Publication WO 2015/054739 presents a dispersion apparatus for use with a solid fuel burner. The dispersion apparatus comprises a passage through which particulate material may flow toward an outlet region for dispersal therefrom, the flow being at least in part rotational about the longitudinal axis of the passage. The dispersion apparatus also comprises a downstream guide means arranged within the passage at or near the outlet region, the downstream guide means configured to at least reduce the rotational motion so that the flow progresses toward the outlet region in a substantially uniform manner in a direction aligned with a longitudinal axis of the passage.
The object of the invention is to provide a burner and a fine solids feeding apparatus that provided for an even solids feed distribution.
The invention is based on inducing gas to flow in a spiral flow path upstream of the downstream outlet end of the fine solids discharge channel. This spiral flow path of gas causes fine solids flowing in the fine solids discharge channel downstream of the gas outlets to also flow in a spiral flow path. This spiral flow path of the fine solids evens out possible unevenness in a horizontal direction in the flow of fine solids, because a vertical direction of unevenness of the fine solid feed distribution will be overlapped partly with too little fine solid feed and partly with too much fine solid feed. Since reaction gas is fed in a vertical direction, the reaction gas will cross both the overlapped part with too little fine solid feed and the overlapping with too much fine solid feed. The vertical distribution inaccuracy, which is induced by the spiral flow path of the fine solids, occurs on such a small timescale that it does not influence the reaction shaft performance. The result of this is an even distribution of fine solids, which has a positive effect on the reaction between the reaction gas and the fine solids in the reaction shaft of the furnace. furnace.
Because gas is used to induce the spiral flow path of fine solids instead of mechanical spiral flow means, the flow of fine solids will be more even, because there are no mechanical means in the flowing path of the fine solids.
In the following the invention will described in more detail by referring to the figures, of which
The invention relates to a burner such as a concentrate burner, a calcine burner, or a matte burner, or a burner using a mixture of these for feeding reaction gas and fine solids into a reaction shaft of a suspensions smelting furnace, and to a fine solids feeding apparatus for a burner such as a concentrate burner, a calcine burner, or a matte burner, or a burner using a mixture of these.
First the burner and some embodiments and variants of the burner will be described in greater detail.
The burner comprises a fine solids discharge channel 1 that is radially outwardly limited by a wall 3 of the fine solids discharge channel 1 and that is radially inwardly limited by a fine solids dispersion device 3 arranged in the fine solids discharge channel 1 so that the fine solids discharge channel 1 has an annular cross-section.
The burner comprises an annular reaction gas channel 4 that surrounds the fine solids discharge channel 1 and that is radially outwardly limited by a reaction gas channel wall 5 of the reaction gas channel 4 and that is radially inwardly limited by the wall 3 of the fine solids discharge channel 1.
The fine solids dispersion device 3 has dispersion gas openings 6 and a dispersion gas channel 7 for conducting dispersion gas to the dispersion gas openings 6.
The fine solids dispersion device 3 extends out of a downstream outlet end 8 of the fine solids discharge channel 1.
The fine solids dispersion device 3 has at the downstream outlet end 8 of the fine solids discharge channel 1 an enlarged section 9, where the diameter of the fine solids dispersion device 3 increases in the direction towards a free distal end 10 of the fine solids dispersion device 3.
The burner comprises gas outlets 11 in the fine solids discharge channel 1 upstream of the downstream outlet end 8 of the fine solids discharge channel 1.
The gas outlets 11 comprise spiral path guiding members such as a circumferential row of individual nozzles configured to facilitate gas to flow from the gas outlets 11 in a spiral flow path around a center axis A of the fine solids discharge channel 1. The gas outlet flow momentum and the inclination angle, from the vertical axis, of the gas discharge must be sufficient in order to induce a rotational movement on the fine solid flow. Suitable discharge angle, from the vertical axis, of the spiral guiding members or the individual nozzles is between 30° and 150°. Suitable discharge velocity of the spiral guiding members or the circumferential row of individual nozzles is between 5 m/s and 300 m/s, depending on the fine solid feed rate, gas composition and the vertical location of the gas discharge. The discharge velocity is regulated using flow control of the gas.
The gas can for example be or comprise nitrogen or oxygen.
The burner can comprise partition walls 12 in the fine solids discharge channel 1 upstream of the gas outlets 11 in the fine solids discharge channel 1, wherein the partition walls 12 dividing the fine solids discharge channel 1 into sectors, and wherein the partition walls 12 being planar and extending in the direction of the center axis A of the fine solids discharge channel 1. If the burner comprise such partition walls 12, the distance between the partition walls 12 and the downstream outlet end 8 of the fine solids discharge channel 1 is preferably, but not necessarily, between 0.1 and 3 m, such as between 0.5 and 1.5 m.
