiple perforation lines may be provided to allow the user to select the size of the sheet depending on the particular need.



FIG. 1 illustrates a roll sheet product (roll) 100 according to an exemplary embodiment of the present invention. The roll of sheet product 100 may include a cylindrical core 200 in the center of the roll 100. The roll 100 itself may be composed of a single roll of sheet material as shown, or alternatively may be made of rolls stacked on-end. In the embodiment shown in FIG. 1, the roll 100 has been wrapped in a protective cover or inner packaging material 300. The inner packaging material 300 may be any suitable material such as, for example, a plastic film or a fibrous sheet product. Suitable plastics include, but are not limited to polyalkanes, polyalkenes, polyesters, polyamides, polyvinyl chloride, blends thereof and copolymers thereof. The plastics may be straight chained, branched and/or block copolymers. In exemplary embodiments, the inner packaging material 300 is made of polyethylene, polylactic acid (PLA), polypropylene, regenerated cellulose, and/or nylon. The polyethylene may be a mixture of high density polyethylene and low density polyethylene. When high density polyethylene is used, the amount may range from about 1% to about 20% or from about 5% to about 15% or from about 8% to about 12% by weight, based on the total weight of the packaging material. The inner packaging material 300 may be transparent, translucent, or opaque and may include graphics or text printed on the inner packaging material 300. It should be appreciated that in other exemplary embodiments any number of rolls (either individually wrapped or un-wrapped) may be packaged in a respective protective cover (for example, three rolls arranged in-line and packaged within a single protective cover) to form groups of packaged rolls, and the complete bundle may include any number of packaged groups of rolls with any number of rolls in each group.



FIG. 2 illustrates an arrangement of rolls 100 that has been wrapped in an outer packaging or wrapper 400 so as to form a bundle, generally designated by reference number 1, according to an exemplary embodiment of the present invention. The wrapper 400 envelopes the rolls 100. The wrapper 400 is formed from a plastic material that may be heated to shrink the wrapper 400 around the rolls 100. Suitable plastics include, but are not limited to polyalkanes, polyalkenes, polyesters, polyamides, polyvinyl chloride, blends thereof and copolymers thereof. The plastics may be straight chained, branched and/or block copolymers. The wrapper 400 may be formed from, for example, a tubular shaped plastic material that is arranged about the rolls 100. The wrapper 400 may be transparent or translucent and may, or may not, include graphic or textual markings printed on the wrapper 400. In an exemplary embodiment, the wrapper 400 has a thickness that is less than 1.8 mil, or from about 0.8 to about 1.6 mm, or from about 1.0 to about 1.4 mm, or from about 1.1 to about 1.3 mm as measured using Test Method ASTM D6988-13.


The wrapper 400 is folded and sealed around the rolls 100 in the bundle 1 by a packaging machine, such as, for example, wrapper and bundle machines as disclosed in U.S. Patent Application Publication No. 2017/0253422 and U.S. Pat. No. 4,430,844, the contents of which are incorporated herein by reference in their entirety. The packaging process results in formation of seals around the wrapper, including a longitudinally extending lap seal 408 formed by overlapping ends of the wrapper material. In accordance with an exemplary embodiment, the outer packaging material extending between bundles along the packaging line is cut and then folded and sealed to form end seals at both ends of the bundle. In an exemplary embodiment, the end seals may be formed by an envelope-type fold, in which the cut ends of the packaging material are tucked inwards and folded over to form inwards-pointing triangular folds. FIG. 3 shows one end seal, generally designated by reference number 410, of the bundle 1 according to an exemplary embodiment of the present invention. The end seal 410 extends transverse to the longitudinal axis of the rolls 100. The folding and sealing operation results in the end seal 410 with a center portion 412, a first outer portion 414 extending from the center portion 412 outwards along a first direction and a second outer portion 416 extending from the center portion 412 outwards along a second direction opposite to the first direction. The center portion 412 of the end seal 410 is made up of two layers of overlapping packaging material, while the first and second outer portions 414, 416 are made up of three layers of overlapping packaging material.


In accordance with an exemplary embodiment of the invention, the sealed bundles are conveyed through a heat tunnel in order to shrink the wrapper 400 around the rolls 100. In this regard, FIG. 4 is a block diagram of a heat tunnel assembly, generally designated by reference number 1000, according to an exemplary embodiment. The heat tunnel assembly 1000 includes infeed system 1010, heat tunnel 1040 and outfeed system 1060. As indicated by the left-pointed arrow in FIG. 4, the bundle 1 (after the wrapper 400 is folded and sealed) proceeds through the heat tunnel assembly 1000 along a conveyor 1005 first into the infeed system 1010, then through the heat tunnel 1040 and then out of the heat tunnel assembly 1000 at the outfeed system 1060. As explained in more detail below, the heat tunnel assembly 1000 includes components that maintain the bundles 1 within the center of the heat tunnel conveyor and that apply pressure to sides of the bundles 1 at the outfeed system 1060 to form folded unitary side seals.



FIG. 5 is a perspective view of the infeed system 1010 according to an exemplary embodiment of the present invention. The infeed system 1010 includes guide rails 1012, 1014 at opposite sides of the conveyor 1005. The positions of the guide rails 1012, 1014 may be adjustable so that the space between the guide rails 1012, 1014 conform to the width of different sized bundles. The guide rails 1012, 1014 are preferably equidistant from the center line of the conveyor 1005 so that the bundles 1 are guided along the center line of the conveyor 1005 as they are conveyed into the heat tunnel 1040. Positional adjustment of the guide rails 1012, 1014 may be achieved using, for example, lead screws, ball screws, roller screws, hydraulics, pneumatics, gear trains, electromagnetic actuators, and/or piezoelectric actuators.


The heat tunnel 1040 may be any commercially available heat tunnel, such as a S30 shrink wrapper available from Douglas Machine Inc., Alexandria, Minn. In general, heat tunnels apply heated air to articles enclosed in shrink wrap film, and are composed of at least one air supply unit, a conveyor and a heat shroud. Multiple air supply units can be provided along the conveyor to create a heat tunnel of desired length. An exemplary heat tunnel is described in U.S. Pat. No. 7,155,876, the contents of which are incorporated herein by reference in their entirety.



FIG. 6 is a perspective view of the outfeed system 1060 according to an exemplary embodiment of the present invention. The outfeed system 1060 assists in pulling the bundles 1 out of the heat tunnel 1040. In this regard, the outfeed system includes a top belt 1064, top belt height adjustment assembly 1070 and a drive chain assembly 1078. The top height adjustment assembly 1070 includes a height adjustment screw 1072 that may be operatively attached by a mechanical linkage to a user adjustable mechanism. Although FIG. 6 shows the mechanical linkage as a belt 1074 and the user adjustable mechanism as a hand wheel 1076, it should be appreciated that any other suitable mechanisms may be used. These components of the outfeed system 1060 allow for adjustment to the height position of the top belt 1064 to accommodate different sized bundles. The drive chain assembly 1078 transmits mechanical power from a motor (e.g., an electric motor) to propel the top belt 1064 forward. In an exemplary embodiment, the top belt 1064 is mechanically linked to operate at the same speed as the conveyor 1005.


As shown in FIG. 7, the outfeed system 1060 further includes a roller assembly, generally designated by reference number 1080. The roller assembly 1080 includes a first roller 1081 positioned at one side of the conveyor 1005 and a second roller 1082 positioned at an opposite side of the conveyor 1005. The positions of the rollers 1081, 1082 relative to the center line of the conveyor 1005 may be adjusted so that the rollers 1081, 1082 apply pressure to sides of the bundles 1 as they pass between the rollers 1081, 1082. In this regard, the rollers 1081, 1082 may be operatively attached to the ends of respective first arms 1083, 1084, which in turn are fixed at a 90° angle with respective second arms 1085, 1086 at respective pivot points 1087, 1088. Application of pressure by the rollers 1081, 1082 to the sides of the bundle 1 occurs when the wrapper 400 and the inner packaging material 300 are in an at least partially molten state. This results in fusing of the layers of packaging material along the sides of the bundle 1 at the points where the rollers 1081, 1082 exert pressure, thereby forming a unitary three (or five) layer structure. In an exemplary embodiment, the unitary layered structure creates portions of the bundle 1 that extend outwards by an amount of, for example, less than 5 mm or less than 4 mm.


By way of further explanation, the rollers 1081, 1082 are located directly outside the exit of the heat tunnel. The rollers 1081, 1082 obtain heat discharged from the heat tunnel so that, in an exemplary embodiment, the rollers are heated to a temperature of about 120 degrees F. As the bundle moves out of the tunnel, the top belt 1064 (running at the same speed as the conveyor inside the heat tunnel) grabs the bundle 1 and provides positive traction through the roller assembly 1080. The rollers 1081, 1082 are mechanically attached to arms to which are attached spring shocks. The spring shocks/tensioners force the rollers 1081, 1082 towards the inside of the tunnel and into contact with the bundle 1. As the bundle 1 travels by way of the top belt 1064 and exits conveyor, the rollers 1081, 1082 make contact with the ends of the bundle 1, thereby applying pressure to the still molten wrapper material to fuse the layers together to create the unitary seal structure (i.e., the previously opened gussets are sealed closed).


Reference is now made to FIGS. 14A-14C, which shows the bundle 1 as it exits the heat tunnel 1040 and proceeds through the outfeed system 1060. As shown in the these figures, the bundle 1 is arranged on the conveyor 1005 with the short sides of the bundle 1 (the sides of the bundle 1 with the end seals 410) facing towards the sides of the conveyor 1005, with the long sides (the sides of the bundle 1 without the end seals 410) facing forwards and backwards, respectfully, relative to the movement direction of the bundle 1. This puts the end seals 410 of the bundle 1 in contact with the rollers 1081, 1082 (as shown in FIGS. 14A-14C, each roller 1081, 1082 may be made up of two vertically stacked rollers). At this point, the outer wrapper material is in an at least partially molten state. As the bundle 1 proceeds through the outfeed system 1060, the rollers 1081, 1082 apply pressure to the end seals 410, thereby fusing the tucked and folded over portions of the end seals 410 to form the first and second outer portions 414, 416 of the end seals 410.



