The present invention relates to a buoyancy transfer jig used in a lost foam casting method by which a cast product is produced by casting.
Besides a general method by which a cast product is produced by sand mold casting, there has been proposed a method by which a cast product having excellent size accuracy is produced by casting. For example, an investment casting method (also referred to as a lost wax method), a plaster pattern casting method, a lost foam casting method and the like have been developed.
The lost foam casting method is a method for casting a cast product where a pattern is prepared by applying a refractory coating by coating to a surface of a foamed mold, the pattern is embedded into casting sand and, thereafter, molten metal is poured into the inside of the pattern, and the foamed mold is replaced with the molten metal by burning out the foamed mold.
Patent document 1 discloses a lost foam casting method where a casting time at the time of casting is set corresponding to a modulus of the mold (a volume of the mold÷a surface area of the mold).
Patent Document 1: Japanese Patent Laid-open Publication No. JP 2011-110577
In producing a cast product having an inner space by a cavity casting method used in general, as shown in
In view of the above, as shown in
On the other hand, in case of a lost foam casting method, a shape of the inner space is formed by filling the foamed mold with the casting sand. In this case, however, it is difficult to support the casting sand filled in the inside of the foamed mold by forming baseboards on portions other than a product. Accordingly, during casting, “floating” occurs where casting sand filled in the inside of the foamed mold is surrounded by the molten metal, and floats by receiving buoyancy in the vertical direction.
In view of the above, as shown in
It is an object of the present invention to provide a buoyancy transfer jig capable of producing by casting a cast product having a favorable finished state by suppressing floating of casting sand filled in the inside of the foamed mold.
The present invention is directed to a buoyancy transfer jig used in a lost foam casting method for casting a cast product where a pattern is prepared by applying a refractory coating by coating to a surface of a foamed mold having a hollow portion in the inside thereof, the pattern is embedded into casting sand and, thereafter, molten metal is poured into the inside of the pattern, and the foamed mold is replaced with the molten metal by burning out the foamed mold, wherein the buoyancy transfer jig includes: a rod-shaped rod portion which is disposed extending from an outside of the pattern to an inside of the hollow portion by way of an opening portion which is formed in the foamed mold and makes the outside of the pattern and the hollow portion connected with each other, and is disposed in self hardening sand filled in the hollow portion and the opening portion; and a plate-shaped blade portion which is formed continuously with the rod portion and is disposed in the casting sand.
According to the present invention, by disposing the rod portion in the self hardening sand filled in the hollow portion and the opening portion, buoyancy which acts on the sand in the hollow portion is transferred to the rod portion. Further, by disposing the blade portion which is formed continuously with the rod portion in the casting sand disposed outside the pattern, the buoyancy transferred to the blade portion from the rod portion is received by the casting sand disposed outside the pattern. With such an operation, a reaction force (resistance force) which resists against buoyancy can be generated in the self hardening sand filled in the opening portion. Accordingly, it is possible to suppress floating of self hardening sand filled in the inside of the foamed mold and hence, deformation of self hardening sand filled in the opening portion can be suppressed. As a result, it is possible to prevent the refractory coating applied to the opening portion by coating from being damaged and hence, it is possible to produce by casting a cast product having a favorable finished state.
Hereinafter, a preferred embodiment of the present invention is described with reference to drawings.
(Lost Foam Casting Method)
A buoyancy transfer jig according to an embodiment of the present invention is used in a lost foam casting method. The lost foam casting method is a method for casting a cast product where a pattern is prepared by applying a refractory coating by coating to a surface of a foamed mold, the pattern is embedded into the casting sand (dry sand) and, thereafter, molten metal is poured into the inside of the pattern, and the foamed mold is replaced with the molten metal by burning out the foamed mold.
