The invention relates generally to the field of water or liquid heaters. More particularly, the invention relates to a solar heating device intended to float on a body of water or other liquid.
Water heaters are used in pools, ponds and other bodies of water or liquid for a variety of reasons, such as providing a comfortable water temperature for swimming, preventing or slowing the formation of ice on the water's surface, or promoting the growth of beneficial microorganisms in wastewater treatment lagoons or ponds.
Flexible covers made of heat-absorbing materials may be used to raise the temperature of a body of water by capturing the heat of the sun and transferring it to the water beneath, although they have limitations. For example, in most cases the specific gravity of the water is less than the specific gravity of the cover material, and the cover will sink below the surface of the water without proper support. Another disadvantage of these covers is that they restrict access to the water, making them unsuitable for natural settings. These covers may also be unwieldy and cumbersome to remove and replace, and difficult to store.
Electrically-operated heaters may be effective in some circumstances, but may be costly to operate and potentially dangerous, particularly if the heating element is unshielded. In addition, it may be practically impossible to heat a large area with such a device, requiring multiple individual units.
There is a need in the art, then, for a cost-effective device that utilizes solar energy to increase the temperature of a body of water. Such a device should also be easy to use, and easy to remove and store. In addition, such a device should allow access to the water even when in use.
The invention provides an improved buoyant water heating device that is intended to float on the surface of a body of water or other liquid to capture solar energy and transfer it to the water or liquid in contact with the device.
The foregoing and other objects, features and advantages of the invention will be apparent from the following more particular description of preferred embodiments of the invention, as illustrated in the accompanying drawings in which like reference characters refer to the same parts throughout the different views. The drawings are not necessarily to scale, emphasis instead being placed upon illustrating the principles of the invention.
With reference to
Base member 110, because it is hollow, provides buoyancy for device 100 and keeps device 100 afloat when placed in a liquid, such as water. Base member 110 retains thermal energy in the water by providing a layer of thermal insulation between the water and the air above the buoyant water heating device 100. In addition, base member 110 absorbs solar energy from the sun to warm the water in contact with the buoyant water heating device 100. Anchor member 210 fills with water when placed in the water to provide a weight sufficient to inhibit the buoyant water heating device 100 from blowing away.
With further reference to FIGS. 1 and 3A-3E, base member 110 preferably comprises a top surface 140 and a bottom surface 130. Bottom surface 130 is generally flat, while top surface 140 has a slightly domed or curved shape. The dome shape of top surface 140 helps the buoyant water heating device 100 to properly orient itself when placed in the water.
With further reference to
As shown in
With further reference to
In a preferred embodiment, and as shown in
Base member 110 and anchor member 210 are preferably made separately from plastic resin, and in particular, high density polyethylene, although other light-weight, waterproof materials may be used. In addition, base member 110 and anchor member 210 are preferably manufactured using a blow molding process, which serves to lower the per-unit cost of the device 100 as compared to the generally more expensive process of injection molding. When a blow molding process is used, the blow hole (not shown) is preferably located in the top surface 140 of base member 110, and should be sealed to ensure that water does not enter base member 110.
The blow hole (not shown) may be sealed by inserting a plug and gluing or sonic-sealing the plug in place. Alternatively, the blow hole may be sealed by heat-sealing excess plastic in the hole, or by other methods known in the art. Note that other methods of manufacturing, including but not limited to injection molding, may be used, although these methods may increase the per-unit cost of the device 100. While in alternate embodiments, device 100 may be manufactured as a single piece, manufacturing the base member 110 and anchor member 210 separately minimizes the space required to ship and/or store the devices 100.
In a preferred embodiment, base member 110 and anchor member 210 are colored black, which enables device 100 to absorb more solar energy, enhances the ultraviolet (UV) resistance of device 100, and may make the device 100 less obtrusive to the observer. The color black also functions to lower the per-unit cost of device 100, because the color black is typically the least expensive color to manufacture.
The present invention finds particular utility in pond remediation techniques which include bacterial treatments. Because sunlight is a fuel for algae, modern bioremediation techniques include bacterial treatments running concurrently with water dyes designed to block out light in order to inhibit the growth of algae while supporting the bacterial degradation and nutrient depletion effects of bacterial additives. Accordingly, the present invention can be formed of a light-opaque material, preferably black. Most preferably the material is light absorbing, as opposed to transmitting or reflecting. This prevents light from entering the water and the radiant energy is converted into thermal energy, heating the flotation element which then conducts the energy thermally to the cooler water. With a hexagonal flotation element and a cylindrical ballast element which fills with water to resist tipping caused by waves and/or wind, a hexagonal shape for the flotation element allows them to pack closely together in order to block sunlight from reaching the pond surface, and the modular nature allows the use of as many units as necessary to provide the desired coverage of any size or shape pond.
The claims should not be read as limited to the described order or elements unless stated to that effect. Therefore, all embodiments that come within the scope and spirit of the following claims and equivalents thereto are claimed as the invention.
Number | Name | Date | Kind |
---|---|---|---|
3501381 | Delano | Mar 1970 | A |
3598104 | Trostler | Aug 1971 | A |
3893443 | Smith | Jul 1975 | A |
3949095 | Pelehach et al. | Apr 1976 | A |
4022187 | Roberts | May 1977 | A |
4154684 | Tokarz | May 1979 | A |
4243022 | Pedone | Jan 1981 | A |
4366806 | Acker | Jan 1983 | A |
4458668 | Sheldon | Jul 1984 | A |
4756300 | Ewers | Jul 1988 | A |
5216762 | Denny | Jun 1993 | A |
D534488 | Rosene et al. | Jan 2007 | S |
20060283443 | Rosene et al. | Dec 2006 | A1 |
20100282240 | Hare | Nov 2010 | A1 |
Number | Date | Country |
---|---|---|
57-159594 | Mar 1981 | JP |
Number | Date | Country | |
---|---|---|---|
20100270235 A1 | Oct 2010 | US |
Number | Date | Country | |
---|---|---|---|
61173023 | Apr 2009 | US |