Bundled product and system

Information

  • Patent Grant
  • 11577906
  • Patent Number
    11,577,906
  • Date Filed
    Tuesday, October 12, 2021
    3 years ago
  • Date Issued
    Tuesday, February 14, 2023
    a year ago
Abstract
A shippable bundled product including a plurality of paper product rolls each individually packaged by a first package material and arranged relative to one another so as to form a bundle. The bundle is packaged by a second package material. The second package material has a shrinkage factor relative to the bundle of less than zero.
Description
FIELD OF THE INVENTION

The present invention generally relates to packaging of items in a film, and in particular to systems and methods for packaging groups of items tightly within a film.


BACKGROUND

US Patent Application Publication No. 2003/0159401 refers to a sealing apparatus and, more particularly, to a sealing apparatus which is particularly suitable for a packaging machine in which spaced-apart products are enclosed by a plastic film.


U.S. Pat. No. 5,447,012 also discloses a sealing apparatus, and in particular describes a packaging machine for packaging bundles or groups of products such as rolls of bathroom tissue or paper towels. The rolls are advanced by a conveyor and pull belts, and groups of rolls are collated into bundles. The bundles are wrapped by a plastic film, and the longitudinal edges of the film are lapped and sealed to form an elongated tube.


The film is sealed between each pair of adjacent bundles by a sealing assembly. The sealing assembly simultaneously seals the trailing end of the exiting bundle and the leading edge of the incoming bundle.


U.S. Pat. No. 5,753,067 describes a sealer for a bag maker-packaging machine. Thermoplastic bag-making material is formed into a vertical tube, and the tube is sealed by a transverse sealer. The sealer includes a pair of seal jaws which are mounted on rotary arms which rotate on shafts. The shafts are moved toward and away from each other by a turn-buckle mechanism. The seal jaws thereby move along D-shaped trajectories.


U.S. Pat. Nos. 5,279,098 and 5,347,795 describe specific mechanisms for moving the shafts of the rotary arms toward and away from each other.


SUMMARY OF THE INVENTION

This invention relates to an improvement to conventional packaging apparatuses, such as the packaging apparatus described in US Patent Application Publication 2003/0159401, through installation of a background flat plate against which the packages are sealed in plastic film. With the installation of the flat plate, new levels of bundle “tightness” or minimized excess void volume inside the bundled package is obtained. Bundle tightness may be improved further through the use of a heat tunnel that shrinks the film around the packaged items.


According to exemplary embodiment of the present invention, a background flat plate is provided for a packaging machine which wraps spaced-apart products with a tubular film. The background flat plate allows the products to be bundled with less plastic or other material film resulting in a “tighter” package and less void volume for the product to move inside the film as compared to conventional packaging machines.


The packaging machine further includes a sealing apparatus. The sealing apparatus includes a frame which provides a path along which the products are advanced. A sealing support structure is mounted on the frame for linear reciprocating movement along the path. The longitudinal edges of the plastic film are overlapped and sealed by means of a heating element with pressurized air to provide an elongated tube of film. The background flat plate is provided between the pressurized air and the product to act as a background for the act of sealing the lapped film together. The flat plate applies pressure to the plastic film, thereby minimizing or eliminating the volume of space between the plastic film and product, which in turn maximizes bundle tightness. A crank arm is rotatably mounted on the frame for reciprocating the sealing support structure. Upper and lower sealing dies are mounted on the sealing support structure for linear movement toward and away from each other in a direction which is generally perpendicular to the path.


Upper and lower sealing dies are moved linearly in two directions while the products to be sealed move continuously to provide good speed with fewer moving components. The continuous motion allows the machine to be run at substantially slower speeds to accomplish the same rate of production as the intermittent motion of the conventional machines, thereby allowing reduced costs for the same output and improved product control. The design also allows higher production when the machine is kept running at full constant speeds, providing a substantially faster rate of production without increasing cost.


The sealing dies are mounted on mounting bars which are guided for linear vertical movement. The dies are moved toward each other to close against the film for sealing and are moved away from each other to allow the products to pass between the dies. The die mounting bars are mounted on a reciprocating frame which is reciprocated linearly in a direction parallel to the direction in which products move so that the sealing dies move with the film during the sealing step.


The sealing dies are opened and closed by a servo motor so that the length of the sealing region can be varied automatically. This offers a significant advantage when running packages of variable length. The ability to automatically vary the length of the sealing region offers higher rates of operation when running shorter packages and reduces the acceleration and deceleration rates required to return the dies to their initial cycle positions.


The opening gap between the upper and lower dies can also be varied automatically. This offers a significant advantage when running packages of variable height.


The opening and closing rates of the sealing dies can be varied without altering the placement of the dies relative to the product. This offers a significant advantage when extracting air from between the packages while closing the dies. Another advantage of this feature is that the sealing time can be maximized by quickly opening the dies without altering the horizontal placement of the dies relative to the product.


According to an exemplary embodiment of the present invention, a packing apparatus for packaging and sealing spaced-apart products comprises: a frame that provides a path along which spaced-apart products move; a sealing support structure mounted on the frame for movement along the path; a heating element with pressurized air that provides an elongated tube of film; a flat plate that provides a background for sealing the film; upper and lower sealing units mounted on the sealing support structure for movement toward and away from each other in a direction which is generally perpendicular to the path; means for moving the upper and lower sealing units toward each other to close the sealing units whereby the film between the sealing units are sealed and for moving the upper and lower sealing units away from each to open the sealing units; and means for reciprocating the sealing support along the path between first and second positions.


In an exemplary embodiment, the sealing support structure is mounted on the frame for linear reciprocating movement along the path.


In an exemplary embodiment, the upper and lower sealing units are mounted on the sealing support structure for linear movement toward and away from each other.


In an exemplary embodiment, the means for moving the upper and lower sealing units comprises a servo motor.


In an exemplary embodiment, the means for moving the upper and lower sealing units comprises a belt drive which is driven by the servo motor.


In an exemplary embodiment, the means for reciprocating the sealing support structure comprises a crank arm rotatably mounted on the frame and a link connecting the crank arm and the sealing support structure.


In an exemplary embodiment, the packing apparatus comprises a servo motor for rotating the crank arm.


In an exemplary embodiment, the packing apparatus comprises a linear bearing between the sealing support structure and the frame for supporting the sealing support structure for linear movement along the path.


In an exemplary embodiment, the packing apparatus comprises a linear guide on the sealing support structure, the upper and lower sealing units being mounted on the linear guide for linear movement toward and away from each other.


In an exemplary embodiment, the packing apparatus comprises a linear guide on the sealing support structure and linear bearings on the upper and lower sealing units for supporting the sealing units for linear movement along the path.


In an exemplary embodiment, the packing apparatus comprises a linear guide on the frame and a linear bearing on the sealing support structure for supporting the sealing support structure for linear movement along said path.


In an exemplary embodiment, the means for reciprocating the sealing support structure comprises a belt drive mounted on the frame and connected to the sealing support structure.


In an exemplary embodiment, the packing apparatus comprises a linear guide on the frame which extends in the direction of the path and a linear bearing on the sealing support structure for supporting the sealing support structure for linear movement along the path.


In an exemplary embodiment, the packing apparatus comprises a pair of linear guides on the sealing support structure which extend generally perpendicularly to the path, and a pair of bearings on each of the upper and lower sealing units slidably mounted on the linear guides for linear movement toward and away from each other.


In an exemplary embodiment, the packing apparatus comprises upper and lower cross members connected to the pair of linear guides, and means for moving the upper and lower cross members and the linear guides in a direction which is generally perpendicular to the path.


In an exemplary embodiment, the linear guides are slidably mounted in the sealing support structure.


In an exemplary embodiment, the means for moving comprises a threaded shaft connected to one of the upper and lower cross members and extending through the sealing support structure whereby rotation of the threaded shaft moves the upper and lower cross members and the linear guides relative to the sealing support structure.


In an exemplary embodiment, the packing apparatus comprises upper pulleys rotatably mounted on the upper cross member and lower pulleys rotatably mounted on the lower cross member, a pair of drive belts extending over the upper and lower pulleys, and means for rotating the upper or lower pulleys to move the drive belts, the upper and lower sealing units being connected to the drive belts for movement with the drive belts.


In an exemplary embodiment, the product is rolled tissue or towel product.


In an exemplary embodiment, the packaging apparatus produces bundles of product with height dimensions not exceeding the length of the total package.


In an exemplary embodiment, the bundles have a lap seal direction pinch deflection of less than 10 mm as measured by the bundle tightness testing procedure.


