This invention relates in general to semiconductor lasers, and more particularly to heterostructure devices, such as buried heterostructure (BH) lasers/semiconductor optical amplifiers (SOAs), and methods of manufacture thereof.
An SOA is an amplifier, while a laser is a source of a coherent light with a grating feature to select a specific lasing wavelength. An SOA may be a laser with anti-reflection coatings, but can also be a laser with a mesa stripe that is not at normal incidence to the mirrors. A laser requires optical feedback from end mirrors, while in an SOA the reflections from end facets must be avoided. Therefore, in SOAs the end facets often include antireflective coatings and furthermore, the waveguide grating may be tilted at a 6-10 degree angle to further suppress residual reflections from the end facets.
Both lasers and SOAs may be used as components in optical transceivers for digital communications products and radar. For example, photonic chips are used as on-chip lasers as optical sources for optical communication systems and free-space communications.
A semiconductor lasers and SOAs include a p-n diode structure placed inside an optical cavity. Under forward bias, charge carriers are injected into a thin active layer providing an optical gain. The performance of a semiconductor laser or SOA can be improved by including a buried heterostructure for providing optical and carrier confinement, whilst also offering high thermal performance, optimal beam shapes and low noise, semiconductor, optical amplification.
However, fabrication of high reliability heterostructure devices such as BH lasers and SOAs is a challenge due to spontaneous oxidation of the etched walls of the mesa structure prior to growth of current blocking layers, which acts as a mask during the regrowth process.
A metal organic chemical vapor deposition (MOCVD) in-situ etching process is set forth for defining the narrow mesa region of a heterostructure devices, immediately followed by growth of the blocking layers.
According to an aspect of the present specification, a heterostructure laser device is set forth comprising an epitaxially grown substrate of first dopant type, active region and layer of second dopant type; a narrow mesa having less than 20% open area and a side wall slope of less than 85 degrees, wherein said narrow mesa is etched through the active region and layer of second dopant type using in-situ MOCVD; a plurality of current blocking layers; an overclad layer and a contact layer of second dopant type; and an isolation mesa incorporating the narrow mesa, wherein the isolation mesa is etched through the active region, layer of second dopant type and plurality of current blocking layers.
According to a further aspect, a method of fabricating a heterostructure device is set forth, comprising growing epitaxial layers of a substrate of first dopant type, an active region and a layer of second dopant type; patterning a mask and etching a narrow mesa through the active region and layer of second dopant type using in-situ MOCVD; growing a plurality of current blocking layers using in-situ MOCVD and without exposure to oxygen; removing the mask and growing an overclad layer and a contact layer of second dopant type; and etching an isolation mesa through the active region, layer of second dopant type and plurality of current blocking layers such that the isolation mesa incorporates the narrow mesa.
These together with other aspects and advantages are more fully set forth below, reference being had to the accompanying drawings forming a part hereof, wherein like numerals refer to like parts throughout.
According to the prior art, the narrow mesa etch (
The main drawback with dry-dry processes is that the fabricated devices are not reliable as a result of etch damage caused by the dry etch process, while the main drawback with the wet-wet or wet-dry processes is that the wet etch of the narrow mesa 140 and wide mesa 190 introduces large variations in the widths of the mesas 140 and 190, leading to device failure and yield loss.
Another major issue with all three conventional methods dry-dry, wet-wet and wet-dry), is exposure of the sidewalls of the narrow mesa 140 to air prior to growth of the blocking layers. This results in a sidewall oxidation, which deteriorates the performance of the laser. This issue is more critical where the active region 110 contains aluminum.
As discussed above, a MOCVD in-situ etching process is set forth herein for defining the narrow mesa region 140, immediately followed by growth of the blocking layers 150, 160, 170 without exposure to air. In an embodiment, a combination of dry and wet etch processes are used to define the isolation mesa 190.
MOCVD is a chemical vapour deposition method used for growing crystalline layers to create complex semiconductor multilayer structures. In contrast to molecular-beam epitaxy, the growth of crystals using MOCVD is by chemical reaction and not physical deposition. The process takes place in a nitrogen atmosphere at moderate pressures (e.g. 10 to 760 Torr).
Unlike the conventional fabrication process discussed with reference to
At 320, the blocking layers 250, 260 and 270, are immediately grown sequentially to step 310 within the MOCVD chamber, without any need to transfer the wafer and therefore no exposure to oxygen, resulting in the n-p-n- layer sequence shown in
As shown in
A SEM image of the resulting heterostructure (BH) laser according to an embodiment of the invention is shown in
Performance data for experimental devices (10 uncoated FP BH lasers) produced according to the invention, is provided in Table I, indicating an excellent performance of the fabricated devices.
indicates data missing or illegible when filed
Life test data of a fabricated FP BH laser produced according to the invention is shown in
The many features and advantages of the invention are apparent from the detailed specification and, thus, it is intended by the appended claims to cover all such features and advantages of the invention that fall within the true spirit and scope of the invention. Further, since numerous modifications and changes will readily occur to those skilled in the art, it is not desired to limit the invention to the exact construction and operation illustrated and described, and accordingly all suitable modifications and equivalents may be resorted to, falling within the scope of the invention.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/IB2021/058512 | 9/17/2021 | WO |
Number | Date | Country | |
---|---|---|---|
63080189 | Sep 2020 | US |