This invention relates generally to swimming pool accessories, and in particular to a buoyant lounge chair for supporting a person in a seated position while the chair is floating in water.
Swimming pools offer personal recreation and relaxation in a variety of settings, for example in private homes, apartment complexes, motels, resorts and country clubs. Various flotation devices including buoyant chairs, rafts, water wings, floating cushions, body floats and air mattresses are used by swimmers as an aid for floating and relaxing on the surface of the water, while remaining seated upright, reclining or lounging, either partially or completely submerged. These items of pool furniture include flotation cushions made of a buoyant material such as open cell foam, closed cell foam, cork, kapok, fiberglass or balsa wood, which are sealed within a protective outer covering.
A popular item of pool furniture is the buoyant lounge chair that permits a swimmer to relax on the surface of the water in a seated, semi-reclining orientation. In some lounge chair designs, the angle of recline is fixed and determined by the form of the rigid frame on which buoyancy cushions are attached, for example as shown in U.S. Pat. No. 6,086,150, which is incorporated herein by reference. In other lounge chair designs, the chair back is pivotably coupled to the frame on which buoyancy cushions are attached, for example as shown in U.S. Pat. No. 6,312,054, which is incorporated herein by reference. Those buoyant lounge chairs, manufactured and sold by Texas Recreation Corporation of Wichita Falls, Texas have met with considerable commercial success. The present invention was stimulated by the need for a buoyant lounge chair having pivotal chair back that can be set in an upright, semi-reclining sitting position, in which the pool chair functions essentially as a buoyant chair, to a fully folded, minimum profile configuration for storage purposes, and to facilitate handling and shipment. For convenience and comfort, the back rest should be easily set in the standard angle of recline provided by conventional fixed-back lounge chairs.
According to another conventional buoyant lounge chair arrangement, as shown in U.S. Pat. No. 4,662,852, the back rest frame is pivotally connected to the seat frame and is inclined against a rear cross bar, and the seat frame is braced by releasable engagement of a slotted bracket with a forward cross bar. The angle of recline is adjusted by extending and retracting the slotted bracket relative to the forward cross bar. This movement translates into angle of recline adjustment as the two sections pivot about a common hinge axis.
An important consideration in the design and construction of buoyant lounge chairs, including those including a foldable back, is the maintenance of a water-tight seal about the cushion material and around the welded metal frame. The interlocking components of the foldable seat back coupling apparatus should also be protected.
The external surface of the lounge chair is susceptible to attack by mildew, fungus, surface hardening, cracking and shrinking that are caused by long-term exposure to water, pool chemicals and solar radiation. Consequently, lounge chairs as well as other buoyant flotation devices are desirably protected by a durable, non-reactive coating of plastic material, such as vinyl. The protective coating must be soft, pliable and able to withstand rough handling and high shear forces along the joinder lines between the chair arms, the chair seat, and along the flex lines between the chair back and chair seat. The protective coating is applied by various processes, including dipping and spraying, preferably as set forth in U.S. Pat. No. 6,086,150, incorporated herein by reference.
Another limitation imposed by the construction of conventional lounge chairs is that the buoyant arm support sections are subject to tearing or deformation, and are also subject to collapse and separation from the chair frame at the interface between the arm support sections and the chair seat.
Special care should be taken in the construction of buoyant lounge chairs to provide sufficient buoyancy material to maintain a stable upright orientation while the occupant is in a semi-reclining or sitting orientation. The buoyant lounge chair can overturn in response to shifting of its center of buoyancy as the occupant turns or moves about.
The buoyant lounge chair of the present invention provides stable support for a swimmer in an upright, semi-reclining or sitting position while the chair is floating in a swimming pool. Interconnected rigid frame members collectively form an open chair frame. In the preferred embodiment, the frame members include a seat frame, left and right side arm frames attached to the seat frame, and a movable back frame. The back frame is pivotally coupled to the seat frame on opposite sides by dual axle shafts. A manually operable clutch is mounted on each axle shaft for releasably connecting the seat frame to the back frame. Each clutch is manually releasable to permit pivotal movement of the back frame relative to the seat frame, and is manually engagable to fix the angle of recline of the back frame relative to the seat frame, for example for use in the upright sitting position.
Buoyant cushions are attached to the frame members, thereby forming a chair seat, a chair back, left and right chair arms and a bolster block. The buoyant cushions forming the chair seat, the chair arms, the chair back and the bolster block each include layers of buoyant cushion material secured and sealed together by an adhesive deposit in overlapping relation, with each chair frame member being enclosed and sealed between a pair of buoyant layers. Each axle shaft and clutch are also enclosed between a pair of the buoyant layers. Each clutch includes a manual actuator that extends laterally through a passage formed in a pair of buoyant arm cushions, and projects externally of each chair arm at a side location in which it can be conveniently manipulated for engaging and releasing the clutch while the operator is seated or reclining on the lounge chair.