FIGS. 10-13 are various views of the resulting bundle 1, with the end seals 410 not including any open or pocketed portions that might otherwise catch on machinery during transport of the bundle 1. Specifically, FIG. 10 shows a short side of the bundle 1 with a corresponding end seal 410, FIG. 11 is a top view of the bundle 1, FIG. 12 is a bottom view of the bundle 1 showing the lap seal 408 and FIG. 13 is a perspective view of the bundle 1. In an exemplary embodiment, a stock keeping unit (SKU) 450 in the form of a barcode, for example, is printed or otherwise directly disposed on the outer package material. The SKU 450 is readable directly from the outer package so that additional outer packaging, such as a box, is not required. Graphics on the outer package may be adjusted so that they are visually correct after the packaging is heat treated. In this regard, to ensure that a barcode (such as a SKU or UPC) of a given bundle remains optically registered after the heating process, the barcode is printed or otherwise disposed on the outer package material on the panel opposite the lap seal at a location no less than 2.5 inches away from each edge (as indicated by the dashed rectangle in FIGS. 11 and 13). This placement allows for the barcode to be least affected by any shrinkage resulting from the heat treatment and, to the extent that there is shrinkage, the shrinkage is uniform in nature so as to avoid or minimize distortion of the barcode.



FIGS. 8A-8C are various views of a core insert, generally designated by reference number 2000, according to an exemplary embodiment of the present invention. The core insert 2000 is configured for insertion into a standard sized core of a roll of sheet material, which may be, for example, 30-45 mm in diameter and 4 inches in length for bath tissue rolls and 11 inches in length for paper towel rolls. The core insert 2000 may be a generally elongated structure having a central hub 2002 from which extend a plurality of fins 2004. Although six fins 2004 are shown in the figures, it should be appreciated that the core insert 2000 may include any number of such fins 2004. In an exemplary embodiment, the core insert 2000 has a length L of 203.20 mm, a fin width W of 14.07 mm, and fin spacing S of 5.20 mm. It should be appreciated that the dimensions are not limited to these values.


In an exemplary embodiment of the invention, temperature of the heat treatment applied by the heat tunnel is between 300-400° F. and heat is applied to a bundled product for between 20 to 45 seconds. In an exemplary embodiment, the heat is distributed primarily to the top and bottom of the bundle. The effect of this uneven heating is to produce package ends that are tight and molded while keeping the sides of the package smooth with limited wrinkles.


In an exemplary embodiment of the invention, laser energy may be used as a source of heat in the heat treatment process to produce package ends that are tight and molded. Any laser known in the art can be focused on corners of the packages containing laser energy absorbing material such as pigments, dyes, carbon black, rubber, graphite, ceramic and combinations thereof. The laser energy absorbent material may be mixed with or coated onto the polymeric material used to form the inner package material and/or the outer package material. The amount of laser absorbent material in or on the polymeric material may depend on the optical characteristics of the additive and properties of the polymer such as heat capacity and latent heat of fusion, but typically may range from about 0.01 percent to about 5 percent or from about 0.05 percent to about 5 percent or from about 0.1 percent to about 5 percent by weight of the polymeric material. The laser energy absorbing material in the polymer absorbs laser energy, creating sufficient heat to partially melt the other packaging layer and attach the layers. In an exemplary embodiment, an outer gusset is attached to the outer layer.


In exemplary embodiments, the laser energy absorbing material may be present at the first outer portion 414 and the second outer portion 416 of the end seal 410 (see FIG. 3).


In an exemplary embodiment, the bundle 1 is sortable (for the purposes of the present invention, “sortable” is intended to mean that the bundle fits within sortable size dimensions (18 in×14 in×8 in)).


In an exemplary embodiment, the bundle 1 is shippable (for the purposes of the present invention, “shippable” is intended to mean that the package can be successfully transported from distributor to end consumer without any additional packaging).


In an exemplary embodiment, both the inner packaging material 300 and the wrapper 400 are made from a resin that includes both high density polyethylene (HDPE) and low density polyethylene (LDPE). The poly composition for the wrapper 400 may include a greater amount of HDPE than the poly composition for the inner packaging material 300.


In an exemplary embodiment, both the compositions of the inner packaging material 300 and the wrapper 400 include an anti-static additive (such as an amine with ethoxylated surfactants). The amount of anti-static additive may range from about 0.05% to about 20%, based on the total weight of the compositions. The composition of the wrapper 400 may have a lower percentage of anti-static resin than that of the inner packaging material 300. The distribution of anti-static resin in the inner packaging material 300 may be higher on the surface of the inner packaging material 300 facing the wrapper 400 than it is on the surface of the inner packaging material 300 facing the rolled product. Wrapper 400 polymer can be a composition comprised of 100% polypropylene or a mixture of polypropylene and polyethylene, with greater than 10% polypropylene in the outer skins, or greater than 20% polypropylene in the outer skins. Wrapper 300 polymer can be a composition comprised of a mixture of polypropylene and polyethylene, with greater than 10% polypropylene in the outer skins, or greater than 20% polypropylene in the outer skins. The polypropylene controls the tact between wrapper 300 and wrapper 400 post heat treatment.


In an exemplary embodiment, the composition of the inner packaging material 300 has a higher percentage of anti-block additives (such as calcium carbonate, sodium carbonate, or talc) than the composition of the wrapper 400, and the composition of the inner packaging material 300 has a higher percentage of slip additives (such as long chain fats) than the composition of the wrapper 400. The amount of anti-block additive may range from about 0.05% to about 20%, based on the total weight of the composition. Commercially available slip additives can be found in the chemical family known as amides and typically referred to as oleamide or erucamide additives. In exemplary embodiments, if the packaging material is a three layer structure, the material may have the following amounts of slip additives:


Oleamide—1-15% total by weight—as an example, 6% first outer layer, 3% middle layer, 6% second outer layer);


Erucamide—1-15% total by weight—as an example, 6% first outer layer, 3% middle layer, 6% second outer layer).


Table 1 below shows exemplary slip additives per layer of packaging material.









TABLE 1







Example of three layer film









Type Additive














Skin
Oleamide Slip



Core
Oleamide Slip



Skin
Oleamide Slip



Skin
Erucamide Slip



Core
Oleamide Slip



Skin
Erucamide Slip



Skin
Erucamide Slip



Core
Oleamide Slip



Skin
Erucamide Slip



Skin
Erucamide Slip



Core
Oleamide Slip



Skin
Erucamide Slip










It is desirable that the outer packaging and inner packaging do not stick to each other. One approach to preventing the outer packaging and inner packaging from sticking together is to use the slip additives described above. Another approach to preventing the outer and inner packaging from sticking to each other is to use the combination of high density polyethylene and low density polyethylene packaging described above. Combining the combination of high density polyethylene and low density polyethylene packaging and the slip additives is another approach to preventing the outer and inner packaging from sticking to each other.


The following examples illustrate features and advantages of exemplary embodiments of the present invention. The following test methods were used in these examples:


Compression Test Method (ASTM D 642);


Core material Test Methods: Caliper (TAPPI T411), MD Tensile (T494), Basis Weight (TAPPI T410, om-13);


Packaging Material Test Method: Caliper (ASTM D6988-13), MD Tensile (ASTM D882-10), COF (ASTM D1894-11) (suitable COF range between 0.1 to 0.35, or between 0.12 to 0.24, or between 0.16 to 0.20);


Kershaw firmness was determined using a Kershaw Roll Density Tester Model RDT-2000B from Kershaw Instrumentation 517 Auburn Ave. Swedesboro, N.J., USA 08085 as follows:


Procedure


Turn the Roll Density Tester on and allow it to warm up for about 15 minutes.


Make sure the Run/Calibrate switch is in the “RUN” position.


Place the roll to be tested on the test spindle.


Adjust the roll diameter assembly until the pointer indicates the nominal diameter of the roll being tested.


(The roll diameter needs to be converted to inches to set the pointer for the machine diameter.)


Press the “GREEN” forward button, the table will automatically move toward the roll to be tested. Once the probe contacts the roll, the force exerted on the probe will be displayed on the digital force display. The results for the displacement and force will be displayed.


Comparative Example No. 1

The product of this example was a direct to consumer bundled product comprised of four individually packaged groups of six tissue rolls, packaged in a first packaging material/film or “inner wrap”, arranged relative to one another as to form a bundle, the bundle being packaged by a second packaging material/film or “outer wrap”.


Each package of six rolls was stacked two rolls high (rolls placed end to end) and three rolls wide (rolls placed side to side) with four packages bundled together with the packages placed side to side.


Each tissue roll was 138 mm in diameter, with a Kershaw firmness of 3.5 mm, containing a 42 mm diameter core. The core material used was single ply made from recycled cellulosic fiber sources with the following properties: Basis Weight 52 lbs/ft2, MD tensile strength of 80 lbs force/inch, caliper of 0.01485 inches. The height of each tissue roll was 101 mm. Each roll had a sheet count of 308 2-ply sheets with sheets separated by perforations every 101 mm.


The characteristics of the tissue paper were as follows: MD tensile 150 N/m, CD tensile 90 N/m, MD stretch 15%, CD stretch 8%, Ball Burst 220 gf, Basis Weight 38.6 gsm, and caliper of 500 microns/2 ply.


The packages of six tissue rolls were wrapped using an Ultraflow wrapper machine from Paper Machine Converting Company (PCMC) (Green Bay, Wis., USA). The packaging material or inner wrap was a linear low density polyethylene film with an inside surface (facing the tissue rolls) that was treated with corona plasma, to enhance its ability for ink adhesion, and an outside surface that was untreated. The properties of the film were as follows: caliper of 1.0 mm, MD tensile of 5,000 pounds/in2, CD tensile of 3,500 pounds/in2, MD stretch of 350%, CD stretch of 400%, MD coefficient of friction “treated to treated” of 0.18 cof both kinetic and static, MD coefficient of friction “untreated to untreated” of between 0.18 cof both kinetic and static. When performing the coefficient of friction test, the “treated to treated” cof was a measurement of the friction of two corona treated film surfaces against each other while the “untreated to untreated” was a measurement of the friction of two non-treated film surfaces against each other.


