Technical Field
The present disclosure relates generally to the field of combustion burners and methods of use, and more specifically to burners, submerged combustion melters, and methods of their use, particularly for melting glass forming materials.
Background Art
Oxy-fuel burners have been used for many years in the glass industry in general especially in the fiberglass, TV glass, and container glass industry segments. There are few complete oxy-fuel fired float furnaces in the operation today and they have been using retrofit oxy-fuel burners designed specifically for smaller container or fiberglass furnaces. These conversions were most likely made to meet emissions standards. Known oxy-fuel burners are predominately nozzle mix designs and avoid premixing for safety reasons due to the increased reactivity of using oxygen as the oxidant versus air. Known oxy-fuel burners for submerged combustion are fixed designs, such that once built, they are not easily modified, for example for use with varying melter feeds, fuels, and oxidants.
Therefore, it would be an advance in the submerged combustion art to develop submerged combustion burners to melt glass-forming materials, reduce energy requirements a significant amount in glass manufacturing processes, and to make their implementation attractive, particularly in situations where melter feeds, fuels, and/or oxidants are changing or expected to change.
In accordance with the present disclosure, burner apparatus and processes of use are described that may allow tuning of one or more burner parameters using a burner insert. Geometric features of the insert, in some embodiments combined with geometric features of other components of the burners, may provide the ability to control the depth of fuel and oxidant interaction below the overall exit of the burner.
A first aspect of the disclosure is an apparatus, the apparatus comprising:
a first conduit comprising a first end, a second end, a longitudinal bore having a longitudinal axis, and an external surface;
a second conduit substantially concentric with the first conduit, the second conduit comprising a first end, a second end, and an internal surface;
the first and second conduits configured to form a primary annulus between the external surface of the first conduit and the internal surface of the second conduit; and
an adjustable structure comprising a body having an upper surface, a lower surface, a circumferential surface abutting a portion of the internal surface of the second conduit, and a generally cylindrical central hub concentric with the longitudinal axis, the structure adjustable axially in relation to and removably attached to the first end of the first conduit via the hub, the hub defining a central passage having an exit at the upper surface, the body comprising one or more non-central through passages extending from the lower to the upper surface, the non-central passages configured such that flow of a first fluid through the non-central passages causes the first fluid to intersect a flow of a second fluid in a mixing region above the upper surface of the body.
A second aspect of the disclosure is an adjustable burner apparatus, comprising:
a first conduit comprising a first end, a second end, a longitudinal bore having a longitudinal axis, and an external surface, the first end comprising threads on the external surface,
a second conduit substantially concentric with the first conduit, the second conduit comprising a first end, a second end, and an internal surface,
the first and second conduits configured to form a primary annulus between the external surface of the first conduit and the internal surface of the second conduit;
a body having an upper surface, a lower surface, a circumferential surface abutting a portion of the internal surface of the second conduit, and a generally cylindrical central hub concentric with the longitudinal axis, the structure adjustable axially in relation to and threadedly attached to the threads of first end of the first conduit via the hub, the hub defining a central passage having an exit at the upper surface, the body comprising one or more non-central through passages extending from the lower to the upper surface, the non-central passages configured such that flow of a first fluid through the non-central passages causes the first fluid to intersect a flow of a second fluid in a mixing region above the upper surface of the body;
a third substantially concentric conduit comprising a first end, a second end, and an internal surface, the internal surface of the third conduit forming, with an exterior surface of the second conduit, a secondary annulus external to the primary annulus;
the first end of the third conduit extending beyond the first end of the second conduit, the first end of the second conduit extending beyond the first end of the first conduit, and the secondary annulus is capped by an end cap connecting the first end of the second conduit and the first end of the third conduit; and
the second end of the second conduit sealed around the first conduit, and the second end of the third conduit sealed around the second conduit, forming a cavity for fluid to circulate.