The lost foam casting method includes: a melting step where metal (cast iron) is melted thus producing molten metal; a forming step where a foamed mold is formed by molding; and a coating step where a refractory coating is applied by coating to a surface of the foamed mold thus producing a pattern. The lost foam casting method also includes: a mold forming step where the mold is embedded in casting sand and the casting sand is filled in all corners of the pattern; and a casting step where molten metal (metal in a molten state) is poured into the pattern so as to melt the foamed mold thus replacing the foamed mold with the molten metal. The lost foam casting method further includes: a cooling step where the molten metal poured into the pattern is cooled thus producing a cast product; and a separating step where the cast product and the casting sand are separated from each other.
As metal to be melted to produce molten metal, gray cast iron (JIS-FC250), spheroidal graphite cast iron (JIS-FCD450) or the like may be used. As a material for forming the foamed mold, a foamed resin such as styrene foam can be used. As a refractory coating, a refractory coating containing a silica-based aggregate or the like may be used. As casting sand, “silica sand” which contains SiO2 as a main component, zircon sand, chromite sand, synthetic ceramic sand or the like may be used. An adhesive agent or a hardening agent may be added to the casting sand.
A thickness of the refractory coating is preferably set to 3 mm or less. This is because when the thickness of the refractory coating is set to 3 mm or more, it is necessary to repeatedly perform applying by coating and drying of the refractory coating three or more times and hence, such an operation takes time and efforts, and a thickness of the refractory coating is liable to become non-uniform.
In this embodiment, as shown in
(Buoyancy Transfer Jig)
A buoyancy transfer jig 1 according to this embodiment includes, as shown in
The rod portion 2 of the buoyancy transfer jig 1 is, as shown in
As shown in
In the lost foam casting method, a pressure is reduced by sucking air downward in the vertical direction. Accordingly, as described later, in receiving buoyancy transferred to the blade portion 3 by the casting sand 15, the configuration where the front surface and the back surface of the blade portion 3 face each other in the vertical direction allows the casting sand 15 to constrain the blade portion 3 more easily.
(Strength of Refractory Coating)
Based on Archimedes' principle, buoyancy F which acts on the hollow portion 13 can be obtained by the following formula (1).
F=V(ρm−ρs) formula (1)
Symbol “V” indicates a volume of the hollow portion 13, symbol “ρs” indicates bulk density of sand filled in the hollow portion 13, and symbol “ρm” indicates density of molten metal.
Assume that a refractory coating in the opening portion 14 which supports the hollow portion 13 forms a beam having a moment of inertia of area: I, a plate thickness in a vertical direction: h, and a length: L. Based on the theory of beam, to obtain a maximum stress σmax of a cantilever having an end portion on which buoyancy F acts, the maximum stress σmax is approximately calculated by the following formula (2). The calculation is made on the premise that sand in the opening portion 14 does not bear the load.
σmax=M/I×t/2=hFL/2I=hV(ρm−ρs)L/2I formula (2)
Assume a coating strength (hot strength) when a refractory coating has a highest temperature at the time of pouring as “σb”. When the following formula (3) is established, the refractory coating on the opening portion 14 is not damaged, that is, “floating” where sand filled in the hollow portion 13 floats can be prevented.
σb>σmax formula (3)
In actually producing a cast product by casting, the sand filled in the opening portion 14 acquires a large strength as a continuous body due to hardening of sand generated by adding a resin to the sand or due to a stone wall effect obtained by firmly stacking the sand like a stone wall. In such a case, a stress applied to the refractory coating in the opening portion 14 is reduced by an amount corresponding to a drag α against buoyancy generated by the sand filled in the opening portion 14. Accordingly, the formula (3) can be expressed as a formula (4).
σb>σmax−α formula (4)
However, it is difficult to densely fill sand in an upper portion of the opening portion 14 which extends in the horizontal direction. Accordingly, even when an attempt is made so as to increase density of the sand filled in the opening portion 14 by applying circular vibrations or reducing a pressure, it is difficult to obtain a large drag by the sand filled in the opening portion 14. In view of the above, it is often the case where the selection of a refractory coating having hot strength ab which satisfies the formula (3) is required.