In an exemplary embodiment, the packing apparatus comprises a heat tunnel.


A shippable bundled product according to an exemplary embodiment of the present invention comprises: a plurality of paper product rolls each individually packaged by a first package material and arranged relative to one another so as to form a bundle, the bundle being packaged by a second package material, wherein the second package material has a shrinkage factor relative to the bundle of less than zero and the bundle has a size of 18 in.×14 in.×8 in.


In an exemplary embodiment, first and second package materials comprise high density and low density polyethylene.


In an exemplary embodiment, the second package material has a higher quantity of high density polyethylene as compared to the first package material.


In an exemplary embodiment, the second package material comprises one or more outer layers that are comprised of 10-100% polypropylene.


In an exemplary embodiment, at least one of the first and second package materials comprises laminated layers of polypropylene film.


In an exemplary embodiment, the first package material has a higher percentage of anti-block resin as compared to the second package material.


In an exemplary embodiment, the second package material comprises a number of layers within the range of 3 to 5.


In an exemplary embodiment, a center layer of the second package material comprises a higher percentage of high density polyethylene as compared to outer layers.


In an exemplary embodiment, the first package material has a higher quantity of anti-block resin on a side in contact with the second package material as compared to a side in contact with the individually packaged paper product roll.


In an exemplary embodiment, the second package material is subjected to heat treatment.


In an exemplary embodiment, the second package material has a lower crystallinity after the heat treatment.


In an exemplary embodiment, the second package material has a surface area that is lower after the heat treatment.


In an exemplary embodiment, wherein a temperature range of the heat treatment is between 300-400 degrees Fahrenheit.


In an exemplary embodiment, a duration of the heat treatment is between 20 to 45 seconds.


In an exemplary embodiment, a puncture resistance of the second package material is between 800-1200 gf.


In an exemplary embodiment, the second package material has a thickness between 1.0 to 3.5 thousands of an inch.


In an exemplary embodiment, the second package material exhibits anisotropic properties after heat treatment.


In an exemplary embodiment, the individually packaged paper product rolls are arranged relative to one another in a staggered/interlocking stacking pattern.


A shippable bundled product according to an exemplary embodiment of the present invention comprises: a plurality of paper product rolls each individually packaged by a first package material and arranged relative to one another so as to form a bundle, the paper product having a bulk greater than 400 microns, each paper product roll having a diameter less than 122 mm and a roll width equal to or greater than 4 inches, the bundle being packaged by a second package material, wherein the second package material has a shrinkage factor relative to the bundle of less than zero and the bundle has a size of 18 in.×14 in.×8 in.


In an exemplary embodiment, each of the plurality of paper product rolls has a roll density between 9.5 cc/g to 12 cc/g.


In an exemplary embodiment, each of the plurality of paper product rolls has a Kershaw Firmness of less than 4 mm.


A shippable bundled product according to an exemplary embodiment of the present invention comprises: a plurality of paper product rolls each individually packaged by a first package material and arranged relative to one another so as to form a bundle, the bundle being packaged by a second package material, wherein the second package material has a shrinkage factor relative to the bundle of less than zero and a melting point between 120 and 140 deg C, and the bundle has a size of 18 in.×14 in.×8 in.


A shippable bundled product according to an exemplary embodiment of the present invention comprises: a plurality of paper product rolls each individually packaged by a first package material and arranged relative to one another so as to form a bundle, the bundle being packaged by a second package material, wherein the second package material has a shrinkage factor relative to the bundle of less than zero





DESCRIPTION OF THE DRAWINGS


FIGS. 1A and 1B are fragmentary side elevational views of a packaging machine which includes a sealing apparatus in accordance with the invention;



FIG. 2 is an enlarged side elevation view of the sealing apparatus;



FIG. 3 is a top plan view of the sealing apparatus;



FIGS. 4-12 are perspective views which illustrate the sequence of steps in a sealing cycle;



FIGS. 13-21 are side views which correspond to FIGS. 4-12;



FIG. 22 is a transverse view of the sealing section;



FIG. 23 is an enlarged fragmentary view of a portion of FIG. 22;



FIG. 24 is an enlarged fragmentary view of one of the linear guides and bearings;



FIG. 25 is a front view of the upper die assembly;



FIG. 26 is a sectional view taken along the line 26-26 of FIG. 25;



FIG. 27 is an enlarged fragmentary view of the right end of the upper die assembly;



FIG. 28 is a view similar to FIG. 2 of a modified embodiment; and



FIG. 29 illustrates one example of the movement of the upper sealing die.



FIGS. 30A-30D show various views of a background flat plate according to an exemplary embodiment of the present invention.



FIG. 31 is a block diagram illustrating a packaging system according to an exemplary embodiment of the present invention.



FIGS. 32A and 32B are representative diagrams showing the effects of heat treatment on a packaged bundle of paper towels according to an exemplary embodiment of the present invention.



FIG. 33 is a perspective view of a packaged bundle of paper towels according to an exemplary embodiment of the present invention.



FIG. 34 is a perspective view of a corner section of the packaged bundle shown in FIG. 32.





DETAILED DESCRIPTION


FIGS. 1A, 1B and 1C illustrate a packaging machine, generally designated by reference number 25, according to an exemplary embodiment of the present invention. The machine 25 is particularly suitable for packaging bundles of rolls of bathroom tissue or paper towels.


The machine 25 includes an infeed choke belt section 26, a product upender section 27, a product collator section 28, a film feed/lap seal/girth former section 29, a pull belt section 30, a sealing section 31, and a discharge section 32. Details of those sections, except for the collator section and the improvements in the sealing section, are described in U.S. Pat. No. 5,447,012 and U.S. Patent Application Publication 2003/0159401, the contents of which are incorporated herein by reference in their entirety.


Referring to FIGS. 2 and 3, the packaging machine 25 groups rolls 35 of bathroom tissue or paper towels into bundles 36. In FIG. 3, each bundle includes four rolls across the direction in which the rolls are advanced and four rolls in the machine direction. In FIG. 4 each bundle includes two rolls across and six rolls in the machine direction. Many other configurations are possible. Rolls can also be stacked on top of each other.


The bundles 36 are advanced in the direction of the arrow A in FIGS. 2-21 by conveyors and pull belts. Before reaching the sealing section 31, the bundles are enclosed by a plastic film 38 (FIGS. 2 and 3). As is well known in the art, the longitudinal edges of the plastic film are overlapped and sealed by means of a heating element with pressurized air to provide an elongated tube which extends in the direction of the arrow A. In between the pressurized air and the product stands a flat plate 150 to act as a background for the act of sealing the lapped plastic film together. As shown in FIG. 1C, the flat plate 150 is located within the former section 29 of the machine 25. The plate 150 reduces the distance between the top of the product and the plastic film 38 during the sealing process. This elimination of space allows for a tighter fit of the plastic film 38 around the product.


As shown in more detail in FIGS. 30A-30D, the plate 150 is a generally elongated element that includes a proximal end portion 152 and a distal end portion 154. The proximal end portion 152 is fixed to the machine 25 and the distal end portion 154 is left unattached and free floating. The plate 150 is made of a flexible material, such as, for example, aluminum or plastic, so that the distal end portion 154 of the plate 150 is able to exert force downwards onto the product in reaction to the product pushing the plate 150 upwards as the product passes underneath. The downward force of the plate 150 reduces or eliminates the space between the product and the plastic film 38.


As will be explained hereinafter, the sealing section 31 cuts and seals the plastic tube between each pair of bundles. In FIG. 3, the leading end 40 of the bundle 36A has already been sealed. The plastic tube between the handles 36A and 36B is about to be cut and sealed to provide a sealed trailing end for bundle 36A and a sealed leading end for bundle 36B.


Referring to FIGS. 2 and 3, the sealing section or apparatus 31 includes a stationary frame, generally designated by reference number 42, which includes vertical posts 43-46 and horizontal beams 47-52. Driven pull belts 53 and 54 (FIG. 3) for conveying the bundles is mounted on the horizontal beams.


A traversing or reciprocating frame, generally designated by reference number 58, is mounted on the stationary frame 42 for forward and backward linear reciprocating movement in directions which are parallel to the direction of the product movement. The reciprocating frame 58 includes a pair of vertical bars 60 and 61 (FIG. 4) and upper and lower cross bars 62 and 63. Laterally extending brackets 65 and 66 (FIG. 3) are attached to the vertical bars 60 and 61, and a channel shaped bearing 68 (FIGS. 2, 22, and 24) is mounted below each of the brackets. The bearings 68 ride on a linear guides or rails 70 which are mounted on the horizontal beams 51 and 52 of the stationary frame 42.