A third aspect of the disclosure are methods, comprising:
a) flowing an oxidant into an annulus between inner and outer conduits of a concentric conduit burner;
b) flowing a fuel to the inner conduit of the concentric burner;
c) flowing the oxidant through a plurality of non-central passages in an adjustable, removable structure, and the fuel through a central passage in the adjustable removable structure, the structure comprising a body having an upper surface, a lower surface, a circumferential surface abutting a portion of an internal surface of the second conduit, and a generally cylindrical central hub concentric with a longitudinal axis of the inner conduit, the structure adjustable axially in relation to and removably attached to a first end of the first conduit via the hub, the hub defining the central passage having an exit at the upper surface, the body comprising the plurality of non-central through passages extending from the lower to the upper surface, the non-central passages configured such that flow of oxidant through the non-central passages causes the oxidant to intersect flow of the fuel in a mixing region above the upper surface of the body.
A fourth aspect of this disclosure are methods of producing molten glass comprising:
a) flowing an oxidant into an annulus between inner and outer conduits of a concentric conduit burner;
b) flowing a fuel to the inner conduit of the concentric burner;
c) flowing the oxidant through a plurality of non-central oxidant passages in an adjustable, removable structure, and the fuel through a central fuel passage in the adjustable removable structure, the structure comprising a body having an upper surface, a lower surface, a circumferential surface abutting a portion of an internal surface of the second conduit, and a generally cylindrical central hub concentric with a longitudinal axis of the inner conduit, the structure adjustable axially in relation to and removably attached to a first end of the first conduit via the hub, the hub defining the central passage having an exit at the upper surface, the body comprising the plurality of non-central through passages extending from the lower to the upper surface, the non-central passages configured such that flow of oxidant through the non-central passages causes the oxidant to intersect flow of the fuel in a mixing region above the upper surface of the body;
d) combusting at least some of the fuel in the mixing region to form a flame and combustion products, the mixing region defined by the upper surface of the body and a burner extension, wherein the exits of the non-central oxidant passages and the exit of the central fuel passage are recessed from an exit of the burner extension; and
e) directing the flame and combustion products into partially molten glass forming materials above the mixing region.
Certain methods within the disclosure include methods wherein the oxidant may be an oxygen stream comprising at least 90 mole percent oxygen, and the fuel may be a gaseous fuel, the gaseous fuel selected from the group consisting of methane, natural gas, liquefied natural gas, propane, carbon monoxide, hydrogen, steam-reformed natural gas, atomized oil or mixtures thereof.
Apparatus and methods of the disclosure will become more apparent upon review of the brief description of the drawings, the detailed description of the disclosure, and the claims that follow.
The manner in which the objectives of the disclosure and other desirable characteristics can be obtained is explained in the following description and attached drawings in which:
It is to be noted, however, that the appended drawings are not to scale and illustrate only typical embodiments of this disclosure, and are therefore not to be considered limiting of its scope, for the disclosure may admit to other equally effective embodiments.
In the following description, numerous details are set forth to provide an understanding of the disclosed apparatus and methods. However, it will be understood by those skilled in the art that the apparatus and methods covered by the claims may be practiced without these details and that numerous variations or modifications from the specifically described embodiments may be possible and are deemed within the claims. All U.S. published patent applications and U.S. Patents referenced herein are hereby explicitly incorporated herein by reference. In the event definitions of terms in the referenced patents and applications conflict with how those terms are defined in the present application, the definitions for those terms that are provided in the present application shall be deemed controlling.
The term “fuel”, according to this disclosure, means a combustible composition comprising a major portion of, for example, methane, natural gas, liquefied natural gas, propane, atomized oil or the like (either in gaseous or liquid form). Fuels useful in the disclosure may comprise minor amounts of non-fuels therein, including oxidants, for purposes such as premixing the fuel with the oxidant, or atomizing liquid fuels. As used herein the term “fuel” includes gaseous fuels, liquid fuels, flowable solids, such as powdered carbon or particulate material, waste materials, slurries, and mixtures or other combinations thereof. When the fuel comprises gaseous fuel, the gaseous fuel may be selected from the group consisting of methane, natural gas, liquefied natural gas, propane, carbon monoxide, hydrogen, steam-reformed natural gas, atomized oil or mixtures thereof.