However, even when the restriction is imposed on a mounting position of the opening portion 14 and a cross-sectional shape of the opening portion 14 and the refractory coating has a limited performance so that the formula (3) is not satisfied, it is possible to prevent “floating” with the use of the buoyancy transfer jig 1, 101. That is, in this embodiment, instead of generating a resistance against floating by using merely sand filled in the opening portion 14 in the form of a continuous body, the deformation of the whole opening portion 14 is suppressed using the buoyancy transfer jig 1, 101. In this embodiment, self hardening sand (for example, furan self hardening sand) is filled in the hollow portion 13 and the opening portion 14. This is because buoyancy which is transferred to the rod portion 2 from sand in the hollow portion 13 and is then transferred to the blade portion 3 is received by the casting sand 15 disposed outside the pattern 11 so as to allow the opening portion 14 to generate a reaction force (resistance force) which resists against buoyancy.
By disposing the rod portion 2 in the self hardening sand filled in the hollow portion 13 and the opening portion 14, buoyancy which acts on sand in the hollow portion 13 is transferred to the rod portion 2. Further, the blade portion 3 which is formed continuously with the rod portion 2 is disposed in the casting sand 15 disposed outside the pattern 11 and hence, the buoyancy transferred to the blade portion 3 from the rod portion 2 is received by the casting sand 15 disposed outside the pattern 11. With such an operation, a reaction force (resistance force) which resists against buoyancy can be generated in the self hardening sand filled in the opening portion 14. Accordingly, it is possible to suppress floating of sand filled in the foamed mold 12 and hence, the deformation of the self hardening sand filled in the opening portion 14 can be suppressed. As a result, it is possible to prevent the refractory coating applied to the opening portion 14 by coating from being damaged.
In this embodiment, as described previously, buoyancy transferred to the rod portion 2 is received by the casting sand 15 disposed outside the pattern 11 through the blade portion 3. Accordingly, when an area of the rod portion 2 and an area of the blade portion 3 which are brought into contact with the casting sand 15 outside the pattern 11 are small, the casting sand 15 cannot sufficiently receive the buoyancy so that sand in the hollow portion 13 moves.
Assume a drag generated by sand in the opening portion 14 as N1, and a deformation resistance of a refractory coating as N2. When buoyancy F which acts on the sand in the hollow portion 13 satisfies the following formula (5), the movement of the buoyancy transfer jig 1, 101 is suppressed.
N1+N2≧F formula (5)
Assuming that N2 is sufficiently smaller than N1, the formula (5) can be expressed as a formula (6).
N1≈f(A)≧F formula (6)
N1 has high correlation with a frictional force between sand and the buoyancy transfer jig 1, 101 and with a sand pressure (both the frictional force and the sand pressure being proportional to a contact area). Accordingly, N1 can be expressed as a function of a contact area A of the buoyancy transfer jig 1, 101 with casting sand 15 disposed outside the pattern 11. Based on experimental results described later, the formula (6) can be expressed as a formula (7).
A≧7×101F formula (7)
By setting the contact area A of the buoyancy transfer jig 1, 101 with the casting sand 15 disposed outside the pattern 11 to a value which satisfies the above formula (7), a reaction force (resistance force) which favorably resists against buoyancy can be generated in the self hardening sand filled in the opening portion 14.
Provided that the contact area A satisfies the above formula (7), a shape of the blade portion 3 is not limited to a plate shape, and may be a rod shape, a spherical shape, a circular columnar shape or an angular columnar shape.
When the rod portion 2 has a circular cross-sectional shape, as shown in
By setting a length of one side of a cross section of the rod portion 2 larger than 3 mm, the rotation of the sand filled in the opening portion 14 about the rod portion 2 can be further suppressed. Accordingly, it is possible to further suppress that the self hardening sand filled in the hollow portion 13 is rotated using the opening portion 14 as an axis.