The packages of six tissue rolls were then bundled using a Multiflow Traversing Die (MFTD) from PCMC. The packaging material or outer wrap was a linear low density polyethylene film with an inside surface (facing the tissue rolls) that was treated with corona plasma, to enhance its ability for ink adhesion, and an outside surface that was untreated. The properties of the film were as follows: caliper of 1.5 mm, MD and CD tensile of 4,000 pounds/in2, MD stretch of 500%, CD stretch of 600%, MD coefficient of friction “treated to treated” of 0.18 cof both kinetic and static, MD coefficient of friction “untreated to untreated” of 0.18 cof both kinetic and static.


The bundled product was not heat treated; therefore, the outer wrap/film did not stick to the inner wrap film and no force was required to separate the inner from outer wrap. However; without heat treatment the folded seams on the outer wrap/film do not form a unitary structure and created loose areas that will catch on machinery used in automated shipping facilities such as those utilized by the United States Post Office, United Postal Service, and FedEx. With these loose seams, the bundled product was prevented from being shipped without being placed inside a box or otherwise was subject to fines.


The bundled product in this example lost 6.5 inches in length under 150 lb force, where the force was applied perpendicular to the longest side of the bundle (i.e., force was applied at the point on the bundle that caused the maximum amount of deflection).


Comparative Example No. 2

The product of this example was a direct to consumer bundled product comprised of four individually packaged groups of six tissue rolls, packaged in a first packaging material/film or “inner wrap”, arranged relative to one another as to form a bundle, the bundle being packaged by a second packaging material/film or “outer wrap”.


Each package of six rolls was stacked two rolls high (rolls placed end to end) and three rolls wide (rolls placed side to side) with four packages bundled together with the packages placed side to side.


Each tissue roll was 138 mm diameter, with a Kershaw firmness of 3.5 mm, containing a 42 mm diameter core. The core material used was a single ply made from recycled cellulosic fiber sources with the following properties: basis weight 52 lbs/ft2, MD tensile strength of 80 lbs force/inch, caliper of 0.01485 inches. The height of each tissue roll was 101 mm. Each roll had a sheet count of 308 2-ply sheets with sheets separated by perforations every 101 mm.


The characteristics of the tissue paper were as follows: MD tensile 150 N/m, CD tensile 90 N/m, MD stretch 15%, CD stretch 8%, ball burst 220 gf, basis weight 38.6 gsm, and caliper of 500 microns/2 ply.


The packages of six tissue rolls were wrapped using an Ultraflow wrapper machine from Paper Machine Converting Company (PCMC) (Green Bay, Wis., USA). The packaging material or inner wrap was a linear low density polyethylene film with an inside surface (facing the tissue rolls) that was treated with corona plasma to enhance its ability for ink adhesion and an outside surface that was untreated. The properties of the film were as follows: caliper of 1.0 mm, MD tensile of 5,000 pounds/in2, CD tensile of 3,500 pounds/in2, MD stretch of 350%, CD stretch of 400%, MD coefficient of friction “treated to treated” of 0.18 cof both kinetic and static, MD coefficient of friction “untreated to untreated” of 0.18 cof both kinetic and static. When performing the coefficient of friction test, the “treated to treated” cof was a measurement of the friction of two corona treated film surfaces against each other while the “untreated to untreated” was a measurement of the friction of two non-treated film surfaces against each other.


The packages of six tissue rolls were then bundled using a Multiflow Traversing Die (MFTD) from PCMC. The packaging material or outer wrap was a linear low density polyethylene film with an inside surface (facing the tissue rolls) that was treated with corona plasma, to enhance its ability for ink adhesion, and an outside surface that was untreated. The properties of the film were as follows: caliper of 1.5 mm, MD and CD tensile of 4,000 pounds/in2, MD stretch of 500%, CD stretch of 600%, MD coefficient of friction “treated to treated” of 0.18 cof both kinetic and static, MD coefficient of friction “untreated to untreated” of 0.18 cof both kinetic and static.


The bundled product then traveled through a Contour S30 Shrink Wrapper from Douglas Machine Inc. (Alexandria, Minn., USA) with the inventive modifications as previously described which included a center justified alignment feed system, a set of center justified rolls at the end of the heat tunnel that placed pressure on the side gussets in an inward vertical direction (where the rollers were tensioned by a spring dampening system that adjusted based on the inner pack density), and a positive traction top belt that was mechanically linked to operate at the same speed as the infeed traction belt.


The bundled product was heat treated, resulting in the inner and outer films sticking together. Using the Peel Test method (ASTM D882-10), 200 grams force was required to separate the inner from outer wrap with significant tears resulting to both inner and outer wrap.


However, with heat treatment, the folded seams on the outer wrap/film formed a unitary seam structure without loose areas that would catch on machinery used in automated shipping facilities (e.g., United States Post Office, United Postal Service, and FedEx). Without the loose seams, the bundled product did not need to be placed inside a box for shipping and was not subjected to fines.


The bundled product in this example lost 6.5 inches in length under 150 lb force, where the force was applied perpendicular to the longest side of the bundle (i.e., force was applied at the point on the bundle that caused the maximum amount of deflection).


Example No. 1

The product in this example was a direct to consumer bundled product comprised of four individually packaged groups of six tissue rolls, packaged in a first packaging material/film or “inner wrap”, arranged relative to one another as to form a bundle, the bundle being packaged by a second packaging material/film or “outer wrap”.


Each package of six rolls was stacked two rolls tall (rolls placed end to end) and three rolls wide (rolls placed side to side) with four packages bundled together with the packages placed side to side.


Each tissue roll was 138 mm in diameter, with a Kershaw firmness of 3.5 mm, containing a 42 mm diameter core. The core material used was single ply made from recycled cellulosic fiber sources with the following properties: basis weight 52 lbs/ft2, MD tensile strength of 80 lbs force/inch, caliper of 0.01485 inches. Each core had a core insert as shown in FIGS. 8A-8C, with a length of 202 mm (as measured by holding two rolls together end to end), a fin width of 14.07 mm, and fin spacing of 5.2 mm. The height of each tissue roll was 101 mm. Each roll had a sheet count of 308 2-ply sheets with sheets separated by perforations every 101 mm.


The characteristics of the tissue paper were as follows: MD tensile 150 N/m, CD tensile 90 N/m, MD stretch 15%, CD stretch 8%, ball burst 220 gf, basis weight 38.6 gsm, and caliper of 500 microns/2 ply.


The packages of six tissue rolls were wrapped using an Ultraflow wrapper machine from Paper Machine Converting Company (PCMC) (Green Bay, Wis., USA). The packaging material or inner wrap was comprised of a resin that included both high density polyethylene and low density polyethylene. The packaging material had an inside surface (facing the tissue rolls) that was treated with corona plasma to enhance its ability for ink adhesion and an outside surface that was untreated. The packaging material also included a combination slip/anti-block additive, Ampacet 100158 (Ampacet Corporation, Tarrytown, N.Y., USA), containing 20% anti-block (diatomaceous earth) and 5% slip (erucamide). The treated side of the packaging material contained 4 wt % of Ampacet and the untreated side contained 10 wt % of Ampacet. The properties of the film were as follows: caliper of 1.0 mm, MD tensile of 5,000 pounds/in2, CD tensile of 3,500 pounds/in2, MD stretch of 350%, CD stretch of 400%, MD coefficient of friction “treated to treated” of 0.18 cof both kinetic and static, MD coefficient of friction “untreated to untreated” of 0.18 cof both kinetic and static. When performing the coefficient of friction test the “treated to treated” cof was a measurement of the friction of two corona treated film surfaces against each other while the “untreated to untreated” was a measurement of the friction of two non-treated film surfaces against each other.


The packages of six tissue rolls were then bundled using a Multiflow Traversing Die (MFTD) from PCMC. The packaging material or outer wrap was part no. C9824 purchased from Bemis Company, Inc (2200 Badger Ave Oshkosh Wis. 54903). This outer wrap film was a coextruded polyethylene and polypropylene material ideal for film on film packaging application with an inside surface (facing the tissue rolls) that was treated with corona plasma to enhance its ability for ink adhesion and an outside surface that was untreated. The properties of the film were as follows: caliper of 2.0 mm, MD and CD tensile of 4,000 pounds/int, MD stretch of 400%, CD stretch of 600%, MD coefficient of friction “treated to treated” of 0.20 cof both kinetic and static, MD coefficient of friction “untreated to untreated” of 0.20 cof both kinetic and static.


The bundled product then traveled through a Contour S30 Shrink Wrapper from Douglas Machine Inc. (Alexandria, Minn., USA) with the inventive modifications as previously described which included a center justified alignment feed system, a set of center justified rolls at the end of the heat tunnel that placed pressure on the side gussets in an inward vertical direction (where the rollers were tensioned by a spring dampening system that adjusted based on the inner pack density), and a positive traction top belt that was mechanically linked to operate at the same speed as the infeed traction belt.


The bundled product was heat treated but with the inventive outer wrap the outer film did not stick to the inner wrap/film. Using the Peel Test method (ASTM D882-10), 10 grams force was required to separate the inner from outer wrap with no tearing of either the inner or outer wrap/film. In general, in accordance with exemplary embodiments of the present invention, the amount of force required to separate the inner from outer wrap with no tearing may range from about 0 to about 100, or from about 0 to about 71, or from about 0 to about 50, or from about 0 to about 20, or less than 10. Also, in accordance with exemplary embodiments, a substantial portion of the inner surface of the second package material is in contact with the first package material of the plurality of paper product rolls and is nonstick relative to the first package material. In this context, “a substantial portion” means more than 30%, or more than 50%, or more than 75%, or 100% of the inner surface area of the second packaging material.


With heat treatment the folded seams on the outer wrap/film formed a unitary seam structure without loose areas that would catch on machinery used in automated shipping facilities (e.g., United States Post Office, United Postal Service, and FedEx). Without these loose seams, the bundled product did not need to be placed inside a box for shipping and was not subjected to fines.


The bundled product in this example lost 0.5 inches in length under 150 lb force, where the force was applied perpendicular to the longest side of the bundle (i.e., force was applied at the point on the bundle that caused the maximum amount of deflection).


Comparative Example No. 3

The product of this example was a direct to consumer bundled product comprised of twelve individually packaged rolls of paper towel, packaged in a first packaging material/film or “inner wrap”, arranged relative to one another as to form a bundle, the bundle being packaged by a second packaging material/film or “outer wrap”. The towel rolls were arranged four rolls wide by three rolls in length inside the bundled product.