In the embodiment illustrated in FIGS. 2 and 3 the frame 58 is reciprocated by a pair of crank arms 72 and 73 which are fixedly mounted on a shaft 74 which is rotatably mounted on the stationary frame 42. The shaft 74 is rotated by a servo motor 76 on the stationary frame. The crank arms 72 and 73 are connected to the brackets 65 and 66 on the reciprocating frame 58 by links 78 and 79. The ends of the links are pivotally connected to the crank arms and the brackets.



FIG. 2 illustrates the reciprocating frame 58 in its most upstream or left position with respect to the direction A of product flow. As the shaft 74 rotates 180° from its FIG. 2 position, the crank arms 72 and 73 and the links 78 and 79 move the frame 58 linearly to the right in the direction of product flow. The linear movement of the frame is guided by the linear guides 70.


The stroke or length of movement of the reciprocating frame is indicated in FIG. 2 by dimension B. The most downstream position or right position of the frame corresponds to the right end of dimension B.


As the shaft 74 continues to rotate from 180° through 360°, the crank arms and links move the reciprocating frame opposite to the direction of product flow to return the frame to the FIG. 2 position.


Referring to FIGS. 22 and 23, upper and lower sealing die assemblies 81 and 82 are attached to mounting bars 83 and 84 which are attached to upper and lower linear bearings 85 and 86. The linear bearings 85 and 86 are vertically slidable on vertical shafts 87 and 88.


Upper and lower cross members 89 and 90 are clamped to the vertical shafts 87 and 88. Upper and lower pulleys 91 and 92 are mounted on cross shafts 93 and 94 which are attached to the cross members 89 and 90. Right and left drive belts 95 and 96 travel over the upper and lower pulleys 91 and 92.


The upper mounting bar 83 is connected to the rear portions of the drive belts 95 and 96 by clamps 97 (FIG. 23). The lower mounting bar 84 is connected to the front portions of the drive belts by clamps 98. The lower cross shaft 94 and the lower pulleys 92 are driven by a servo motor 99.


The mounting bars 83 and 84 for the sealing dies are mounted for vertical reciprocating movement on the vertical shafts 87 and 88. When the servo 99 rotates the lower pulleys 92 counterclockwise, the rear loops of the drive belts 95 and 96 move downward, carrying the upper die 81 downward, while the front loops of the belts 95 and 96 move upward, carrying the lower die 82 upward. The simultaneous movements close the dies. Rotating the servo clockwise then opens the dies.


Referring to FIGS. 25 and 26, the upper die assembly 81 includes a pair of conventional impulse sealing ribbons 120 and 121 and a serrated cut-off knife 122 mounted between the sealing ribbons. The sealing ribbon 120 seals the trailing end of the exiting bundle, and the sealing ribbon 121 seals the leading end of the incoming bundle. A layer of Teflon® fabric insulates the ribbons and prevents molten plastic from adhering to the ribbons. A pair of film grippers 123 straddle the sealing ribbons and are resiliently biased by gripper springs 124. As the upper and lower dies close, the film grippers grip the film, the knife 122 cuts the film, and the sealing ribbons 120, 121 seal the film.


In one specific embodiment the servo motor 99 is a 71 in-lb (8 Nm) NC servo motor which includes a 20:1 planetary gear box.


The servo motor 99 adjusts the open dimension between dies to accommodate format height changes. The closed location of the dies is adjustable by a hand wheel (FIG. 22). The cross members 89 and 90 and the vertical shafts 87 and 88 form a vertically movable assembly which includes the pulleys 91 and 93, drive belts 95 and 96, and mounting bars 82 and 83. The hand wheel is threadedly connected to a threaded shaft 101. The threaded shaft passes through upper beam 62 and is rotatably connected to the cross member 89. When the hand wheel is rotated, the threaded shaft 101 moves the vertically movable assembly up or down as indicated by the arrows 102. The vertical shafts 87 and 88 slide within linear guides 103 and 104 on the upper and lower beams 62 and 63 to permit the up and down movement of the vertically movable assembly.


The hand wheel is used to raise or lower the sealing die assembly so that when the dies are closed, they are at half the height of the product to be sealed, or at the center of the package.


The threaded shaft can also be rotated by a servo motor or other mechanical or electrical driving means. Further, the vertically movable assembly could be raised or lowered by mechanisms other than a threaded shaft, for example, a belt drive.


The reciprocating die frame 58 reciprocates horizontally, propelled by the crank arms 72 and 73 to match the speed of the plastic film while severing and sealing the film tube. The crank arms 72 and 73 advantageously provide two pivot locations 105 and 106 (FIG. 2) for the crank arms 72 and 73 to change the amount of horizontal die movement. In one specific embodiment the two pivot locations provided 12 inches and 16 inches of horizontal die movement. The pivot location is set manually depending on the product format.


One alternative method of reciprocating the die frame 58 is illustrated in FIG. 28. The reciprocating die frame 58 is attached to a belt drive 107 which travels over pulleys 108 and 109. The pulley 108 is driven by servo motor 76. Rotation of the belt drive in one direction moves the reciprocating die frame to the right, and rotation of the belt drive in the opposite direction moves the die frame to the left.


In one specific embodiment the servo motor 76 for the crank mechanism is a 105 in-lb (12 Nm) NC servo motor driving the die crank mechanism through a 50:1 gear box. The servo motors and pull belts are controlled by a controller 111 (FIG. 2), such as a Giddings & Lewis MMC4PC with a remote 1/0.



FIGS. 4 and 13 illustrate the first step in the sealing cycle. The leading end of the exiting bundle 36A has already been sealed. The upper and lower die mounting bars 83 and 84 are in their open positions to allow the exiting bundle 36A to move past the sealing dies. As described in U.S. Pat. No. 5,447,012, the movement of the bundles is controlled by pull belts which are entrained over upper and lower rollers 110-115. Side pull belts may also be used. The crank arms 72 and 73 are positioned so that the reciprocating frame 58 is at the beginning of its forward movement in the direction A of product movement.



FIGS. 5 and 14 illustrate the sealing dies in the process of closing between bundles 36A and 36B. As the dies move toward each other, the reciprocating frame 58 is moved forwardly by the crank arms 72 and 73. The rate at which the dies are closed can be varied to allow the incoming bundle 36B to collapse the gap with the existing bundle 36A. The rate of die closing is coordinated with the rate of the die traverse for optimal sealing and end gussets. The discharge pull belt assemblies and side discharge pull belt assemblies can be separated in order to release the bundles contained therebetween so that the downward movement of the sealing dies against the plastic film tube can collapse the film tube and move adjacent bundles together. Alternatively, the discharge pull belts could be driven in reverse to accomplish the same results, or the bundle can be allowed to slide across the discharge pull belt on rollers 110 and 111 as the dies close.


As described in U.S. Pat. No. 5,447,012, gusset plates form gussets in the sides of the plastic tube as the tube is collapsed by the sealing dies.


Mechanical tuckers 117 (FIG. 22) can be used to assist the forming of the gussets on large packages. FIGS. 6 and 15 illustrate the sealing dies in the closed position at the start of the sealing step. The plastic tube is clamped between the sealing dies so that the sealing ribbons can begin sealing the plastic. The cut-off knife severs the plastic between the spaced-apart sealing ribbons.



FIGS. 7 and 16 illustrate the end of the sealing step. The sealing dies remain clamped against the plastic film as the crank arms 72 and 73 move the reciprocating frame 58 downstream at the same speed as the speed at which the plastic film is advanced. The horizontal movement of the sealing dies with the plastic film provides sufficient time for the sealing dies to seal the film.



FIGS. 8 and 17 illustrate the opening of the dies toward the end of the forward movement of the reciprocating frame 58. The sealing dies are opened to permit the reverse movement of the reciprocating frame 58 past the second bundle 36B.



FIGS. 9 and 18 illustrate the reciprocating frame 58 at the end of its forward stroke. The sealing dies are open, and continued rotation of the crank arms 72 and 73 will begin the backward motion of the reciprocating frame.



FIGS. 10 and 19 illustrate the reciprocating frame in the process of returning to its original position. The sealing dies remain open.



FIGS. 11 and 20 illustrate the reciprocating frame 58 near the end of its reverse stroke. The sealing dies are beginning to close as soon as they clear the exiting bundle 36B.