(Floating Evaluation)
Next, the presence or non-presence of “floating” was evaluated by changing the shape of the buoyancy transfer jig 1, 101. The evaluation was performed such that gray cast iron (JIS-FC250) having density ρm of 7.1×10−6 kg/mm3 was used, and self hardening sand having bulk density ρs of 1.4×10−6 kg/mm3 was filled in the hollow portion 13. The results are shown in Table 1. The buoyancy transfer jig with the description of “bent” in a column of shape of blade portion means the buoyancy transfer jig 101 shown in
As a result of evaluation, it is understood that “floating” can be suppressed with the use of the buoyancy transfer jig 1, 101. An evaluation result “Δ” is given to the buoyancy transfer jig where sand in the hollow portion 13 was rotated or the like using the opening portion 14 as an axis. For example, with respect to the buoyancy transfer jigs where a length of the blade portion 3 is set to 50 mm or more, the buoyancy transfer jig where a rod portion has a circular cross-sectional shape with a diameter of 5 mm and the buoyancy transfer jig where a rod portion has a rectangular cross-sectional shape with a size of one side of 5 mm are compared with each other. As a result of comparison, in the former buoyancy transfer jig, the hollow portion 13 was inclined or the like. On the other hand, in the latter buoyancy transfer jig, the deformation of the hollow portion 13 was completely suppressed. Based on such a result, it is understood that the rod portion 2 preferably has a rectangular cross-sectional shape. It is also understood that a length of one side of a cross section of the rod portion 2 is preferably larger than 3 mm.
When a length of the blade portion 3 was set to 30 mm or less, as shown in
By putting density of gray cast iron and bulk density of self hardening sand into the formula (1), the following calculation result was obtained.
Assume a drag generated by the sand in the opening portion 14 as N1, and a deformation resistance of the refractory coating as N2. When buoyancy F which acts on the hollow portion 13 satisfies the following formula (5), the movement of the buoyancy transfer jig 1, 101 is suppressed by the casting sand 15 disposed outside the pattern 11.
N1+N2≧F formula (5)
Assuming that N2 is sufficiently smaller than N1, the formula (5) can oe expressed as the formula (6).
N1≈f(A)≧F formula (6)
N1 has high correlation with a frictional force between sand and the buoyancy transfer jig 1, 101 and with a sand pressure (both the frictional force and the sand pressure being proportional to the contact area). Accordingly, N1 can be expressed as a function of the contact area A of the buoyancy transfer jig 1, 101 with the casting sand 15 disposed outside the pattern 11. Out of the results shown in Table 1, with respect to an angular rod where the rod portion 2 has a cross section of 5×5 mm, the relationship between a length L of the blade portion 3 and A/F is shown in
A≧7×101F formula (7)
Accordingly, it is understood that by setting the contact area A of the buoyancy transfer jig 1, 101 with the casting sand 15 disposed outside the pattern 11 to a value which satisfies the above formula (7), a favorable reaction force (resistance force) which resists against buoyancy can be generated in the self hardening sand filled in the opening portion 14.
Next, gray cast iron (JIS-FC250) was melted to produce molten iron. A pattern was prepared by forming a rectangular parallelepiped hollow portion in the inside of a rectangular parallelepiped foamed mold and by disposing an opening portion having a diameter of 16 mm and a length of 25 mm in a horizontal direction (θ=90°). Then, a cast product was produced by filling molten iron into the pattern. In this example, the foamed mold had a width a of 100 mm, a depth b of 100 mm, and a height c of 200 mm. The hollow portion had a width d of 50 mm, a depth e of 50 mm, and a height f of 100 mm. Density ρm of the gray cast iron was 7.1×10−6 kg/mm3.
“furan self hardening sand” was filled in the hollow portion. “furan self hardening sand” is a mixed material of sand, a resin, and a hardening agent. Sand used for producing self hardening sand is silica sand (containing SiO2 as a main component). A resin used in self hardening sand as an adhesive agent was an acid setting furan resin containing furfuryl alcohol, and an addition amount of the acid setting furan resin for sand was 0.8%. A hardening agent used in self hardening sand as a hardening catalyst was a furan resin hardening agent produced by mixing xylenesulfonic acid-based hardening agent and a sulfuric-acid-based hardening agent. An addition amount of the hardening agent for a furan resin was 40%. Bulk density ρs of the self hardening sand was 1.4×10−6 kg/mm3.