Each towel roll was 146 mm in diameter, with a Kershaw firmness of 6.0 mm, containing a 42 mm diameter core. The core material used was single ply made from recycled cellulosic fiber sources with the following properties: basis weight 52 lbs/ft2, MD tensile strength of 80 lbs force/inch, caliper of 0.01485 inches. The height of each towel roll was 279.4 mm. Each roll had a sheet count of 158 2-ply sheets with sheets separated by perforations every 152.4 mm.


The characteristics of the towel paper were as follows: MD tensile 400 N/m, CD tensile 385 N/m, MD stretch 12%, CD stretch 6%, Ball Burst 950 gf, Basis Weight 40.6 gsm, and caliper of 790 microns/2 ply.


The packages of 12 towel rolls were wrapped using an Ultraflow wrapper machine from Paper Machine Converting Company (PCMC) (Green Bay, Wis., USA). The packaging material or inner wrap was a linear low density polyethylene film with an inside surface (facing the tissue rolls) that was treated with corona plasma to enhance its ability for ink adhesion and an outside surface that was untreated. The properties of the film were as follows: caliper of 1.0 mm, MD tensile of 5,000 pounds/in2, CD tensile of 3,500 pounds/in2, MD stretch of 350%, CD stretch of 400%, MD coefficient of friction “treated to treated” of 0.18 cof both kinetic and static, MD coefficient of friction “untreated to untreated” of 0.18 cof both kinetic and static. When performing the coefficient of friction test the “treated to treated” cof was a measurement of the friction of two corona treated film surfaces against each other while the “untreated to untreated” was a measurement of the friction of two non-treated film surfaces against each other.


The packages of twelve towel rolls were then bundled using a Multiflow Traversing Die (MFTD) from PCMC. The packaging material or outer wrap was a linear low density polyethylene film with an inside surface (facing the tissue rolls) that was treated with corona plasma, to enhance its ability for ink adhesion, and an outside surface that was untreated. The properties of the film were as follows: caliper of 1.5 mm, MD and CD tensile of 4,000 pounds/int, MD stretch of 500%, CD stretch of 600%, MD coefficient of friction “treated to treated” of 0.18 cof both kinetic and static, MD coefficient of friction “untreated to untreated” of 0.18 cof both kinetic and static.


The bundled product was not heat treated; therefore, the outer wrap/film did not stick to the inner wrap film and no force was required to separate the inner from outer wrap. However, without heat treatment the folded seams on the outer wrap/film do not form a unitary seam and there were loose areas that caught on machinery used in automated shipping facilities (e.g., United States Post Office, United Postal Service, and FedEx). With these loose seams, the bundled product could not be shipped without being placed inside a box and was otherwise subject to fines.


The bundled product in this example lost 7.5 inches in length under 150 lb force, where the force was applied perpendicular to the longest side of the bundle (i.e., force was applied at the point on the bundle that caused the maximum amount of deflection).


Comparative Example No. 4

The product of this example was a direct to consumer bundled product comprised of twelve individually packaged rolls of paper towel, packaged in a first packaging material/film or “inner wrap”, arranged relative to one another as to form a bundle, the bundle being packaged by a second packaging material/film or “outer wrap”. The towel rolls were arranged four rolls wide by three rolls in length inside the bundled product.


Each towel roll was 146 mm in diameter, with a Kershaw firmness of 6.0 mm, containing a 42 mm diameter core. The core material used was a single ply made from recycled cellulosic fiber sources with the following properties: basis weight 52 lbs/ft2, MD tensile strength of 80 lbs force/inch, caliper of 0.01485 inches. The height of each towel roll was 279.4 mm. Each roll had a sheet count of 158 2-ply sheets with sheets separated by perforations every 152.4 mm.


The characteristics of the towel paper were as follows: MD tensile 400 N/m, CD tensile 385 N/m, MD stretch 12%, CD stretch 6%, ball burst 950 gf, basis weight 40.6 gsm, and caliper of 790 microns/2 ply.


The packages of 12 towel rolls were wrapped using an Ultraflow wrapper machine from Paper Machine Converting Company (PCMC) (Green Bay, Wis., USA). The packaging material or inner wrap was a linear low density polyethylene film with an inside surface (facing the tissue rolls) that was treated with corona plasma to enhance its ability for ink adhesion and an outside surface that was untreated. The properties of the film were as follows: caliper of 1.0 mm, MD tensile of 5,000 pounds/in2, CD tensile of 3,500 pounds/in2, MD stretch of 350%, CD stretch of 400%, MD coefficient of friction “treated to treated” of 0.18 cof both kinetic and static, MD coefficient of friction “untreated to untreated” of 0.18 cof both kinetic and static. When performing the coefficient of friction test the “treated to treated” cof was a measurement of the friction of two corona treated film surfaces against each other while the “untreated to untreated” was a measurement of the friction of two non-treated film surfaces against each other.


The packages of twelve towel rolls were then bundled using a Multiflow Traversing Die (MFTD) from PCMC. The packaging material or outer wrap was a linear low density polyethylene film with an inside surface (facing the tissue rolls) that was treated with corona plasma, to enhance its ability for ink adhesion, and an outside surface that was untreated. The properties of the film were as follows: caliper of 1.5 mm, MD and CD tensile of 4,000 pounds/in2, MD stretch of 500%, CD stretch of 600%, MD coefficient of friction “treated to treated” of 0.18 cof both kinetic and static, MD coefficient of friction “untreated to untreated” of 0.18 cof both kinetic and static.


The bundled product then traveled through a Contour S30 Shrink Wrapper from Douglas Machine Inc. (Alexandria, Minn., USA) with the inventive modifications as previously described including a center justified alignment feed system, a set of center justified rolls at the end of the heat tunnel that placed pressure on the side gussets in an inward vertical direction (where the rollers were tensioned by a spring dampening system that adjusted based on the inner pack density), and a positive traction top belt that was mechanically linked to operate at the same speed as the infeed traction belt.


Heat treatment of the bundled product resulted in the inner and outer films sticking together. Using the Peel Test method (ASTM D882-10), 200 grams force was required to separate the inner from outer wrap with significant tears resulting to both inner and outer wrap.


However, with heat treatment, the folded seams on the outer wrap/film formed a unitary seam structure without loose areas that caught on machinery used in automated shipping facilities (e.g., United States Post Office, United Postal Service, and FedEx). Without the loose seams, the bundled product could ship without being placed inside a box and without being subject to fines.


The bundled product in this example lost 7.5 inches in length under 150 lb force, where the force was applied perpendicular to the longest side of the bundle (i.e., force was applied at the point on the bundle that caused the maximum amount of deflection).


Example No. 2

The product in this example was a direct to consumer bundled product comprised of twelve individually packaged rolls of paper towel, packaged in a first packaging material/film or “inner wrap”, arranged relative to one another as to form a bundle, the bundle being packaged by a second packaging material/film or “outer wrap”. The towel rolls were arranged four rolls wide by three rolls in length inside the bundled product.


Each towel roll was 146 mm diameter, with a Kershaw firmness of 6.0 mm, containing a 42 mm diameter core. The core material used was single ply made from recycled cellulosic fiber sources with the following properties: basis weight 52 lbs/ft2, MD tensile strength of 80 lbs force/inch, caliper of 0.01485 inches. Each core had a core insert as shown in FIGS. 8A-8C with a length of 280 mm (as measured holding two rolls together end to end), a fin width of 14.07 mm, and fin spacing of 5.2 mm. The height of each towel roll was 279.4 mm. Each roll had a sheet count of 158 2-ply sheets with sheets separated by perforations every 152.4 mm.


The characteristics of the towel paper were as follows: MD tensile 400 N/m, CD tensile 385 N/m, MD stretch 12%, CD stretch 6%, ball burst 950 gf, basis weight 40.6 gsm, and caliper of 790 microns/2 ply.


The packages of twelve towel rolls were wrapped using an Ultraflow wrapper machine from Paper Machine Converting Company (PCMC) (Green Bay, Wis., USA). The packaging material or inner wrap was comprised of a resin that included both high density polyethylene and low density polyethylene. The packaging material had an inside surface (facing the tissue rolls) that was treated with corona plasma to enhance its ability for ink adhesion and an outside surface that was untreated. The packaging material also included a combination slip/anti-block additive, Ampacet 100158 (Ampacet Corporation, Tarrytown, N.Y., USA), containing 20% anti-block (diatomaceous earth) and 5% slip (erucamide). The treated side of the packaging material contained 4 wt % of Ampacet and the untreated side contained 10 wt % of Ampacet. The properties of the film were as follows: caliper of 1.0 mm, MD tensile of 5,000 pounds/in2, CD tensile of 3,500 pounds/in2, MD stretch of 350%, CD stretch of 400%, MD coefficient of friction “treated to treated” of 0.18 cof both kinetic and static, MD coefficient of friction “untreated to untreated” of 0.18 cof both kinetic and static. When performing the coefficient of friction test the “treated to treated” cof was a measurement of the friction of two corona treated film surfaces against each other while the “untreated to untreated” was a measurement of the friction of two non-treated film surfaces against each other.


The packages of twelve towel rolls were then bundled using a Multiflow Traversing Die (MFTD) from PCMC. The packaging material or outer wrap was part no. C9824 purchased from Bemis Company, Inc (2200 Badger Ave Oshkosh Wis. 54903). This outer wrap film was a coextruded polyethylene and polypropylene material ideal for film on film packaging application with an inside surface (facing the towel rolls) that was treated with corona plasma to enhance its ability for ink adhesion and an outside surface that was untreated. The properties of the film were as follows: caliper of 2.0 mm, MD and CD tensile of four thousand pounds/in2, MD stretch of 400%, CD stretch of 600%, MD coefficient of friction “treated to treated” of 0.20 cof both kinetic and static, MD coefficient of friction “untreated to untreated” of 0.20 cof both kinetic and static.


The bundled product then traveled through a Contour S30 Shrink Wrapper from Douglas Machine Inc. (Alexandria, Minn., USA) with the inventive modifications as previously described including a center justified alignment feed system, a set of center justified rolls at the end of the heat tunnel that placed pressure on the side gussets in an inward vertical direction (where the rollers were tensioned by a spring dampening system that adjusted based on the inner pack density), and a positive traction top belt that was mechanically linked to operate at the same speed as the infeed traction belt.