FIGS. 12 and 21 correspond to FIGS. 4 and 13 and illustrate the reciprocating frame 58 at the end of its reverse stroke and at the beginning of its forward stroke. The sealing dies are in the process of closing.



FIG. 29 illustrates one example of the path P of the movement of the upper sealing die which is caused by the combination of the linear horizontal reciprocating movement of the reciprocating frame 58 and the linear vertical reciprocating movement of the mounting bar 83. The same path P is superimposed on FIG. 2. The path of movement of the lower sealing die is the mirror image of the path P of FIG. 29.


Position 204 on path P corresponds to FIG. 4. The sealing dies are open, and the reciprocating frame 58 is in its FIG. 2 position.


The curved portion 205 of path P represents the movement of the upper sealing die as the sealing apparatus moves from its FIG. 4 position to its FIG. 6 position. The upper and lower sealing dies move toward each other as the reciprocating frame moves to the right.


Position 206 corresponds to FIG. 6. The dies are closed against the plastic film and the sealing portion of the cycle begins. Sealing continues until point 207, which corresponds to FIG. 7.


Between points 207 and 208, the dies open as the reciprocating frame continues to move to the right. At point 208, corresponding to FIG. 8, the dies are fully open.


Between points 208 and 209, the reciprocating frame 58 moves to the left to return the sealing dies toward their starting positions. Between points 209 and 204, the sealing dies begin to close as the reciprocating frame moves to its most upstream position.


In the preferred embodiments, the reciprocating frame 58 is reciprocated by a crank mechanism or by a belt drive. However, other means can be used for moving the frame back and forth along the path on which the products move.


Similarly, the preferred means for opening and closing the sealing dies includes belt drives. However, other means can be used.



FIG. 31 is a block diagram showing a packaging system, generally designated by reference number 300, according to an exemplary embodiment of the present invention. As described in regards to the previous embodiment, the packaging system 300 includes infeed choke belt section 326, a product upender section 327, a product collator section 328, a film feed/lap seal/girth former section 329, a pull belt section 330, a sealing section 331, and a discharge section 332. The sealing section 331 also includes the various components as previous described. In the present embodiment, a heat tunnel section 333 is provided after the discharge section 332. The heat tunnel section 333 contributes to an increased bundle tightness for rolled tissue or paper towels as compared to conventional packaging systems by heat shrinking the plastic film. Conveyers transport the packaged rolled product through the heated tunnel section 333 whereby the overwrap plastic film shrinks and conforms to the contour of the article or group of articles. The articles or group of articles may or may be wrapped individually in a separate film with a higher melting point than the overwrap film to resist shrinking through the heat tunnel. Examples of heated tunnels suitable for use with the present invention are described in U.S. Pat. Nos. 8,051,629, 7,155,876, 7,823,366, 7,328,550, 7,269,929 and 345465, as well as U.S. Patent Application Publication 2014/0272747, the contents of which are incorporated herein by reference in their entirety. The heat applied in a heated tunnel can be transferred by convection, conduction, or radiation. A typical heat tunnel uses convection by blowing air heated using an electric heater.


In an exemplary embodiment of the invention, temperature of the heat treatment applied by the heat tunnel is between 300-400° F. and heat is applied to a bundled product for between 20 to 45 seconds. In an exemplary embodiment the heat is distributed primarily to the top and bottom of the bundle. The effect of this uneven heating is to produce package ends that are tight and molded while keeping the sides of the package smooth with limited wrinkles.


It should be appreciated that the heated tunnel may be used with other types of packaging systems besides those described herein to achieve improved bundle tightness.



FIGS. 32A and 32B illustrate the effect of heat treatment on packaged rolls of tissue or paper towel product. As shown in FIG. 32A, prior to heat treatment, the packaging material does not break the plane of the rolls, nor does it contour the packs inside the bundle. As shown in FIG. 32B, after the heat treatment the packaging material breaks the plane of the rolls inside the bundle and contours to the shape of the inner packs.


In an exemplary embodiment of the invention, a package of paper towel rolls includes a bundle of paper towel rolls wrapped in an outer package material. The bundle may include individual packs of one or more towel rolls, with each pack wrapped with a separate package material. Each separate package material may be referred to as an inner package or “inner poly” (in the case where the package material is made of polyethylene), with the outer package material covering the entire bundle referred to as “outer poly”. The package of paper towel rolls may have the following characteristics:


The package is sortable (for the purposes of the present invention, “sortable” is intended to mean that the bundle fits within sortable size dimensions (18 in×14 in×8 in)).


The package is shippable (for the purposes of the present invention, “shippable” is intended to mean that the package can be successfully transported from distributor to end consumer without any additional packaging).


Dimensions of 18″×14″×8″;


Bulk of finished tissue greater than 500 microns;


Rolls inside heat treated bundle are single rolls or multi-packs, each wrapped in poly plastic, paper, or no primary packaging at all;


Cores of rolls inside the bundle are crushed flat or maintained in cylindrical shape;


Rolls inside the bundle are coreless or have a core that is between 10-60 mm in diameter;


Total square footage of paper in the bundle is between 20-32 sq. ft.;


Density of the rolls inside the bundle is between 10.7-11.3 cc/g;


Poly composition of the inner poly has a higher glass transition temperature than that of the outer poly;


Both the outer and inner poly are made from a resin that includes both high density polyethylene (HDPE) and low density polyethylene (LDPE). The poly composition for the outer poly includes a greater amount of HDPE than the poly composition for the inner poly.


Both the compositions of the inner and outer poly include an anti-static additive (such as an amine with ethoxylated surfactants). The composition of the outer poly has a lower percentage of anti-static resin than that of the inner poly. The distribution of anti-static resin in the inner poly is higher on the surface of the inner poly facing the outer poly than it is on the surface of the inner poly facing the rolled product.


The composition of the inner poly has a higher percentage of antiblock additives (such as calcium carbonate, sodium carbonate, or talc) than the composition of the outer poly. The composition of the inner poly has a higher percentage of slip additives (such as long chain fats) than the composition of the outer poly.


Poly thickness of the outer poly is 1.0 mils to 3.5 mils as measured using Test Method ASTM D6988-13. The outer poly can be made from 3 to 5 layers. Preferably, a center layer contains a higher percentage of HDPE than the outer layers. The outer poly preferably has a puncture resistance of between 600 and 1,200 gf and more preferably has a puncture resistance of between 800 and 1200 gf.


In an exemplary embodiment of the invention, the crystallinity of the outer poly is lower after it has gone through the heating process in the heat tunnel than it was prior to the heating process. As discussed above, when the outer poly is heated evenly so as to the keep the sides smooth and the top and bottom ends tight, the film in the top and bottom ends will become significantly more rigid and less stretchable.


In an exemplary embodiment, a circumference of the outer poly prior to being heat treated is about 25 mm or more greater than the circumference of the bundle. After heat treatment, the circumference of the outer poly is reduced such that it is about 10 mm or more smaller than the prior circumference of the bundle.


In an exemplary embodiment, a stock keeping unit (SKU) in the form of a barcode, for example, is printed or otherwise directly disposed on the outer package material. The SKU is readable directly from the outer package so that additional outer packaging, such as a box, is not required. Graphics on the outer package may be adjusted so that they are visually correct after the packaging is heat treated.


In an exemplary embodiment, the inner and/or outer poly may include a dyed central layer. Without being bound by theory, it is believed that the use of a dyed layer in lieu of surface printing to provide color and/or graphics to the inner poly allows for more control of the interface between the facing surfaces of the inner and outer poly.


In an exemplary embodiment, each of the paper product rolls within the bundle has a Kershaw Firmness of less than 4 mm, where the Kershaw firmness is determined using a Kershaw Roll Density Tester Model RDT-2000B from Kershaw Instrumentation 517 Auburn Ave. Swedesboro, N.J., USA 08085 as follows:


1. Procedure






    • 1.1. Turn the Roll Density Tester on and allow it to warm up for about 15 minutes.

    • 1.2. Make sure the Run/Calibrate switch is in the “RUN” position.

    • 1.3. Place the roll to be tested on the test spindle.

    • 1.4. Adjust the roll diameter assembly until the pointer indicates the nominal diameter of the roll being tested.
      • (The roll diameter needs to be converted to inches to set the pointer for the machine diameter.)

    • 1.5. Press the “GREEN” forward button, the table will automatically move toward the roll to be tested. Once the probe contacts the roll, the force exerted on the probe will be displayed on the digital force display. The results for the displacement and force will be displayed.