Each buoyant arm support section is reinforced by an upright arm support riser that is laterally offset from the seat frame and by a horizontal arm rest segment that is vertically offset from the seat frame. The left and right buoyant chair arms are stabilized and reinforced against collapse and separation from the chair frame by the upright arm support risers and the horizontal arm rest segments that are sandwiched between the buoyant arm support cushions.
In the preferred embodiment, the left and right arm support cushions project aft of the pivotal union between the chair seat the chair back. According to this arrangement, the aft projecting portions of the arm support cushions overlap the laterally opposite end portions of the bolster block. The arm support cushions are reinforced against deflection and separation from the chair frame by an aft extension bar attached to the arm rest frame. The extension bar is laterally offset from the seat frame and from the back frame, and projects aft of the pivotal clutch union. The buoyant arm support cushions are further reinforced and stabilized against vertical deflection by the clutch actuator which extends laterally through the buoyant arm cushions.
According to another aspect of the invention, the upright floating stability of the lounge chair is improved by extension portions of the buoyant arm cushions that project aft of the chair seat, substantially overlapping the opposite end portions of the bolster block. The upright floating stability of the lounge chair is also improved by a seat frame assembly including left and right seat frame segments each including an angled connecting portion attached to a central seat frame segment. The angled connecting portions slope downwardly relative to the seat frame segments, whereby the buoyant cushions in combination with the seat frame segments form a leg support section that slopes downwardly relative to the chair seat and buoyant arm cushions.
The floating stability of the lounge chair is further improved by buoyant arm rest cushions which are mounted on top of the left arm and right arm support cushions. The arm rest cushions extend aft of the seat frame/back frame pivotal clutch union, substantially in flush alignment with the bolster block when the seat back is set in the upright lounging position.
The accompanying drawing is incorporated into and forms a part of the specification to illustrate the preferred embodiments of the present invention. Various advantages and features of the invention will be understood from the following detailed description taken in connection with the appended claims and with reference to the attached drawing figures in which:
Preferred embodiments of the invention will now be described with reference to various examples of how the invention can best be made and used. Like reference numerals are used throughout the description and several views of the drawing to indicate like or corresponding parts.
Referring now to
The operative upright floating position refers to the flotation orientation of the lounge chair 10 with the chair back 12 and chair arms 14, 16 generally upright while the chair seat 18 is generally horizontal and at least partially submerged as indicated in
Buoyancy sufficient to support an adult occupant having a body weight up to 250 lbs. is provided by multiple pairs of overlapping buoyant cushions that are attached to an open chair frame 28 shown in
Buoyant cushions formed by overlapping layers of buoyant cushion material are attached to the individual steel rod frame segments, thereby forming the buoyant chair back 12, the left chair arm 14, the right chair arm 16, the chair seat 18 and a bolster block 40. Each buoyant cushion is formed by a pair of overlapping layers of buoyant material, preferably slabs of closed cell polyurethane foam F having a density in the range of 1-6 lbs./cu.ft. Each closed cell foam layer is in the form of a rectangular slab, having a typical thickness in the range of 1-2 inches, and is cut to form a lounge chair having an assembled height of 27 inches, a length of 30 inches and a width of 30 inches.
Referring again to
Likewise, the right arm 16 is formed by a pair of overlapping cushion layers 16A, 16B that are adhesively bonded together with the right arm frame 36 being enclosed and sealed between the overlapping layers. The chair back 12 is also formed by overlapping cushion layers 12A, 12B which are adhesively bonded together, with the back frame 32 being enclosed and sealed between the overlapping cushion layers. The bolster block 40 is also formed by overlapping buoyant cushion layers 40A, 40B that are adhesively bonded together with the bolster frame 38 being enclosed and sealed between the overlapping cushion layers.
Referring again to
The buoyant arm support sections 14, 16 are reinforced by the side arm frames 34, 36. The side arm frame 34 includes an upright arm support riser segment 34B that is laterally offset from the seat frame by an angled linking segment 34C. The side arm frame also includes a horizontal arm rest segment 34A that is vertically offset from the seat frame.
The right side arm frame is identically reinforced by a horizontal arm rest segment 36A, an upright arm support riser 36B and an angled linking segment 36C attached to the seat frame 30B. The left and right arm support cushions are thus stabilized and supported against collapse and separation from the chair frame by the rigid support provided by the left and right arm segments that are enclosed and sealed between the buoyant arm support cushions, as indicated in
The aft projecting arm support cushions 14C, 14D and 16C, 16D are reinforced against deflection and separation from the chair frame by extension bars 34E, 36E, respectively. The extension bars 34E, 36E are welded onto the side arm frames 34, 36, respectively. The extension bars are laterally offset from the seat frame 30, and project aft of the pivotal union between the back frame 32 and the seat frame 30. The upright floating stability of the lounge chair is improved by the aft extending portions of the buoyant arm cushions which project aft of the pivotal union, whereby the aft projecting portions substantially overlap the laterally opposite end portions of the bolster block 40.