The bundled product was heat treated but with the inventive outer wrap the film did not stick to the inner wrap/film. Using the Peel Test method (ASTM D882-10), 10 grams force was required to separate the inner from outer wrap with no tearing of either the inner or outer wrap/film.


With heat treatment the folded seams on the outer wrap/film formed a unitary seam structure without loose areas that caught on machinery used in automated shipping facilities (e.g., United States Post Office, United Postal Service, and FedEx). Without these loose seams, the bundled product was able to ship without being placed inside a box and without being subject to fines.


The bundled product in this example lost 0.65 inches in length under 150 lb force, where the force was applied perpendicular to the longest side of the bundle (i.e., force was applied at the point on the bundle that caused the maximum amount of deflection).


Example No. 3

The product in this example was a direct to consumer bundled product comprised of four individually packaged groups of six tissue rolls, packaged in a first packaging material/film or “inner wrap”, arranged relative to one another as to form a bundle, the bundle being packaged by a second packaging material/film or “outer wrap”.


Each package of six rolls was stacked two rolls tall (rolls placed end to end) and three rolls wide (rolls placed side to side) with four packages bundled together with the packages placed side to side.


Each tissue roll was 138 mm in diameter, with a Kershaw firmness of 3.5 mm, containing a 42 mm diameter core. The core material used was single ply made from recycled cellulosic fiber sources with the following properties: basis weight 52 lbs/ft2, MD tensile strength of 80 lbs force/inch, caliper of 0.01485 inches. Each core had a core insert as shown in FIGS. 8A-8C, with a length of 202 mm (as measured by holding two rolls together end to end), a fin width of 14.07 mm, and fin spacing of 5.2 mm. The height of each tissue roll was 101 mm. Each roll had a sheet count of 308 2-ply sheets with sheets separated by perforations every 101 mm.


The characteristics of the tissue paper were as follows: MD tensile 150 N/m, CD tensile 90 N/m, MD stretch 15%, CD stretch 8%, ball burst 220 gf, basis weight 38.6 gsm, and caliper of 500 microns/2 ply.


The packages of six tissue rolls were wrapped using an Ultraflow wrapper machine from Paper Machine Converting Company (PCMC) (Green Bay, Wis., USA). The packaging material or inner wrap was comprised of a resin that included both high density polyethylene and low density polyethylene. The packaging material had an inside surface (facing the tissue rolls) that was treated with corona plasma to enhance its ability for ink adhesion and an outside surface that was untreated. The packaging material also included a combination slip/anti-block additive, Ampacet 100158 (Ampacet Corporation, Tarrytown, N.Y., USA), containing 20% anti-block (diatomaceous earth) and 5% slip (erucamide). The treated side of the packaging material contained 4 wt % of Ampacet and the untreated side contained 10 wt % of Ampacet. The properties of the film were as follows: caliper of 1.0 mil, MD tensile of 5,000 pounds/in2, CD tensile of 3,500 pounds/in2, MD stretch of 350%, CD stretch of 400%, MD coefficient of friction (“cof”) “treated to treated” of 0.18 cof both kinetic and static, MD coefficient of friction “untreated to untreated” of 0.18 cof both kinetic and static. When performing the coefficient of friction test the “treated to treated” cof was a measurement of the friction of two corona treated film surfaces against each other while the “untreated to untreated” was a measurement of the friction of two non-treated film surfaces against each other.


The packages of six tissue rolls were then bundled using a Multiflow Traversing Die (MFTD) from PCMC. The packaging material or outer wrap was part no. C9824 purchased from Bemis Company, Inc (2200 Badger Ave Oshkosh Wis. 54903). This outer wrap film was a coextruded polyethylene and polypropylene material ideal for film on film packaging application with an inside surface (facing the tissue rolls) that was treated with corona plasma to enhance its ability for ink adhesion and an outside surface that was untreated. The properties of the film were as follows: caliper of 2.0 mil, MD and CD tensile of 4,000 pounds/int, MD stretch of 400%, CD stretch of 600%, MD coefficient of friction “treated to treated” of 0.20 cof both kinetic and static, and MD coefficient of friction “untreated to untreated” of 0.20 cof both kinetic and static.


The bundled product then traveled through a Contour S30 Shrink Wrapper from Douglas Machine Inc. (Alexandria, Minn., USA) with the inventive modifications as previously described which included a center justified alignment feed system.


The bundled product was heat treated but with the inventive outer wrap the outer film did not stick to the inner wrap/film. Using the Peel Test method (ASTM D882-10), 10 grams force was required to separate the inner wrap from the outer wrap with no tearing of either the inner or outer wrap/film.


The bundled product then traveled to a system where previously printed areas with black pigment ink are subject to intense heat energy provided by a laser system. The black ink was applied to the gusset areas on the bundle, at the point where four layers of poly occur. The pigment was either applied via in line printing with a heat transfer ribbon system or printed on the poly prior using a flexo printing method. The bundled product moved up to a stationary device that put pressure on the end gusset seals in order to make them smooth. A vision system determined where the black ink areas are and focused the heat energy from a laser on those areas in order to melt the multiple layers of polyethylene film together. The vision system was a Cognex In-Sight 2000 vision sensor (Cognex Corporation, Natick, Mass., USA), although other visions systems are suitable. The heat energy was focused enough where it only melted the secondary packaging material and not the inner (primary) packaging material. All four corners of the bundled product were treated with the laser system to provide a seal.


With heat treatment the folded seams on the outer wrap/film formed a unitary seam structure without loose areas that would catch on machinery used in automated shipping facilities (e.g., United States Post Office, United Postal Service, and FedEx). Without these loose seams, the bundled product did not need to be placed inside a box for shipping and was not subjected to fines.


The bundled product in this example lost 0.5 inches in length under 150 lb force, where the force was applied perpendicular to the longest side of the bundle (i.e., force was applied at the point on the bundle that caused the maximum amount of deflection).


Example No. 4

The product in this example was a direct to consumer bundled product comprised of four individually packaged groups of six tissue rolls, packaged in a first packaging material/film or “inner wrap”, arranged relative to one another so as to form a bundle, the bundle being packaged by a second packaging material/film or “outer wrap”.


Each package of six rolls was stacked two rolls tall (rolls placed end to end) and three rolls wide (rolls placed side to side) with four packages bundled together with the packages placed side to side.


Each tissue roll was 138 mm in diameter, with a Kershaw firmness of 3.5 mm, containing a 42 mm diameter core. The core material used was single ply made from recycled cellulosic fiber sources with the following properties: basis weight 52 lbs/ft2, MD tensile strength of 80 lbs force/inch, caliper of 0.01485 inches. Each core had a core insert as shown in FIGS. 8A-8C, with a length of 202 mm (as measured by holding two rolls together end to end), a fin width of 14.07 mm, and fin spacing of 5.2 mm. The height of each tissue roll was 101 mm. Each roll had a sheet count of 308 2-ply sheets with sheets separated by perforations every 101 mm.


The characteristics of the tissue paper were as follows: MD tensile 150 N/m, CD tensile 90 N/m, MD stretch 15%, CD stretch 8%, ball burst 220 gf, basis weight 38.6 gsm, and caliper of 500 microns/2 ply.


The packages of six tissue rolls were wrapped using an Ultraflow wrapper machine from Paper Machine Converting Company (PCMC) (Green Bay, Wis., USA). The packaging material or inner wrap was comprised of a resin that included both high density polyethylene and low density polyethylene. The packaging material had an inside surface (facing the tissue rolls) that was treated with corona plasma to enhance its ability for ink adhesion and an outside surface that was untreated. The packaging material also included a combination slip/anti-block additive, Ampacet 100158 (Ampacet Corporation, Tarrytown, N.Y., USA), containing 20% anti-block (diatomaceous earth) and 5% slip (erucamide). The treated side of the packaging material contained 4 wt % of Ampacet and the untreated side contained 10 wt % of Ampacet. The properties of the film were as follows: caliper of 1.0 mil, MD tensile of 5,000 pounds/in2, CD tensile of 3,500 pounds/in2, MD stretch of 350%, CD stretch of 400%, MD coefficient of friction “treated to treated” of 0.18 cof both kinetic and static, MD coefficient of friction “untreated to untreated” of 0.18 cof both kinetic and static. When performing the coefficient of friction test the “treated to treated” cof was a measurement of the friction of two corona treated film surfaces against each other while the “untreated to untreated” was a measurement of the friction of two non-treated film surfaces against each other.


The packages of six tissue rolls were then bundled using a Multiflow Traversing Die (MFTD) from PCMC. The packaging material or outer wrap was part no. C9824 purchased from Bemis Company, Inc (2200 Badger Ave Oshkosh Wis. 54903). This outer wrap film was a coextruded polyethylene and polypropylene material ideal for film on film packaging application with an inside surface (facing the tissue rolls) that was treated with corona plasma to enhance its ability for ink adhesion and an outside surface that was untreated. The properties of the film were as follows: caliper of 2.0 mil, MD and CD tensile of 4,000 pounds/in2, MD stretch of 400%, CD stretch of 600%, MD coefficient of friction “treated to treated” of 0.20 cof both kinetic and static, MD coefficient of friction “untreated to untreated” of 0.20 cof both kinetic and static.


The bundled product then traveled through a Contour S30 Shrink Wrapper from Douglas Machine Inc. (Alexandria, Minn., USA) with the inventive modifications as previously described which included a center justified alignment feed system


The bundled product then traveled to a stationary system which held the bundle in place so that a predetermined amount of adhesive (or glue) could be applied to the folded gusset areas. The glue can be low or high temperature melt glue, latex based glue, cold seal glue, or tape based adhesive. The amount of adhesive varied depending on the size of the bundle and the packaging material used, but is sufficient to bond the gusset to the outer packaging material. Linear arm devices with glue guns at the end were inserted into the bundled product and glue is applied. A set of side rollers placed pressure on the glued areas in order to evenly place the glue across the entire seal area.


The bundled product was heat treated but with the inventive outer wrap the outer film did not stick to the inner wrap/film. Using the Peel Test method (ASTM D882-10), 10 grams force was required to separate the inner wrap from the outer wrap with no tearing of either the inner or outer wrap/film.