By filling density of gray cast iron and bulk density of self hardening sand into the formula (1), the following calculation result was obtained.
In this example, a refractory coating whose hot strength σb is unknown was coated twice, and an average thickness of a coating layer was set to 0.8 mm. Characteristics of the refractory coating at a room temperature are shown in Table 2.
By selecting the buoyancy transfer jig 1, 101 formed of: a rod portion formed using an angular rod having a cross-sectional area of 5×5 mm; and a blade portion which is formed with the rod portion and has a plate thickness of 2 mm, a length of 70 mm, and a width of 10 mm, the buoyancy transfer jigs which satisfy the formula (7) were obtained. In this case, the contact area A of the buoyancy transfer jig with the sand was 121 mm2. By inserting the rod portion of the buoyancy transfer jig 1, 101 into the hollow portion from the opening portion, cast products having a favorable finished state were obtained without causing “floating”.
As has been described heretofore, according to the buoyancy transfer jig 1, 101 of this embodiment, by disposing the rod portion 2 in the self hardening sand filled in the hollow portion 13 and the opening portion 14, buoyancy which acts on the sand in the hollow portion 13 is transferred to the rod portion 2. Further, by disposing the blade portion 3 which is formed continuously with the rod portion 2 in the casting sand 15 disposed outside the pattern 11, the buoyancy transferred to the blade portion 3 from the rod portion 2 is received by the casting sand 15 disposed outside the pattern 11. With such an operation, a reaction force (resistance force) which resists against buoyancy can be generated in the self hardening sand filled in the opening portion 14. Accordingly, it is possible to suppress floating of self hardening sand filled in the inside of the foamed mold 12 and hence, deformation of self hardening sand filled in the opening portion 14 can be suppressed. As a result, it is possible to prevent the refractory coating applied to the opening portion 14 by coating from being damaged and hence, it is possible to produce by casting a cast product having a favorable finished state.
By setting the contact area A of the buoyancy transfer jig 1, 101 with the casting sand 15 disposed outside the pattern 11 to a value which satisfies the above formula (7), a favorable reaction force (resistance force) which favorably resists against buoyancy can be generated in the self hardening sand filled in the opening portion 14. With such setting of the contact area A, it is possible to preferably suppress floating of self hardening sand filled in the inside of the foamed mold 12.
When the rod portion 2 has a circular cross-sectional shape, there may be a case where self hardening sand filled in the hollow portion 13 is rotated using the opening portion 14 as an axis. When the self hardening sand is rotated, the sand filled in the opening portion 14 is rotated about the rod portion 2. However, by forming the rod portion 2 to have a rectangular cross-sectional shape, the rotation of the sand filled in the opening portion 14 about the rod portion 2 can be suppressed due to contact resistance of the sand against corner portions of the rod portion 2 having a rectangular cross-sectional shape. Accordingly, it is possible to suppress that self hardening sand filled in the hollow portion 13 is rotated using the opening portion 14 as an axis.
By setting a length of one side of a cross section of the rod portion 2 larger than 3 mm, the rotation of the sand filled in the opening portion 14 about the rod portion 2 can be further suppressed. Accordingly, it is possible to further suppress that the self hardening sand filled in the hollow portion 13 is rotated using the opening portion 14 as an axis.
Although the embodiment of the present invention has been described heretofore, the embodiment is merely a specific example. Particularly, the embodiment does not limit the present invention, and a specific configuration and the like of the embodiment can be changed in design as desired. Further, the manner of operation and advantageous effects described in the embodiment of the present invention are the enumeration of the most preferable manner of operation and advantageous effects acquired by the present invention, and the manner of operation and advantageous effects of the present invention are not limited to the manner of operation and advantageous effects described in the embodiment of the present invention.
Number | Date | Country | Kind |
---|---|---|---|
2014-244630 | Dec 2014 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2015/081629 | 11/10/2015 | WO | 00 |