The upright floating stability of the lounge chair 10 is further improved by the seat frame assembly 30 which includes left and right seat frame segments 30A, 30B and a central seat frame segment 30C. The central seat frame segment 30C is connected on opposite ends to the seat frame side segments by angled connecting segments 30D, 30E. The seat frame segments are enclosed and sealed between the buoyant chair seat cushions 18A, 18B. The floating stability of the lounge chair is improved by the leg support section 26 that slopes downwardly from the chair seat 18, as shown in
The floating stability of the lounge chair is also improved by attaching the bolster block 40 onto the back frame 32 so that its moment arm spacing relative to the pivotal axis A remains constant as the chair back is adjusted throughout its angle of incline range. Referring to
Referring now to
Referring again to
Referring again to
According to an important feature of the present invention, the back frame 32 is pivotally coupled to the seat frame 30 by a pair of clutch assemblies 60, 80 as shown in
Each clutch member is intersected by a coupling aperture 62C, 64C, respectively, which are in concentric alignment with each other when the clutch members are engaged as shown in
The angular position of the rotatable clutch member 64 relative to the fixed clutch member 62 is maintained by a manually operable actuator 68 and a compression tube 70. Referring to
The length of the compression tube 70 and the length of the threaded portion 66T of the axle shaft 66 are selected appropriately so that the compression tube 70 extends through the side arm cushions 14A, 14B, with the threaded end portion 66T and the actuator knob 68 projecting externally of the side arm frame cushion 14B, as shown in
Referring to
The water-tight seal is intensified and reinforced around the steel rod frame segments at the union with the clutch members by a first surface augmentation collar 72 and a second surface augmentation collar 74. The augmentation collars 72, 74 are formed as integrally molded parts of the clutch members 62, 64, and present enlarged side surfaces 72S, 74S, respectively, for adhesively bonding and forming a water-tight seal with the overlapping buoyant seat cushions 18A, 18B and overlapping buoyant back cushions 12A, 12B, as shown in
Referring now to
During assembly, the steel rod seat frame segment 30A is inserted into the bore 76B of the tubular steel coupling sleeve 76, and is then welded to the tubular steel coupling sleeve. Likewise, the steel rod seat frame segment 32A is inserted into the bore 78B tubular steel coupling sleeve 78 and then is also welded to the tubular coupling sleeve. This arrangement facilitates assembly of the buoyant lounge chair, and provides a more reliable water-tight seal around the chair frame segments that are subject to corrosion. The weldment bead W between the chair frame segments and the tubular coupling sleeves, together with the embedded end portions 76A, 78A assure a permanent bond between the chair frame and each clutch member, and prevents separation of the back frame from the seat frame.
Referring now to
Referring now to
Although the invention has been described with reference to certain exemplary arrangements, it is to be understood that the forms of the invention shown and described are to be treated as preferred embodiments. Various changes, substitutions and modifications can be realized without departing from the spirit and scope of the invention as defined by the appended claims.
This application is a continuation of copending application Ser. No. 11/678,958, filed on Feb. 26, 2007, and entitled “Buoyant Pool Chair With Sealed Frame”; which is a continuation of copending application Ser. No. 10/884,442, filed on Jul. 3, 2004, and entitled “Buoyant Pool Chair With Sealed Frame”; which is a continuation of application Ser. No. 10/379,318, filed on Mar. 3, 2003, entitled “Buoyant Pool Chair”, and issued on Aug. 31, 2004 as U.S. Pat. No. 6,783,181; which is a continuation of application Ser. No. 10/053,022, filed on Nov. 2, 2001, entitled “Buoyant Pool Chair With Adjustable Angle of Recline”, and issued on Mar. 4, 2003 as U.S. Pat. No. 6,527,343; which is a continuation of application Ser. No. 09/447,173, filed on Nov. 22, 1999, entitled “Buoyant Pool Chair With Adjustable Angle of Recline”, and issued on Nov. 6, 2001 as U.S. Pat. No. 6,312,054; which is a continuation-in-part of application Ser. No. 09/178,818, filed on Oct. 26, 1998, entitled “Fabrication of Vinyl Coated Pool Chair”, and issued on Jul. 11, 2000 as U.S. Pat. No. 6,086,150; all of which are hereby incorporated by reference for all purposes.
Number | Date | Country | |
---|---|---|---|
Parent | 11678958 | Feb 2007 | US |
Child | 12489065 | US | |
Parent | 10884442 | Jul 2004 | US |
Child | 11678958 | US | |
Parent | 10379318 | Mar 2003 | US |
Child | 10884442 | US | |
Parent | 10053022 | Nov 2001 | US |
Child | 10379318 | US | |
Parent | 09447173 | Nov 1999 | US |
Child | 10053022 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09178818 | Oct 1998 | US |
Child | 09447173 | US |