With heat treatment the folded seams on the outer wrap/film formed a unitary seam structure without loose areas that would catch on machinery used in automated shipping facilities (e.g., United States Post Office, United Postal Service, and FedEx). Without these loose seams, the bundled product did not need to be placed inside a box for shipping and was not subjected to fines.


The bundled product in this example lost 0.5 inches in length under 150 lb force, where the force was applied perpendicular to the longest side of the bundle (i.e., force was applied at the point on the bundle that caused the maximum amount of deflection).


While in the foregoing specification a detailed description of a specific embodiment of the invention was set forth, it will be understood that many of the details herein given may be varied considerably by those skilled in the art without departing from the spirit and scope of the invention.

Claims
  • 1. A direct-to-consumer heat shrunk bundled product comprising: a plurality of paper product rolls each individually packaged by a first package material and arranged relative to one another so as to form a bundle, the bundle being packaged by a second package material, wherein portions of the second package material comprise from about 0.01 to about 5 weight percent of a laser energy absorbing material and a substantial portion of the inner surface of the second package material is in contact with the first package material of the plurality of paper product rolls and is nonstick relative to the first package material so that 10 grams of force or less is required to separate the first package material from the second package material as tested in accordance with an ASTM D882-10 peel test method.
  • 2. The direct-to-consumer heat shrunk bundled product of claim 1, wherein separation of the second package material from the first package material is achieved without tearing of the first and second package materials and the laser energy absorbing material is selected from the group consisting of pigments, dyes, carbon black, rubber, graphite, ceramic and combinations thereof.
  • 3. The direct-to-consumer heat shrunk bundled product of claim 1, wherein the first packaging material comprises a resin that includes high density polyethylene and low density polyethylene.
  • 4. The direct-to-consumer heat shrunk bundled product of claim 3, wherein the first packaging material further comprises an antistatic additive.
  • 5. The direct-to-consumer heat shrunk bundled product of claim 4, wherein the antistatic additive is an amine with at least one of ethoxylated surfactants, nonionic migratory surfactants or internal non-migratory antistats that create a percolating network.
  • 6. The direct-to-consumer heat shrunk bundled product of claim 5, wherein the amine has nonionic migratory surfactants, and the nonionic migratory surfactants are selected from the group consisting of GMS (glycerol monostearate), ethoxylated fatty acid amines, and diethanolamides.
  • 7. The direct-to-consumer heat shrunk bundled product of claim 5, wherein the amine has internal non-migratory antistats that create a percolating network, and the internal non-migratory antistats are selected from the group consisting of carbon black, carbon nanotubes or fibers, and metallized fillers.
  • 8. The direct-to-consumer heat shrunk bundled product of claim 4, wherein the antistatic additive is present in an amount of 0.05-20 wt %.
  • 9. The direct-to-consumer heat shrunk bundled product of claim 3, wherein the first packaging material further comprises an anti-block additive.
  • 10. The direct-to-consumer heat shrunk bundled product of claim 9, wherein the anti-block additive is selected from the group consisting of calcium carbonate, sodium carbonate, talc and antiblock agent glass spheres.
  • 11. The direct-to-consumer heat shrunk bundled product of claim 9, wherein the anti-block additive is present in an amount of 0.05-20 wt %.
  • 12. The direct-to-consumer heat shrunk bundled product of claim 1, wherein the first packaging material comprises an inside surface treated with corona plasma.
  • 13. The direct-to-consumer heat shrunk bundled product of claim 1, wherein the second package material is a coextruded polyethylene and polypropylene material.
  • 14. The direct-to-consumer heat shrunk bundled product of claim 1, wherein the second package material forms an outer wrapper, the outer wrapper comprising at least one end seal.
  • 15. The direct-to-consumer heat shrunk bundled product of claim 14, wherein the at least one end seal comprises a middle portion made up of two overlapping layers of the second package material and side portions made up of at least three overlapping layers of the second package material.
  • 16. The direct-to-consumer heat shrunk bundled product of claim 15, wherein the at least three overlapping layers of the second package material that form the side portions of the at least one end seal are fused to one another so that there are no openings between the at least three overlapping and fused layers.
  • 17. A method of forming a direct-to-consumer heat shrunk bundled product comprising: individually packaging a plurality of paper product rolls with a first packaging material so as to form a bundle wherein portions of the packaging material comprise laser energy absorbing material;packaging the bundle with a wrapper made of a second packaging material so as to form a packaged bundle;subjecting the packaged bundle to heat treatment within a heated tunnel, a temperature of the heat treatment applied by the heated tunnel is 300-400° F. and heat is applied to the packaged bundle for 20 to 45 seconds;subjecting the portions of the first packaging material comprising laser energy absorbing material to laser energy to generate heat and attach the wrapper to the packaging material andapplying force to sides of the packaged bundle after heat treatment so as to fuse folded portions of the second packaging material together,wherein 10 grams of force or less is required to separate the first package material from the second package material as tested in accordance with an ASTM D882-10 peel test method.
  • 18. The method according to claim 17, wherein the laser energy absorbing material is selected from the group consisting of pigments, dyes, carbon black, rubber, graphite, ceramic and combinations thereof.
  • 19. The method according to claim 18, wherein the amount of laser energy absorbing material is from about 0.01 to about 5 weight percent of the packaging material to which it is added or coated.
  • 20. A direct-to-consumer heat shrunk bundled product comprising: a plurality of paper product rolls each individually packaged by a first package material and arranged relative to one another so as to form a bundle, the bundle being packaged by a second package material, wherein folded gusset portions of the second package material comprise adhesive and a substantial portion of the inner surface of the second package material is in contact with the first package material of the plurality of paper product rolls and is nonstick relative to the first package material so that 10 grams of force or less is required to separate the first package material from the second package material as tested in accordance with an ASTM D882-10 peel test method.
RELATED APPLICATIONS

This application is a continuation-in-part of and claims priority to and the benefit of U.S. patent application Ser. No. 16/445,598, filed Jun. 19, 2019 and entitled BUNDLED PRODUCT AND SYSTEM AND METHOD FOR FORMING THE SAME, which in turn claims priority to and the benefit of U.S. Provisional Patent Application No. 62/688,207, filed Jun. 21, 2018 and entitled BUNDLED PRODUCT AND SYSTEM AND METHOD FOR FORMING THE SAME, and the contents of these applications are incorporated herein by reference in their entirety.