In an exemplary embodiment, each of the paper product rolls within the bundle has a roll density between 9.5 cc/g to 12 cc/g. The roll density is determined by the following procedure:

    • Calculate the volume of tissue within the tissue roll. In order to do this; first measure the circumference of the roll using Pi tape. Once the circumference of the roll is determined, the radius of the roll can be calculated using the formula Circumference=2*Pi*radius. Once the roll radius is determined, then calculate the roll volume using the formula for volume of a cylinder: Volume=Pi*radius squared*Height. Next, we need to remove the volume occupied by the core to arrive at the volume of the tissue itself. Remove the core by unwinding the paper and repeat the calculation above to determine the volume of the core. Next subtract the core volume from the total roll volume to arrive at the volume of paper in the roll. The unit of length used should be centimeters to arrive at a cubic centimeter volume.
    • Next; using samples of the unwound paper, calculate the grammage or basis weight of the tissue product. Using a dye and press, six 76.2 mm by 76.2 mm square samples are cut from the tissue product being careful to avoid any web perforations. The samples are placed in an oven at 105 deg C. for 5 minutes before being weighed on an analytical balance to the fourth decimal point. The weight of the sample in grams is divided by (0.0762 m){circumflex over ( )}2 to determine the basis weight in grams/m{circumflex over ( )}2. Using units conversions, convert this to grams/cm{circumflex over ( )}2.
    • Next, calculate the total square centimeters of paper in the tissue roll by multiplying the area of a single sheet of the tissue by the number of sheets in the roll. Units used should be square centimeters.
    • Next, multiply the area of paper in the roll in square centimeters by the grammage in grams/square centimeter to obtain the weight, in grams, of paper in the roll.
    • Finally divide the weight of paper in the roll by the volume of paper in the roll to obtain the roll density in grams/cubic centimeter.


In an exemplary embodiment, the outer poly has a shrinkage factor of less than zero relative to the bundle. The shrinkage factor is determined as follows:

    • a. Cut the outer poly parallel to the lap seal;
    • b. Measure length of outer poly perpendicular to lap seal;
    • c. Measure length of path around bundle in the same direction (perpendicular to lap seal direction, without taking into account indents between rolls);
    • d. Calculate shrinkage factor as follows:

      shrinkage factor=measured outer poly length−measured length of path around bundle



FIGS. 32 and 33 show different views of a packaged bundle of paper towels according to an exemplary embodiment of the present invention. As shown, the outer packaging material generally conforms to the shape of paper towels contained within the bundle due to the synergistic effect of the backing plate and heat treatment. While not shown, the bundled paper towels can also be arranged in an interlocking manner, with the rows offset from each other.


While in the foregoing specification a detailed description of a specific embodiment of the invention was set forth, it will be understood that many of the details herein given may be varied considerably by those skilled in the art without departing from the spirit and scope of the invention.

Claims
  • 1. A shippable bundled product comprising: a plurality of paper product rolls each individually packaged by a first package material and arranged relative to one another to form a bundle, each of the plurality of paper product rolls having a roll density between 9.5 cc/g to 12 cc/g,the bundle being packaged by a second package material that is heat shrunk relative to the first package material,wherein:the second package material has a shrinkage factor relative to the bundle of less than zero so that the second package material protrudes into spaces between the paper product rolls,a circumference of the second package material prior to heat shrinking is 25 mm or greater than a circumference of the bundle,the circumference of the second package material after heat shrinking is 10 mm or smaller than the circumference of the bundle,during the heat shrinking, more heat is applied to a top and a bottom of the bundle as compared to sides of the bundle,the first package material comprises high density and low density polyethylene, andthe second package material comprises high density and low density polyethylene.
  • 2. The product of claim 1, wherein the second package material has a higher quantity of high density polyethylene as compared to the first package material.
  • 3. The product of claim 1, wherein the second package material comprises one or more outer layers that are comprised of 10-100% polypropylene.
  • 4. The product of claim 1, wherein at least one of the first and second package materials comprise laminated layers of polypropylene film.
  • 5. The product of claim 1, wherein the first package material has a higher percentage of anti-block resin as compared to the second package material.
  • 6. The product of claim 1, wherein the second package material comprises a number of layers within the range of 3 to 5.
  • 7. The product of claim 6, wherein a center layer of the second package material comprises a higher percentage of high density polyethylene as compared to outer layers of the second package material.
  • 8. The product of claim 1, wherein the first package material has a higher quantity of anti-block resin on a side in contact with the second package material as compared to a side in contact with the individually packaged paper product rolls.
  • 9. The product of claim 1, wherein a puncture resistance of the second package material is between 800-1200 gf.
  • 10. The product of claim 1, wherein the second package material has a thickness between 1.0 to 3.5 thousands of an inch.
  • 11. The product of claim 1, wherein the individually packaged paper product rolls are arranged relative to one another in a staggered/interlocking stacking pattern.
  • 12. The product of claim 1, wherein the second package material is subjected to heat treatment.
  • 13. The product of claim 12, wherein the second package material has a lower crystallinity after the heat treatment.
  • 14. The product of claim 12, wherein the second package material has a surface area that is lower after the heat treatment.
  • 15. The product of claim 12, wherein a temperature range of the heat treatment is between 300-400 degrees Fahrenheit.
  • 16. The product of claim 12, wherein a duration of the heat treatment is between 20 to 45 seconds.
  • 17. The product of claim 12, wherein the second package material exhibits anisotropic properties after heat treatment.
  • 18. A shippable bundled product comprising: a plurality of paper product rolls each individually packaged by a first package material and arranged relative to one another to form a bundle, paper product that makes up the plurality of paper product rolls having a bulk greater than 400 microns, each of the plurality of paper product rolls having a diameter less than 122 mm, a roll width equal to or greater than 4 inches, and a roll density between 9.5 cc/g to 12 cc/g,the bundle being packaged by a second package material that is heat shrunk relative to the first package material, wherein:a circumference of the second package material prior to heat shrinking is 25 mm or greater than a circumference of the bundle,the circumference of the second package material after heat shrinking is 10 mm or smaller than the circumference of the bundle,during the heat shrinking, more heat is applied to a top and a bottom of the bundle as compared to sides of the bundle,the second package material has a shrinkage factor relative to the bundle of less than zero so that the second package material protrudes into spaces between the paper product rolls, andthe first package material comprises high density and low density polyethylene and the second package material comprises high density and low density polyethylene.
  • 19. The product of claim 18, wherein each of the plurality of paper product rolls has a Kershaw Firmness of less than 4 mm.
  • 20. A shippable bundled product comprising: a plurality of paper product rolls each individually packaged by a first package material and arranged relative to one another to form a bundle, each of the plurality of paper product rolls having a roll density between 9.5 cc/g to 12 cc/g,the bundle being packaged by a second package material that is heat shrunk relative to the first package material, the second package material having a melting point between 120 and 140 deg C,wherein:a circumference of the second package material prior to heat shrinking is 25 mm or greater than a circumference of the bundle,the circumference of the second package material after heat shrinking is 10 mm or smaller than the circumference of the bundle,during the heat shrinking, more heat is applied to a top and a bottom of the bundle as compared to sides of the bundle,the second package material has a shrinkage factor relative to the bundle of less than zero so that the second package material protrudes into spaces between the paper product rolls, andthe first package material comprises high density and low density polyethylene and the second package material comprises high density and low density polyethylene.
RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 15/294,305, filed Oct. 14, 2016, entitled BUNDLED PRODUCT AND SYSTEM AND METHOD FOR FORMING THE SAME, which in turn claims priority to U.S. Provisional Patent Application No. 62/241,554, filed Oct. 14, 2015, entitled BUNDLED PRODUCT AND SYSTEM AND METHOD FOR FORMING THE SAME, and U.S. Provisional Patent Application No. 62/370,128, filed Aug. 2, 2016, entitled BUNDLED PRODUCT AND SYSTEM AND METHOD FOR FORMING THE SAME, and the contents of these applications are incorporated herein by reference in their entirety.