The burner can comprise an annular gas channel 13 between the annular reaction gas channel 4 and the dispersion gas channel 7 of the fine solids dispersion device 3, as shown in
The burner can comprise an annular gas channel 13 between the annular reaction gas channel 4 and the dispersion gas channel 7 of the fine solids dispersion device 3 so that the annular gas channel 13 is arranged in the fine solids discharge channel 1, as shown in
The burner can comprise an annular gas channel 13 between the annular reaction gas channel 4 and the dispersion gas channel 7 of the fine solids dispersion device 3 so that the annular gas channel 13 is arranged in the fine solids discharge channel 1 at the fine solids dispersion device 3, as shown in
The burner can comprise an annular gas channel 13 between the annular reaction gas channel 4 and the dispersion gas channel 7 of the fine solids dispersion device 3 so that the annular gas channel 13 is arranged in the fine solids discharge channel 1 at the fine solids discharge channel wall 2 of the fine solids discharge channel 1, as shown in
The burner can comprise an annular gas channel 13 between the annular reaction gas channel 4 and the dispersion gas channel 7 of the fine solids dispersion device 3 so that the annular gas channel 13 being provided in the fine solids dispersion device 3, as shown in
The burner can comprise an annular gas channel 13 between the annular reaction gas channel 4 and the dispersion gas channel 7 of the fine solids dispersion device 3 so that the annular gas channel 13 being provided in the fine solids discharge channel wall 2 of the fine solids discharge channel 1, as shown in
The burner can comprise a first set of gas outlets 11 arranged upstream of the downstream outlet end 8 of the fine solids discharge channel 1 at a first distance from the downstream outlet end 8 of the fine solids discharge channel 1, and second set of gas outlets 11 arranged upstream of the downstream outlet end 8 of the fine solids discharge channel 1 at a second distance from the downstream outlet end 8 of the fine solids discharge channel 1, wherein the second distance is longer than the first distance, as is shown in
The burner can comprise an annular gas channel 13 between the annular reaction gas channel 4 and the dispersion gas channel 7 of the fine solids dispersion device 3 so that the annular gas channel 13 is provided at a distance from the fine solids discharge channel wall 2 and at a distance from the fine solids dispersion device 3, as shown in
The gas openings are preferably, but not necessarily, arranged in the fine solids discharge channel 1 upstream of the enlarged section 9 of the fine solids dispersion device 3.
Next the fine solids feeding apparatus for a burner such as a concentrate burner, a calcine burner, or a matte burner, or a burner using a mixture of these and some embodiments and variants of the fine solids feeding apparatus will be described in greater detail.
The fine solids feeding apparatus comprises a fine solids discharge channel 1 that is radially outwardly limited by a fine solids discharge channel wall 2 of the fine solids discharge channel 1 and that is radially inwardly limited by a fine solids dispersion device 3 arranged in the fine solids discharge channel 1 so that the fine solids discharge channel 1 has an annular cross-section.
The fine solids dispersion device 3 has dispersion gas openings 6 and a dispersion gas channel 7 for conducting dispersion gas to the dispersion gas openings 6.
The fine solids dispersion device 3 extends out of a downstream outlet end 8 of the fine solids discharge channel 1.
The fine solids dispersion device 3 has at the downstream outlet end 8 of the fine solids discharge channel 1 an enlarged section 9, where the diameter of the fine solids dispersion device 3 increases in the direction towards a free distal end 10 of the fine solids dispersion device 3.
The fine solids feeding apparatus comprises gas outlets 11 in the fine solids discharge channel 1 upstream of the downstream outlet end 8 of the fine solids discharge channel 1.
The gas outlets 11 comprise spiral path guiding members such as a circumferential row of individual nozzles configured to facilitate gas to flow from the gas outlets 11 in a spiral flow path around a center axis A of the fine solids discharge channel 1. The gas outlet flow momentum and the inclination angle, from the vertical axis, of the gas discharge must be sufficient in order to induce a rotational movement on the fine solid flow. Suitable discharge angle, from the vertical axis, of the spiral guiding members or the individual nozzles is between 30° and 150°. Suitable discharge velocity of the spiral guiding members or the circumferential row of individual nozzles is between 5 m/s and 300 m/s, depending on the fine solid feed rate, gas composition and the vertical location of the gas discharge. The discharge velocity is regulated using flow control of the gas.
The gas can for example be or comprises nitrogen or oxygen.
The fine solids feeding apparatus can comprise partition walls 12 in the fine solids discharge channel 1 upstream of the gas outlets 11 in the fine solids discharge channel 1, wherein the partition walls 12 dividing the fine solids discharge channel 1 into sectors, and wherein the partition walls 12 being planar and extending in the direction of the center axis A of the fine solids discharge channel 1. If the burner comprise such partition walls 12, the distance between the partition walls 12 and the downstream outlet end 8 of the fine solids discharge channel 1 is preferably, but not necessarily, between 0.1 and 3 m, such as between 0.5 and 1.5 m.