US Referenced Citations (448)
Number Name Date Kind
2919467 Mercer Jan 1960 A
2926154 Keim Feb 1960 A
3026231 Chavannes Mar 1962 A
3049469 Davison Aug 1962 A
3058873 Keim et al. Oct 1962 A
3066066 Keim et al. Nov 1962 A
3097994 Dickens et al. Jul 1963 A
3125552 Loshaek et al. Mar 1964 A
3143150 Buchanan Aug 1964 A
3186900 De Young Jun 1965 A
3197427 Schmalz Jul 1965 A
3224986 Suter et al. Dec 1965 A
3224990 Babcock Dec 1965 A
3227615 Korden Jan 1966 A
3227671 Keim Jan 1966 A
3239491 Tsou et al. Mar 1966 A
3240664 Earle, Jr. Mar 1966 A
3240761 Keim et al. Mar 1966 A
3248280 Hyland, Jr. Apr 1966 A
3250664 Conte et al. May 1966 A
3252181 Hureau May 1966 A
3301746 Sanford et al. Jan 1967 A
3311594 Earle, Jr. Mar 1967 A
3329657 Strazdins et al. Jul 1967 A
3332834 Reynolds, Jr. Jul 1967 A
3332901 Keim Jul 1967 A
3352833 Earle, Jr. Nov 1967 A
3381817 Harm May 1968 A
3384692 Galt et al. May 1968 A
3414459 Wells Dec 1968 A
3424306 Munck Jan 1969 A
3442754 Espy May 1969 A
3459697 Goldberg et al. Aug 1969 A
3473576 Amneus Oct 1969 A
3483077 Aldrich Dec 1969 A
3545165 Greenwell Dec 1970 A
3556932 Coscia et al. Jan 1971 A
3573164 Friedberg et al. Mar 1971 A
3587201 Joseph Jun 1971 A
3609126 Asao et al. Sep 1971 A
3666609 Kalwaites et al. May 1972 A
3672949 Brown Jun 1972 A
3672950 Murphy et al. Jun 1972 A
3773290 Mowery Nov 1973 A
3778339 Williams et al. Dec 1973 A
3813362 Coscia et al. May 1974 A
3855158 Petrovich et al. Dec 1974 A
3877510 Tegtmeier et al. Apr 1975 A
3905863 Ayers Sep 1975 A
3911173 Sprague, Jr. Oct 1975 A
3933244 Hughes Jan 1976 A
3974025 Ayers Aug 1976 A
3994771 Morgan, Jr. et al. Nov 1976 A
3998690 Lyness et al. Dec 1976 A
4038008 Larsen Jul 1977 A
4075382 Chapman et al. Feb 1978 A
4088528 Berger et al. May 1978 A
4098632 Sprague, Jr. Jul 1978 A
4102737 Morton Jul 1978 A
4129528 Petrovich et al. Dec 1978 A
4147586 Petrovich et al. Apr 1979 A
4184519 McDonald et al. Jan 1980 A
4190692 Larsen Feb 1980 A
4191609 Trokhan Mar 1980 A
4252761 Schoggen et al. Feb 1981 A
4320162 Schulz Mar 1982 A
4331510 Wells May 1982 A
4382987 Smart May 1983 A
4440597 Wells et al. Apr 1984 A
4501862 Keim Feb 1985 A
4507351 Johnson et al. Mar 1985 A
4514345 Johnson et al. Apr 1985 A
4515657 Maslanka May 1985 A
4528239 Trokhan Jul 1985 A
4529480 Trokhan Jul 1985 A
4535587 Rias Aug 1985 A
4537657 Keim Aug 1985 A
4545857 Wells Oct 1985 A
4595093 Eckstein Jun 1986 A
4637859 Trokhan Jan 1987 A
4678590 Nakamura et al. Jul 1987 A
4714736 Juhl et al. Dec 1987 A
4770920 Larsonneur Sep 1988 A
4780357 Akao Oct 1988 A
4808467 Suskind et al. Feb 1989 A
4836894 Chance et al. Jun 1989 A
4849054 Klowak Jul 1989 A
4885202 Lloyd et al. Dec 1989 A
4886167 Dearwester Dec 1989 A
4891249 McIntyre Jan 1990 A
4909284 Kositzke Mar 1990 A
4949668 Heindel et al. Aug 1990 A
4949688 Bayless Aug 1990 A
4971197 Worley Nov 1990 A
4983256 Combette et al. Jan 1991 A
4996091 McIntyre Feb 1991 A
5027582 Dearwester Jul 1991 A
5059282 Ampulski et al. Oct 1991 A
5143776 Givens Sep 1992 A
5149401 Langevin et al. Sep 1992 A
5152874 Keller Oct 1992 A
5211813 Sawley et al. May 1993 A
5239047 Devore et al. Aug 1993 A
5279098 Fukuda Jan 1994 A
5281306 Kakiuchi et al. Jan 1994 A
5334289 Trokhan et al. Aug 1994 A
5347795 Fukuda Sep 1994 A
5397435 Ostendorf et al. Mar 1995 A
5399412 Sudall et al. Mar 1995 A
5405501 Phan et al. Apr 1995 A
5409572 Kershaw et al. Apr 1995 A
5429686 Chi et al. Jul 1995 A
5439559 Crouse Aug 1995 A
5447012 Kovacs et al. Sep 1995 A
5470436 Wagle et al. Nov 1995 A
5487313 Johnson Jan 1996 A
5509913 Yeo Apr 1996 A
5510002 Hermans et al. Apr 1996 A
5529665 Kaun Jun 1996 A
5551563 Allen Sep 1996 A
5581906 Ensign et al. Dec 1996 A
5591147 Couture-Dorschner et al. Jan 1997 A
5607551 Farrington, Jr. et al. Mar 1997 A
5611890 Vinson et al. Mar 1997 A
5628876 Ayers et al. May 1997 A
5635028 Vinson et al. Jun 1997 A
5649916 Dipalma et al. Jul 1997 A
5671897 Ogg et al. Sep 1997 A
5672248 Wendt et al. Sep 1997 A
5679222 Rasch et al. Oct 1997 A
5685428 Herbers et al. Nov 1997 A
5728268 Weisman et al. Mar 1998 A
5746887 Wendt et al. May 1998 A
5753067 Fukuda et al. May 1998 A
5772845 Farrington, Jr. et al. Jun 1998 A
5806569 Gulya et al. Sep 1998 A
5814382 Yannuzzi, Jr. Sep 1998 A
5827384 Canfield et al. Oct 1998 A
5832962 Kaufman et al. Nov 1998 A
5846380 Van Phan et al. Dec 1998 A
5855738 Weisman et al. Jan 1999 A
5858554 Neal et al. Jan 1999 A
5865396 Ogg et al. Feb 1999 A
5865950 Vinson et al. Feb 1999 A
5893965 Trokhan et al. Apr 1999 A
5913765 Jurgess et al. Jun 1999 A
5934470 Bauer et al. Aug 1999 A
5942085 Neal et al. Aug 1999 A
5944954 Vinson et al. Aug 1999 A
5948210 Huston Sep 1999 A
5980691 Weisman et al. Nov 1999 A
6036139 Ogg Mar 2000 A
6039838 Kaufman et al. Mar 2000 A
6048938 Neal et al. Apr 2000 A
6060149 Nissing et al. May 2000 A
6106670 Weisman et al. Aug 2000 A
6149769 Mohammadi et al. Nov 2000 A
6162327 Batra et al. Dec 2000 A
6162329 Vinson et al. Dec 2000 A
6187138 Neal et al. Feb 2001 B1
6200419 Phan Mar 2001 B1
6203667 Huhtelin Mar 2001 B1
6207734 Vinson et al. Mar 2001 B1
6231723 Kanitz et al. May 2001 B1
6287426 Edwards et al. Sep 2001 B1
6303233 Amon et al. Oct 2001 B1
6319362 Huhtelin et al. Nov 2001 B1
6344111 Wilhelm Feb 2002 B1
6420013 Vinson et al. Jul 2002 B1
6420100 Trokhan et al. Jul 2002 B1
6423184 Vahatalo et al. Jul 2002 B2
6458246 Kanitz et al. Oct 2002 B1
6464831 Trokhan et al. Oct 2002 B1
6473670 Huhtelin Oct 2002 B1
6521089 Griech et al. Feb 2003 B1
6537407 Law et al. Mar 2003 B1
6547928 Barnholtz et al. Apr 2003 B2
6551453 Weisman et al. Apr 2003 B2
6551691 Hoeft et al. Apr 2003 B1
6572722 Pratt Jun 2003 B1
6579416 Vinson et al. Jun 2003 B1
6602454 McGuire et al. Aug 2003 B2
6607637 Vinson et al. Aug 2003 B1
6610173 Lindsay et al. Aug 2003 B1
6613194 Kanitz et al. Sep 2003 B2
6660362 Lindsay et al. Dec 2003 B1
6673202 Burazin Jan 2004 B2
6701637 Lindsay et al. Mar 2004 B2
6755939 Vinson et al. Jun 2004 B2
6773647 McGuire et al. Aug 2004 B2
6797117 McKay et al. Sep 2004 B1
6808599 Burazin Oct 2004 B2
6821386 Weisman et al. Nov 2004 B2
6821391 Scherb et al. Nov 2004 B2
6827818 Farrington, Jr. et al. Dec 2004 B2
6863777 Kanitz et al. Mar 2005 B2
6896767 Wilhelm May 2005 B2
6939443 Ryan et al. Sep 2005 B2
6998017 Lindsay et al. Feb 2006 B2
6998024 Burazin Feb 2006 B2
7005043 Toney et al. Feb 2006 B2
7014735 Kramer et al. Mar 2006 B2
7105465 Patel et al. Sep 2006 B2
7155876 VanderTuin et al. Jan 2007 B2
7157389 Branham et al. Jan 2007 B2
7182837 Chen et al. Feb 2007 B2
7194788 Clark et al. Mar 2007 B2
7235156 Baggot Jun 2007 B2
7269929 VanderTuin et al. Sep 2007 B2
7294230 Flugge-Berendes et al. Nov 2007 B2
7311853 Vinson et al. Dec 2007 B2
7328550 Schoeneck Feb 2008 B2
7339378 Han et al. Mar 2008 B2
7351307 Scherb et al. Apr 2008 B2
7387706 Herman et al. Jun 2008 B2
7399378 Edwards et al. Jul 2008 B2
7419569 Hermans Sep 2008 B2
7427434 Busam Sep 2008 B2
7431801 Conn et al. Oct 2008 B2
7432309 Vinson Oct 2008 B2
7442278 Murray et al. Oct 2008 B2
7452447 Duan et al. Nov 2008 B2
7476293 Herman et al. Jan 2009 B2
7494563 Edwards et al. Feb 2009 B2
7510631 Scherb et al. Mar 2009 B2
7513975 Burma Apr 2009 B2
7563344 Beuther Jul 2009 B2
7582187 Scherb et al. Sep 2009 B2
7611607 Mullally et al. Nov 2009 B2
7622020 Awofeso Nov 2009 B2
7662462 Noda Feb 2010 B2
7670678 Phan Mar 2010 B2
7683126 Neal et al. Mar 2010 B2
7686923 Scherb et al. Mar 2010 B2
7687140 Manifold et al. Mar 2010 B2
7691230 Scherb et al. Apr 2010 B2
7744722 Tucker et al. Jun 2010 B1
7744726 Scherb et al. Jun 2010 B2
7799382 Payne et al. Sep 2010 B2
7811418 Klerelid et al. Oct 2010 B2
7815978 Davenport et al. Oct 2010 B2
7823366 Schoeneck Nov 2010 B2
7842183 Nickel et al. Nov 2010 B2
7867361 Salaam et al. Jan 2011 B2
7871692 Morin et al. Jan 2011 B2
7887673 Andersson et al. Feb 2011 B2
7905989 Scherb et al. Mar 2011 B2
7914866 Shannon et al. Mar 2011 B2
D636273 Ver Kuilen Apr 2011 S
7931781 Scherb et al. Apr 2011 B2
7951269 Herman et al. May 2011 B2
7955549 Noda Jun 2011 B2
7959764 Ringer et al. Jun 2011 B2
7972475 Chan et al. Jul 2011 B2
7989058 Manifold et al. Aug 2011 B2
8034463 Leimbach et al. Oct 2011 B2
8051629 Pazdernik et al. Nov 2011 B2
8075739 Scherb et al. Dec 2011 B2