US Referenced Citations (437)
Number Name Date Kind
2919467 Mercer Jan 1960 A
2926154 Keim Feb 1960 A
3026231 Chavannes Mar 1962 A
3049469 Davison Aug 1962 A
3058873 Keim et al. Oct 1962 A
3066066 Keim et al. Nov 1962 A
3097994 Dickens et al. Jul 1963 A
3125552 Loshaek et al. Mar 1964 A
3143150 Buchanan Aug 1964 A
3186900 De Young Jun 1965 A
3197427 Schmatz Jul 1965 A
3224986 Butler et al. Dec 1965 A
3224990 Babcock Dec 1965 A
3227615 Korden Jan 1966 A
3227671 Keim Jan 1966 A
3239491 Tsou et al. Mar 1966 A
3240664 Earle, Jr. Mar 1966 A
3240761 Keim et al. Mar 1966 A
3248280 Hyland, Jr. Apr 1966 A
3250664 Conte et al. May 1966 A
3252181 Hureau May 1966 A
3301746 Sanford et al. Jan 1967 A
3311594 Earle, Jr. Mar 1967 A
3329657 Strazdins et al. Jul 1967 A
3332834 Reynolds, Jr. Jul 1967 A
3332901 Keim Jul 1967 A
3352833 Earle, Jr. Nov 1967 A
3381817 Harm May 1968 A
3384692 Galt et al. May 1968 A
3414459 Wells Dec 1968 A
3442754 Espy May 1969 A
3459697 Goldberg et al. Aug 1969 A
3473576 Amneus Oct 1969 A
3483077 Aldrich Dec 1969 A
3545165 Greenwell Dec 1970 A
3556932 Coscia et al. Jan 1971 A
3573164 Friedberg et al. Mar 1971 A
3587201 Strayer Jun 1971 A
3609126 Asao et al. Sep 1971 A
3666609 Kalwaites et al. May 1972 A
3672949 Brown Jun 1972 A
3672950 Murphy et al. Jun 1972 A
3773290 Mowery Nov 1973 A
3778339 Williams et al. Dec 1973 A
3813362 Coscia et al. May 1974 A
3855158 Petrovich et al. Dec 1974 A
3877510 Tegtmeier et al. Apr 1975 A
3905863 Ayers Sep 1975 A
3911173 Sprague, Jr. Oct 1975 A
3974025 Ayers Aug 1976 A
3994771 Morgan, Jr. et al. Nov 1976 A
3998690 Lyness et al. Dec 1976 A
4038008 Larsen Jul 1977 A
4075382 Chapman et al. Feb 1978 A
4088528 Berger et al. May 1978 A
4098632 Sprague, Jr. Jul 1978 A
4102737 Morton Jul 1978 A
4129528 Petrovich et al. Dec 1978 A
4147586 Petrovich et al. Apr 1979 A
4184519 McDonald et al. Jan 1980 A
4190692 Larsen Feb 1980 A
4191609 Trokhan Mar 1980 A
4252761 Schoggen et al. Feb 1981 A
4320162 Schulz Mar 1982 A
4331510 Wells May 1982 A
4382987 Smart May 1983 A
4440597 Wells et al. Apr 1984 A
4501862 Keim Feb 1985 A
4507351 Johnson et al. Mar 1985 A
4514345 Johnson et al. Apr 1985 A
4515657 Maslanka May 1985 A
4528239 Trokhan Jul 1985 A
4529480 Trokhan Jul 1985 A
4535587 Rias Aug 1985 A
4537657 Keim Aug 1985 A
4545857 Wells Oct 1985 A
4595093 Eckstein Jun 1986 A
4637859 Trokhan Jan 1987 A
4678590 Nakamura et al. Jul 1987 A
4714736 Juhl et al. Dec 1987 A
4770920 Larsonneur Sep 1988 A
4780357 Akao Oct 1988 A
4808467 Suskind et al. Feb 1989 A
1836894 Chance et al. Jun 1989 A
4849054 Klowak Jul 1989 A
4885202 Lloyd et al. Dec 1989 A
4886167 Dearwester Dec 1989 A
4891249 McIntyre Jan 1990 A
4909284 Kositake Mar 1990 A
4949668 Heindel et al. Aug 1990 A
4949688 Bayless Aug 1990 A
4971197 Worley Nov 1990 A
4983256 Combette et al. Jan 1991 A
4996091 McIntyre Feb 1991 A
5027582 Dearwester Jul 1991 A
5059282 Ampulski et al. Oct 1991 A
5143776 Givens Sep 1992 A
5149401 Langevin et al. Sep 1992 A
5152874 Keller Oct 1992 A
5211813 Sawley et al. May 1993 A
5239047 Devore et al. Aug 1993 A
5279098 Fukuda Jan 1994 A
5281306 Kakiuchi et al. Jan 1994 A
5334289 Trokhan et al. Aug 1994 A
5347795 Fukuda Sep 1994 A
5397435 Ostendorf et al. Mar 1995 A
5399412 Sudall et al. Mar 1995 A
5405501 Phan et al. Apr 1995 A
5409572 Kershaw et al. Apr 1995 A
5429686 Chiu et al. Jul 1995 A
5439559 Crouse Aug 1995 A
5447012 Kovacs et al. Sep 1995 A
5470436 Wagle et al. Nov 1995 A
5487313 Johnson Jan 1996 A
5509913 Yeo Apr 1996 A
5510002 Hermans et al. Apr 1996 A
5529665 Kaun Jun 1996 A
5551563 Allen Sep 1996 A
5581906 Ensign et al. Dec 1996 A
5591147 Couture-Dorschner et al. Jan 1997 A
5607551 Farrington, Jr. et al. Mar 1997 A
5611890 Vinson et al. Mar 1997 A
5628876 Ayers et al. May 1997 A
5635028 Vinson et al. Jun 1997 A
5649916 DiPalma et al. Jul 1997 A
5671897 Ogg et al. Sep 1997 A
5672248 Wendt et al. Sep 1997 A
5679222 Rasch et al. Oct 1997 A
5685428 Herbers et al. Nov 1997 A
5728268 Weisman et al. Mar 1998 A
5746887 Wendt et al. May 1998 A
5753067 Fukuda et al. May 1998 A
5772845 Farrington, Jr. et al. Jun 1998 A
5806569 Gulya et al. Sep 1998 A
5827384 Canfield et al. Oct 1998 A
5832962 Kaufman et al. Nov 1998 A
5846380 Van Phan et al. Dec 1998 A
5855738 Weisman et al. Jan 1999 A
5858554 Neal et al. Jan 1999 A
5865396 Ogg et al. Feb 1999 A
5865950 Vinson et al. Feb 1999 A
5893965 Trokhan et al. Apr 1999 A
5913765 Burgess et al. Jun 1999 A
5934470 Bauer et al. Aug 1999 A
5942085 Neal et al. Aug 1999 A
5944954 Vinson et al. Aug 1999 A
5948210 Huston Sep 1999 A
5980691 Weisman et al. Nov 1999 A
6036139 Ogg Mar 2000 A
6039838 Kaufman et al. Mar 2000 A
6048938 Neal et al. Apr 2000 A
6060149 Nissing et al. May 2000 A
6106670 Weisman et al. Aug 2000 A
6149769 Mohammadi et al. Nov 2000 A
6162327 Batra et al. Dec 2000 A
6162329 Vinson et al. Dec 2000 A
6187138 Neal et al. Feb 2001 B1
6200419 Phan Mar 2001 B1
6203667 Huhtelin Mar 2001 B1
6207734 Vinson et al. Mar 2001 B1
6231723 Kanitz et al. May 2001 B1
6287426 Edwards et al. Sep 2001 B1
6303233 Amon et al. Oct 2001 B1
6319362 Huhtelin et al. Nov 2001 B1
6344111 Wilhelm Feb 2002 B1
6420013 Vinson et al. Jul 2002 B1
6420100 Trokhan et al. Jul 2002 B1
6423184 Vahatalo et al. Jul 2002 B2
6458246 Kanitz et al. Oct 2002 B1
6464831 Trokhan et al. Oct 2002 B1
6473670 Huhtelin Oct 2002 B1
6521089 Griech et al. Feb 2003 B1
6537407 Law et al. Mar 2003 B1
6547928 Barnholtz et al. Apr 2003 B2
6551453 Weisman et al. Apr 2003 B2
6551691 Hoeft et al. Apr 2003 B1
6572722 Pratt Jun 2003 B1
6579416 Vinson et al. Jun 2003 B1
6602454 McGuire et al. Aug 2003 B2
6607637 Vinson et al. Aug 2003 B1
6610173 Lindsay et al. Aug 2003 B1
6613194 Kanitz et al. Sep 2003 B2
6660362 Lindsay et al. Sep 2003 B1
6673202 Burazin Jan 2004 B2
6701637 Lindsay et al. May 2004 B2
6755939 Vinson et al. Jun 2004 B2
6773647 McGuire et al. Aug 2004 B2
6797117 McKay et al. Sep 2004 B1
6808599 Burazin Oct 2004 B2
6821386 Weisman et al. Nov 2004 B2
6821391 Scherb et al. Nov 2004 B2