The fine solids feeding apparatus can comprise an annular gas channel 13 surrounding the dispersion gas channel 7 of the fine solids dispersion device 3, as shown in
The fine solids feeding apparatus can comprise an annular gas channel 13 surrounding the dispersion gas channel 7 of the fine solids dispersion device 3 so that the annular gas channel 13 is arranged in the fine solids discharge channel 1, as shown in
The fine solids feeding apparatus can comprise an annular gas channel 13 surrounding the dispersion gas channel 7 of the fine solids dispersion device 3 so that the annular gas channel 13 is arranged in the fine solids discharge channel 1 at the fine solids dispersion device 3, as shown in
The fine solids feeding apparatus can comprise an annular gas channel 13 surrounding the dispersion gas channel 7 of the fine solids dispersion device 3 so that the annular gas channel 13 is arranged in the fine solids discharge channel 1 at the fine solids discharge channel wall 2 of the fine solids discharge channel 1, as shown in
The fine solids feeding apparatus can comprise an annular gas channel 13 surrounding the dispersion gas channel 7 of the fine solids dispersion device 3 so that the annular gas channel 13 being provided in the fine solids dispersion device 3, as shown in
The fine solids feeding apparatus can comprise an annular gas channel 13 surrounding the dispersion gas channel 7 of the fine solids dispersion device 3 so that the annular gas channel 13 being provided in the fine solids discharge channel wall 2 of the fine solids discharge channel 1, as shown in
The fine solids feeding apparatus can comprise a first set of gas outlets 11 arranged upstream of the downstream outlet end 8 of the fine solids discharge channel 1 at a first distance from the downstream outlet end 8 of the fine solids discharge channel 1, and second set of gas outlets 11 arranged upstream of the downstream outlet end 8 of the fine solids discharge channel 1 at a second distance from the downstream outlet end 8 of the fine solids discharge channel 1, wherein the second distance is longer than the first distance, as is shown in
The fine solids feeding apparatus can comprise an annular gas channel 13 surrounding the dispersion gas channel 7 of the fine solids dispersion device 3 so that the annular gas channel 13 is provided at a distance from the fine solids discharge channel wall 2 and at a distance from the fine solids dispersion device 3, as shown in
The gas openings are preferably, but not necessarily, arranged in the fine solids discharge channel 1 upstream of the enlarged section 9 of the fine solids dispersion device 3.
The invention relates also to a burner comprising a fine solids feeding apparatus as described above.
It is apparent to a person skilled in the art that as technology advanced, the basic idea of the invention can be implemented in various ways. The invention and its embodiments are therefore not restricted to the above examples, but they may vary within the scope of the claims.
Number | Date | Country | Kind |
---|---|---|---|
20155773 | Oct 2015 | FI | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/FI2016/050756 | 10/28/2016 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2017/072413 | 5/4/2017 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2335188 | Kennedy | Nov 1943 | A |
4147535 | Lilja | Apr 1979 | A |
4208180 | Nakayasu | Jun 1980 | A |
4679512 | Skoog | Jul 1987 | A |
5055032 | Altemark | Oct 1991 | A |
5090339 | Okiura | Feb 1992 | A |
5358222 | Kaasinen | Oct 1994 | A |
6116171 | Oota | Sep 2000 | A |
6238457 | Holmi | May 2001 | B1 |
6315551 | Salzsieder | Nov 2001 | B1 |
7739967 | Briggs, Jr. et al. | Jun 2010 | B2 |
8147747 | Wang | Apr 2012 | B2 |
9039407 | McKnight | May 2015 | B2 |
9689610 | Motomura | Jun 2017 | B2 |
9957586 | Sipila | May 2018 | B2 |
10458685 | Wilkerson | Oct 2019 | B2 |
20070048679 | Joshi | Mar 2007 | A1 |
20090272822 | Davis | Nov 2009 | A1 |
20090305971 | Sessa | Dec 2009 | A1 |
20100207307 | Sipila | Aug 2010 | A1 |
20140011141 | Matsumoto | Jan 2014 | A1 |
20150061201 | Jastrzebski et al. | Mar 2015 | A1 |
20150091224 | Motomura et al. | Apr 2015 | A1 |
20160258685 | Wesley | Sep 2016 | A1 |
20180156541 | Miettinen | Jun 2018 | A1 |
Number | Date | Country |
---|---|---|
2 113 717 | Nov 2009 | EP |
2012-112549 | Jun 2012 | JP |
WO 2013149332 | Oct 2013 | WO |
WO 2015054739 | Apr 2015 | WO |
WO 2015058283 | Apr 2015 | WO |
Entry |
---|
International Search Report (PCT/ISA/210) dated Feb. 10, 2017, by the Finnish Patent Office as the International Searching Authority for International Application No. PCT/FI2016/050756. |
International Preliminary Report on Patentability (PCT/IPEA/409) dated Oct. 12, 2017, by the Finnish Patent Office as the International Searching Authority for International Application No. PCT/FI2016/050756. |
Finnish Search Report dated Apr. 20, 2016. |
Number | Date | Country | |
---|---|---|---|
20180224119 A1 | Aug 2018 | US |