8092652 Scherb et al. Jan 2012 B2
8118979 Herman et al. Feb 2012 B2
8147649 Tucker et al. Apr 2012 B1
8152959 Elony et al. Apr 2012 B2
8196314 Munch Jun 2012 B2
8216427 Klerelid et al. Jul 2012 B2
8236135 Prodoehl et al. Aug 2012 B2
8303773 Scherb et al. Nov 2012 B2
8382956 Boechat et al. Feb 2013 B2
8402673 Da Silva et al. Mar 2013 B2
8409404 Harper et al. Apr 2013 B2
8435384 Da Silva et al. May 2013 B2
8440055 Scherb et al. May 2013 B2
8445032 Topolkaraev et al. May 2013 B2
8454800 Mourad et al. Jun 2013 B2
8470133 Cunnane et al. Jun 2013 B2
8506756 Denis et al. Aug 2013 B2
8544184 Da Silva et al. Oct 2013 B2
8574211 Morita Nov 2013 B2
8580083 Boechat et al. Nov 2013 B2
8728277 Boechat et al. May 2014 B2
8758569 Aberg et al. Jun 2014 B2
8771466 Denis et al. Jul 2014 B2
8801903 Mourad et al. Aug 2014 B2
8815057 Eberhardt et al. Aug 2014 B2
8822009 Riviere et al. Sep 2014 B2
8968517 Ramaratnam et al. Mar 2015 B2
8980082 Karlsson et al. Mar 2015 B2
9005710 Jones et al. Apr 2015 B2
D734617 Seitzinger et al. Jul 2015 S
9095477 Yamaguchi Aug 2015 B2
D738633 Seitzinger et al. Sep 2015 S
9382666 Ramaratnam et al. Jul 2016 B2
9506203 Ramaratnam et al. Nov 2016 B2
9580872 Ramaratnam et al. Feb 2017 B2
9702089 Ramaratnam et al. Jul 2017 B2
9702090 Ramaratnam et al. Jul 2017 B2
9719213 Miller, IV et al. Aug 2017 B2
9725853 Ramaratnam et al. Aug 2017 B2
20010018068 Lorenzi et al. Aug 2001 A1
20020028230 Eichhorn et al. Mar 2002 A1
20020060049 Kanitz et al. May 2002 A1
20020061386 Carson et al. May 2002 A1
20020098317 Jaschinski et al. Jul 2002 A1
20020110655 Seth Aug 2002 A1
20020115194 Lange et al. Aug 2002 A1
20020125606 McGuire et al. Sep 2002 A1
20030024674 Kanitz et al. Feb 2003 A1
20030056911 Hermans et al. Mar 2003 A1
20030056917 Jimenez Mar 2003 A1
20030070781 Hermans et al. Apr 2003 A1
20030114071 Everhart et al. Jun 2003 A1
20030159401 Sorenson et al. Aug 2003 A1
20030188843 Kanitz et al. Oct 2003 A1
20030218274 Boutilier et al. Nov 2003 A1
20030230051 Tinti Dec 2003 A1
20040118531 Shannon et al. Jun 2004 A1
20040123963 Chen et al. Jul 2004 A1
20040126601 Kramer et al. Jul 2004 A1
20040126710 Hill et al. Jul 2004 A1
20040168784 Duan et al. Sep 2004 A1
20040173333 Hermans et al. Sep 2004 A1
20040200752 Poli Oct 2004 A1
20040234804 Liu et al. Nov 2004 A1
20050016704 Huhtelin Jan 2005 A1
20050069679 Stelljes et al. Mar 2005 A1
20050069680 Stelljes et al. Mar 2005 A1
20050098281 Schulz et al. May 2005 A1
20050112115 Khan May 2005 A1
20050123726 Broering et al. Jun 2005 A1
20050130536 Siebers et al. Jun 2005 A1
20050136222 Hada et al. Jun 2005 A1
20050148257 Hermans et al. Jul 2005 A1
20050150626 Kanitz et al. Jul 2005 A1
20050166551 Keane et al. Aug 2005 A1
20050241786 Edwards et al. Nov 2005 A1
20050241788 Baggot et al. Nov 2005 A1
20050252626 Chen et al. Nov 2005 A1
20050280184 Sayers et al. Dec 2005 A1
20050287340 Morelli et al. Dec 2005 A1
20060005916 Stelljes et al. Jan 2006 A1
20060013998 Stelljes et al. Jan 2006 A1
20060019567 Sayers Jan 2006 A1
20060083899 Burazin et al. Apr 2006 A1
20060093788 Behm et al. May 2006 A1
20060113049 Knobloch et al. Jun 2006 A1
20060130986 Flugge-Berendes et al. Jun 2006 A1
20060194022 Boutilier et al. Aug 2006 A1
20060269706 Shannon et al. Nov 2006 A1
20070020315 Shannon et al. Jan 2007 A1
20070045456 Medoff Mar 2007 A1
20070131366 Underhill et al. Jun 2007 A1
20070137813 Nickel et al. Jun 2007 A1
20070137814 Gao Jun 2007 A1
20070170610 Payne et al. Jul 2007 A1
20070240842 Scherb et al. Oct 2007 A1
20070251659 Fernandes et al. Nov 2007 A1
20070251660 Walkenhaus et al. Nov 2007 A1
20070267157 Kanitz et al. Nov 2007 A1
20070272381 Bony et al. Nov 2007 A1
20070275866 Dykstra Nov 2007 A1
20070298221 Vinson Dec 2007 A1
20080035289 Howards et al. Feb 2008 A1
20080076695 Uitenbroek et al. Mar 2008 A1
20080078685 Patterson Apr 2008 A1
20080156450 Klerelid et al. Jul 2008 A1
20080199655 Monnerie et al. Aug 2008 A1
20080245491 Knobloch Oct 2008 A1
20080245498 Ostendorf et al. Oct 2008 A1
20080302493 Boatman et al. Dec 2008 A1
20080308247 Ringer et al. Dec 2008 A1
20090020248 Sumnicht et al. Jan 2009 A1
20090056892 Rekoske Mar 2009 A1
20090061709 Nakai et al. Mar 2009 A1
20090205797 Fernandes et al. Aug 2009 A1
20090208717 Enzinger Aug 2009 A1
20090218058 Manifold et al. Sep 2009 A1
20100065234 Klerelid et al. Mar 2010 A1
20100119779 Ostendorf et al. May 2010 A1
20100224338 Harper et al. Sep 2010 A1
20100230064 Eagles et al. Sep 2010 A1
20100236034 Eagles et al. Sep 2010 A1
20100239825 Sheehan et al. Sep 2010 A1
20100272965 Schinkoreit et al. Oct 2010 A1
20110027545 Harlacher et al. Feb 2011 A1
20110180223 Klerelid et al. Jul 2011 A1
20110189435 Manifold et al. Aug 2011 A1
20110189442 Manifold et al. Aug 2011 A1
20110206913 Manifold et al. Aug 2011 A1
20110223381 Sauter et al. Sep 2011 A1
20110253329 Manifold et al. Oct 2011 A1
20110265967 Van Phan Nov 2011 A1
20110303379 Boechat et al. Dec 2011 A1
20120144611 Baker et al. Jun 2012 A1
20120152475 Edwards et al. Jun 2012 A1
20120177888 Escafere et al. Jul 2012 A1
20120205272 Heilman Aug 2012 A1
20120244241 McNeil Sep 2012 A1
20120267063 Klerelid et al. Oct 2012 A1
20120297560 Zwick et al. Nov 2012 A1
20130008135 Moore et al. Jan 2013 A1
20130029105 Miller et al. Jan 2013 A1
20130029106 Lee et al. Jan 2013 A1
20130067861 Turner Mar 2013 A1
20130133851 Boechat et al. May 2013 A1
20130150817 Kainth et al. Jun 2013 A1
20130160960 Hermans et al. Jun 2013 A1
20130209749 Myangiro et al. Aug 2013 A1
20130248129 Manifold et al. Sep 2013 A1
20130327487 Espinosa et al. Dec 2013 A1
20140004307 Sheehan Jan 2014 A1
20140041820 Ramaratnam et al. Feb 2014 A1
20140041822 Boechat et al. Feb 2014 A1
20140050890 Zwick et al. Feb 2014 A1
20140053994 Manifold et al. Feb 2014 A1
20140096924 Rekokske et al. Apr 2014 A1
20140182798 Polat et al. Jul 2014 A1
20140242320 McNeil et al. Aug 2014 A1
20140272269 Hansen Sep 2014 A1
20140272747 Ciurkot Sep 2014 A1
20140284237 Gosset Sep 2014 A1
20140360519 George et al. Dec 2014 A1
20150059995 Ramaratnam et al. Mar 2015 A1
20150102526 Ward et al. Apr 2015 A1
20150129145 Chou et al. May 2015 A1
20150211179 Alias et al. Jul 2015 A1
20150241788 Yamaguchi Aug 2015 A1
20150330029 Ramaratnam et al. Nov 2015 A1
20160060811 Riding et al. Mar 2016 A1
20160090692 Eagles et al. Mar 2016 A1
20160090693 Eagles et al. Mar 2016 A1
20160130762 Ramaratnam et al. May 2016 A1
20160137398 Lemke et al. May 2016 A1
20160145810 Miller, IV et al. May 2016 A1
20160159007 Miller, IV et al. Jun 2016 A1
20160160448 Miller, IV et al. Jun 2016 A1
20160185041 Topolkaraev et al. Jun 2016 A1
20160185050 Topolkaraev et al. Jun 2016 A1
20160273168 Ramaratnam et al. Sep 2016 A1
20160273169 Ramaratnam et al. Sep 2016 A1
20160289897 Ramaratnam et al. Oct 2016 A1
20160289898 Ramaratnam et al. Oct 2016 A1
20170044717 Quigley Feb 2017 A1
20170101741 Sealey et al. Apr 2017 A1
20170167082 Ramaratnam et al. Jun 2017 A1
20170210103 Hausmann Jul 2017 A1
20170226698 Lebrun et al. Aug 2017 A1
20170233946 Sealey et al. Aug 2017 A1
20170253422 Anklam Sep 2017 A1
20170268178 Ramaratnam et al. Sep 2017 A1
Foreign Referenced Citations (40)
Number Date Country
2168894 Aug 1997 CA
2795139 Oct 2011 CA
1138356 Dec 1996 CN
1207149 Feb 1999 CN
1244899 Feb 2000 CN
1268559 Oct 2000 CN
1377405 Oct 2002 CN
2728254 Sep 2005 CN
4242539 Aug 1993 DE
0097036 Dec 1983 EP
0979895 Feb 2000 EP
1911574 Jan 2007 EP
1339915 Jul 2007 EP
2123826 May 2009 EP
946093 Jan 1964 GB
2013208298 Oct 2013 JP
2014213138 Nov 2014 JP
9606223 Feb 1996 WO
200382550 Oct 2003 WO
200445834 Jun 2004 WO
2007070145 Jun 2007 WO
2008019702 Feb 2008 WO
2009006709 Jan 2009 WO
2009061079 May 2009 WO
2009067079 May 2009 WO
2011028823 Mar 2011 WO
2012003360 Jan 2012 WO
2013024297 Feb 2013 WO
2013136471 Sep 2013 WO
2014022848 Feb 2014 WO
201500755 Jan 2015 WO
2015176063 Nov 2015 WO
2016077594 May 2016 WO
2016086019 Jun 2016 WO
2016090242 Jun 2016 WO
2016090364 Jun 2016 WO
2016085704 Aug 2016 WO
2017066465 Apr 2017 WO
2017066656 Apr 2017 WO
2017139786 Aug 2017 WO
Related Publications (1)
Number Date Country
20200369447 A1 Nov 2020 US
Continuation in Parts (1)
Number Date Country
Parent 16445598 Jun 2019 US
Child 16986552 US