6827818 Farrington, Jr. et al. Dec 2004 B2
6863777 Kanitz et al. Mar 2005 B2
6896767 Wilhelm May 2005 B2
6939443 Ryan et al. Sep 2005 B2
6998017 Lindsay et al. Feb 2006 B2
6998024 Burazin Feb 2006 B2
7005043 Toney et al. Feb 2006 B2
7014735 Kramer et al. Mar 2006 B2
7105465 Patel et al. Sep 2006 B2
7155876 Vandertuin et al. Jan 2007 B2
7157389 Branham et al. Jan 2007 B2
7182837 Chen et al. Feb 2007 B2
7194788 Clark et al. Mar 2007 B2
7235156 Baggot Jun 2007 B2
7269929 Vandertuin et al. Sep 2007 B2
7294230 Flugge-Berendes et al. Nov 2007 B2
7311853 Vinson et al. Dec 2007 B2
7328550 Schoeneck Feb 2008 B2
7339378 Han et al. Mar 2008 B2
7351307 Scherb et al. Apr 2008 B2
7387706 Herman et al. Jun 2008 B2
7399378 Edwards et al. Jul 2008 B2
7419569 Hermans Sep 2008 B2
7427434 Busam Sep 2008 B2
7431801 Conn et al. Oct 2008 B2
7432309 Vinson Oct 2008 B2
7442278 Murray et al. Oct 2008 B2
7452447 Duan et al. Nov 2008 B2
7476293 Herman et al. Jan 2009 B2
7494563 Edwards et al. Feb 2009 B2
7510631 Scherb et al. Mar 2009 B2
7513975 Burma Apr 2009 B2
7563344 Beuther Jul 2009 B2
7582187 Scherb et al. Sep 2009 B2
7611607 Mullally et al. Nov 2009 B2
7622020 Awofeso Nov 2009 B2
7662462 Noda Feb 2010 B2
7670678 Phan Mar 2010 B2
7683126 Neal et al. Mar 2010 B2
7686923 Scherb et al. Mar 2010 B2
7687140 Manifold et al. Mar 2010 B2
7691230 Scherb et al. Apr 2010 B2
7744722 Tucker et al. Jun 2010 B1
7744726 Scherb et al. Jun 2010 B2
7799382 Payne et al. Sep 2010 B2
7811418 Klerelid et al. Oct 2010 B2
7815978 Davenport et al. Oct 2010 B2
7823366 Schoeneck Nov 2010 B2
7842163 Nickel et al. Nov 2010 B2
7867361 Salaam et al. Jan 2011 B2
7871692 Morin et al. Jan 2011 B2
7887673 Andersson et al. Feb 2011 B2
7905989 Scherb et al. Mar 2011 B2
7914866 Shannon et al. Mar 2011 B2
D636273 Ver Kuilen Apr 2011 S
7931781 Scherb et al. Apr 2011 B2
7951269 Herman et al. May 2011 B2
7955549 Noda Jun 2011 B2
7959764 Ringer et al. Jun 2011 B2
7972475 Chan et al. Jul 2011 B2
7989058 Manifold et al. Aug 2011 B2
8034463 Leimbach et al. Oct 2011 B2
8051629 Pazdernik et al. Nov 2011 B2
8075739 Scherb et al. Dec 2011 B2
8092652 Scherb et al. Jan 2012 B2
8118979 Herman et al. Feb 2012 B2
8147649 Tucker et al. Apr 2012 B1
8152959 Elony et al. Apr 2012 B2
8196314 Munch Jun 2012 B2
8216427 Klerelid et al. Jul 2012 B2
8236135 Prodoehl et al. Aug 2012 B2
8303773 Scherb et al. Nov 2012 B2
8382956 Boechat et al. Feb 2013 B2
8402673 Da Silva et al. Mar 2013 B2
8409404 Harper et al. Apr 2013 B2
8435384 Da Silva et al. May 2013 B2
8440055 Scherb et al. May 2013 B2
8445032 Topolkaraev et al. May 2013 B2
8454800 Mourad et al. Jun 2013 B2
8470133 Cunnane et al. Jun 2013 B2
8506756 Denis et al. Aug 2013 B2
8544184 Da Silva et al. Oct 2013 B2
8574211 Morita Nov 2013 B2
8580083 Boechat et al. Nov 2013 B2
8728277 Boechat et al. May 2014 B2
8758569 Aberg et al. Jun 2014 B2
8771466 Denis et al. Jul 2014 B2
8801903 Mourad et al. Aug 2014 B2
8815057 Eberhardt et al. Aug 2014 B2
8822009 Riviere et al. Sep 2014 B2
8968517 Ramaratnam et al. Mar 2015 B2
8980062 Karlsson et al. Mar 2015 B2
9005710 Jones et al. Apr 2015 B2
D734617 Seitzinger et al. Jul 2015 S
9095477 Yamaguchi Aug 2015 B2
D738633 Seitzinger et al. Sep 2015 S
9382666 Ramaratnam et al. Jul 2016 B2
9506203 Ramaratnam et al. Nov 2016 B2
9580872 Ramaratnam et al. Feb 2017 B2
9702089 Ramaratnam et al. Jul 2017 B2
9702090 Ramaratnam et al. Jul 2017 B2
9719213 Miller, IV et al. Aug 2017 B2
9725853 Ramaratnam et al. Aug 2017 B2
20010018068 Lorenzi et al. Aug 2001 A1
20020028230 Eichhorn et al. Mar 2002 A1
20020060049 Kanitz et al. May 2002 A1
20020061386 Carson et al. May 2002 A1
20020098317 Jaschinski et al. Jul 2002 A1
20020110655 Seth Aug 2002 A1
20020115194 Lange et al. Aug 2002 A1
20020125606 McGuire et al. Sep 2002 A1
20030024674 Kanitz et al. Feb 2003 A1
20030056911 Hermans et al. Mar 2003 A1
20030056917 Jimenez Mar 2003 A1
20030070781 Hermans et al. Apr 2003 A1
20030114071 Everhart et al. Jun 2003 A1
20030159401 Sorenson et al. Aug 2003 A1
20030188843 Kanitz et al. Oct 2003 A1
20030218274 Boutilier et al. Nov 2003 A1
20030230051 Tinti Dec 2003 A1
20040118531 Shannon et al. Jun 2004 A1
20040123963 Chen et al. Jul 2004 A1
20040126601 Kramer et al. Jul 2004 A1
20040126710 Hill et al. Jul 2004 A1
20040168784 Duan et al. Sep 2004 A1
20040173333 Hermans et al. Sep 2004 A1
20040200752 Poli Oct 2004 A1
20040234804 Liu et al. Nov 2004 A1
20050016704 Huhtelin Jan 2005 A1
20050069679 Stelljes et al. Mar 2005 A1
20050069680 Stelljes et al. Mar 2005 A1
20050098281 Schulz et al. May 2005 A1
20050112115 Khan May 2005 A1
20050123726 Broering et al. Jun 2005 A1
20050130536 Siebers et al. Jun 2005 A1
20050136222 Hada et al. Jun 2005 A1
20050148257 Hermans et al. Jul 2005 A1
20050150626 Kanitz et al. Jul 2005 A1
20050166551 Keane et al. Aug 2005 A1
20050241786 Edwards et al. Nov 2005 A1
20050241788 Baggot et al. Nov 2005 A1
20050252626 Chen et al. Nov 2005 A1
20050280184 Sayers et al. Dec 2005 A1
20050287340 Morelli et al. Dec 2005 A1
20060005916 Stelljes et al. Jan 2006 A1
20060013998 Stelljes, et al. Jan 2006 A1
20060019567 Sayers Jan 2006 A1
20060083899 Burazin et al. Apr 2006 A1
20060093788 Behm et al. May 2006 A1
20060113049 Knobloch et al. Jun 2006 A1
20060130986 Flugge-Berendes et al. Jun 2006 A1
20060194022 Boutilier et al. Aug 2006 A1
20060269706 Shannon et al. Nov 2006 A1
20070020315 Shannon et al. Jan 2007 A1
20070131366 Underhill et al. Jun 2007 A1
20070137813 Nickel et al. Jun 2007 A1
20070137814 Gao Jun 2007 A1
20070170610 Payne et al. Jul 2007 A1
20070240842 Scherb et al. Oct 2007 A1
20070251659 Fernandes et al. Nov 2007 A1
20070251660 Walkenhaus et al. Nov 2007 A1
20070267157 Kanitz et al. Nov 2007 A1
20070272381 Elony et al. Nov 2007 A1
20070275866 Dykstra Nov 2007 A1
20070298221 Vinson Dec 2007 A1
20080035289 Edwards et al. Feb 2008 A1
20080076695 Uitenbroek et al. Mar 2008 A1
20080156450 Klerelid et al. Jul 2008 A1
20080199655 Monnerie et al. Aug 2008 A1
20080245498 Ostendorf et al. Oct 2008 A1
20080302493 Boatman et al. Dec 2008 A1
20080308247 Ringer et al. Dec 2008 A1
20090020248 Sumnicht et al. Jan 2009 A1
20090056892 Rekoske Mar 2009 A1
20090061709 Nakai et al. Mar 2009 A1
20090205797 Fernandes et al. Aug 2009 A1
20090218058 Manifold et al. Sep 2009 A1
20100065234 Klerelid et al. Mar 2010 A1
20100119779 Ostendorf et al. May 2010 A1
20100224338 Harper et al. Sep 2010 A1
20100230064 Eagles et al. Sep 2010 A1
20100236034 Eagles et al. Sep 2010 A1
20100239825 Sheehan et al. Sep 2010 A1
20100272965 Schinkoreit et al. Oct 2010 A1
20110027545 Harlacher et al. Feb 2011 A1
20110180223 Klerelid et al. Jul 2011 A1
20110189435 Manifold et al. Aug 2011 A1
20110189442 Manifold et al. Aug 2011 A1
20110206913 Manifold et al. Aug 2011 A1
20110223381 Sauter et al. Sep 2011 A1
20110253329 Manifold et al. Oct 2011 A1
20110265967 Van Phan Nov 2011 A1
20110303379 Boechat et al. Dec 2011 A1
20120144611 Baker et al. Jun 2012 A1
20120152475 Edwards et al. Jun 2012 A1
20120177888 Escafere et al. Jul 2012 A1
20120244241 McNeil Sep 2012 A1
20120267063 Klerelid et al. Oct 2012 A1
20120297560 Zwick et al. Nov 2012 A1
20130008135 Moore et al. Jan 2013 A1
20130029105 Miller et al. Jan 2013 A1
20130029106 Lee et al. Jan 2013 A1
20130133851 Boechat et al. May 2013 A1
20130150817 Kainth et al. Jun 2013 A1
20130160960 Hermans et al. Jun 2013 A1
20130209749 Myangiro et al. Aug 2013 A1
20130248129 Manifold et al. Sep 2013 A1
20130327487 Espinosa et al. Dec 2013 A1
20140004307 Sheehan Jan 2014 A1
20140041820 Ramaratnam et al. Feb 2014 A1
20140041822 Boechat et al. Feb 2014 A1
20140050890 Zwick et al. Feb 2014 A1
20140053994 Manifold et al. Feb 2014 A1
20140096924 Rekokske et al. Apr 2014 A1
20140182798 Polat et al. Jul 2014 A1
20140242320 McNeil et al. Aug 2014 A1
20140272269 Hansen Sep 2014 A1
20140272747 Ciurkot Sep 2014 A1
20140284237 Gosset Sep 2014 A1
20140360519 George et al. Dec 2014 A1
20150859995 Ramaratnam et al. Mar 2015
20150102526 Ward et al. Apr 2015 A1
20150129145 Chou et al. May 2015 A1
20150211179 Alias et al. Jul 2015 A1
20150241788 Yamaguchi Aug 2015 A1
20150330029 Ramaratnam et al. Nov 2015 A1
20160060811 Riding et al. Mar 2016 A1
20160090692 Eagles et al. Mar 2016 A1
20160090693 Eagles et al. Mar 2016 A1
20160130762 Ramaratnam et al. May 2016 A1
20160137398 Lemke et al. May 2016 A1
20160145818 Miller, IV et al. May 2016 A1
20160159807 Miller, IV et al. Jun 2016 A1
20160160448 Miller, IV et al. Jun 2016 A1
20160185041 Topolkaraev et al. Jun 2016 A1
20160185050 Topolkaraev et al. Jun 2016 A1
20160273168 Ramaratnam et al. Sep 2016 A1
20160273169 Ramaratnam et al. Sep 2016 A1
20160289897 Ramaratnam et al. Oct 2016 A1
20160289898 Ramaratnam et al. Oct 2016 A1
20170044717 Quigley Feb 2017 A1
20170101741 Sealey et al. Apr 2017 A1
20170167082 Ramaratnam et al. Jun 2017 A1
20170226698 LeBrun et al. Aug 2017 A1
20170233946 Sealey et al. Aug 2017 A1
20170268178 Ramaratnam et al. Sep 2017 A1
Foreign Referenced Citations (40)
Number Date Country
2168894 Aug 1997 CA
2795139 Oct 2011 CA
1138356 Dec 1996 CN
1207149 Feb 1999 CN
1244899 Feb 2000 CN
1268559 Oct 2000 CN
1377405 Oct 2002 CN
2728254 Sep 2005 CN
4242539 Aug 1993 DE
0097036 Dec 1983 EP
0979895 Feb 2000 EP
1911574 Jan 2007 EP
1339915 Jul 2007 EP
2123826 May 2009 EP
946093 Jan 1964 GB
2013208298 Oct 2013 JP
2014213138 Nov 2014 JP
9606223 Feb 1996 WO
200382550 Oct 2003 WO
200445834 Jun 2004 WO
2007070145 Jun 2007 WO
2008019702 Feb 2008 WO
2009006709 Jan 2009 WO
2009061079 May 2009 WO
2009067079 May 2009 WO
2011028823 Mar 2011 WO
2012003360 Jan 2012 WO
2013024297 Feb 2013 WO
2013136471 Sep 2013 WO
2014022848 Feb 2014 WO
201500755 Jan 2015 WO
2015176063 Nov 2015 WO
2016077594 May 2016 WO
2016086019 Jun 2016 WO
2016090242 Jun 2016 WO
2016090364 Jun 2016 WO
2016085704 Jun 2016 WO
2017066465 Apr 2017 WO
2017066656 Apr 2017 WO
2017139786 Aug 2017 WO
Non-Patent Literature Citations (24)
Entry
International Preliminary Report on Patentability of PCT/US2013/053593 dated Feb. 3, 2015.
Supplementary European Search Report of EP 13 82 6461 dated Apr. 1, 2016.
Written Opinion of International Searching Authority for PCT/US15/62483 dated May 6, 2016.
International Search Report for PCT/US15/63986 dated Mar. 29, 2016.
Written Opinion of International Searching Authority for PCT/US15/63986 dated Mar. 29, 2016.
International Search Report for PCT/US15/64284 dated Feb. 11, 2016.
Written Opinion of International Searching Authority for PCT/US15/64284 dated Feb. 11, 2016.
International Search Report for PCT/US13/53593 dated Dec. 30, 2013.
Written Opinion of International Searching Authority for PCT/US13/53593 dated Dec. 30, 2013.
International Search Report for PCT/US15/31411 dated Aug. 13, 2015.
Written Opinion of International Searching Authority for PCT/US15/31411 dated Aug. 13, 2015.
International Search Report for PCT/US15/60398 dated Jan. 29, 2016.
Written Opinion of International Searching Authority for PCT/US15/60398 dated Jan. 29, 2016.
International Search Report for PCT/US15/62483 dated May 6, 2016.
International Search Report for PCT/US16/56871 dated Jan. 12, 2017.
Written Opinion of International Searching Authority for PCT/US16/56871 dated Jan. 12, 2017.
International Search Report for PCT/US17/17705 dated Jun. 9, 2017.
Written Opinion of International Searching Authority for PCT/US17/17705 dated Jun. 9, 2017.
International Search Report for PCT/US2017/029890 dated Jul. 14, 2017.
Written Opinion of International Searching Authority for PCT/US2017/029890 dated Jul. 14, 2017.
International Search Report for PCT/US2017/032746 dated Aug. 7, 2017.
Written Opinion of International Searching Authority for PCT/US2017/032746 dated Aug. 7, 2017.
International Search Report of PCT/US2016/057163 dated Dec. 23, 2016.
Written Opinion of PCT/US2016/057163 dated Dec. 23, 2016.
Related Publications (1)
Number Date Country
20220081190 A1 Mar 2022 US
Provisional Applications (2)
Number Date Country
62370128 Aug 2016 US
62241554 Oct 2015 US
Continuations (1)
Number Date Country
Parent 15294305 Oct 2016 US
Child 17499061 US