“Oxidant” means air, or compositions comprising the same molar concentration of oxygen as air, while the term “oxygen” means a gas with an oxygen molar concentration of at least 50%. Such oxidants include oxygen-enriched air containing at least 50% vol., oxygen such as “industrially” pure oxygen (99.5%) produced by a cryogenic air separation plant or non-pure oxygen produced by an adsorption process or membrane permeation process (about 90% vol. oxygen or more).
Conduits and adjustable, changeable, removable bodies used in burners of the present disclosure may be comprised of metal, ceramic, ceramic-lined metal, or combination thereof. Suitable metals include stainless steels, for example, but not limited to, 306 and 316 steel, as well as titanium alloys, aluminum alloys, and the like.
The term “coolant” may include any heat transfer fluid and may be any gaseous, liquid, or some combination of gaseous and liquid composition that functions or is capable of being modified to function as a heat transfer fluid. Gaseous heat transfer fluids may be selected from air, including ambient air and treated air (for example, air treated to remove moisture), inorganic gases, such as nitrogen, argon, and helium, organic gases such as fluoro-, chloro- and chlorofluorocarbons, including perfluorinated versions, such as tetrafluoromethane, and hexafluoroethane, and tetrafluoroethylene, and the like, and mixtures of inert gases with small portions of non-inert gases, such as hydrogen. Heat transfer liquids may be selected from liquids that may be organic, inorganic, or some combination thereof, for example, salt solutions, glycol solutions, oils and the like. Other possible heat transfer fluids include steam (if cooler than the expected glass melt temperature), carbon dioxide, or mixtures thereof with nitrogen. Heat transfer fluids may be compositions comprising both gas and liquid phases, such as the higher chlorofluorocarbons.
In all embodiments of the disclosure the sources of oxidant and fuel may be one or more conduits, pipelines, storage facility, cylinders, or, in embodiments where the oxidant is air, ambient air. Oxygen-enriched oxidants may be supplied from a pipeline, cylinder, storage facility, cryogenic air separation unit, membrane permeation separator, or adsorption unit such as a vacuum swing adsorption unit. Certain burner and melter embodiments may comprise a source of oxidant fluidly connected to the second conduit for routing the oxidant to the primary annulus, wherein the oxidant is selected from the group consisting of air and oxygen-enriched air, and a source of fuel fluidly connected to the second end of the first conduit for routing the fuel to the longitudinal bore of the first conduit.
Certain apparatus may include a third substantially concentric conduit comprising a first end, a second end, and an internal surface, the internal surface of the third conduit forming, with an exterior surface of the second conduit, a secondary annulus external to the primary annulus. The first end of the conduit may extend beyond the first end of the second conduit, the first end of the second conduit may extend beyond the first end of the first conduit, and the secondary annulus may be capped by an end cap connecting the first end of the second conduit and the first end of the third conduit.
Certain apparatus and method embodiments of the disclosure may be controlled by one or more controllers. For example, burner flame temperature may be controlled by monitoring one or more parameters selected from velocity of the fuel, velocity of the primary oxidant, mass flow rate of the fuel, mass flow rate of the primary oxidant, energy content of the fuel, temperature of the fuel as it enters the burner, temperature of the primary oxidant as it enters the burner, temperature of the effluent, pressure of the primary oxidant entering the burner, humidity of the oxidant, burner geometry, combustion ratio, and combinations thereof. Exemplary apparatus and methods of the disclosure may comprise a combustion controller which receives one or more input parameters selected from velocity of the fuel, velocity of the primary oxidant, mass flow rate of the fuel, mass flow rate of the primary oxidant, energy content of the fuel, temperature of the fuel as it enters the burner, temperature of the primary oxidant as it enters the burner, pressure of the oxidant entering the burner, humidity of the oxidant, burner geometry, oxidation ratio, temperature of the effluent and combinations thereof, and may employ a control algorithm to control combustion temperature based on one or more of these input parameters.
Referring now to the figures,
Another component of burner embodiments of the present disclosure is an adjustable, changeable and removable structure or insert, designated 24 in
Insert 24 includes a body 33 having a central hub 26 that is, in certain embodiments, parallel to longitudinal axis A1, but not necessarily so, hub 26 including a central passage having an exit 25 that is, in certain embodiments, perpendicular to longitudinal axis A1, but not necessarily so. Body 33 includes an upper surface 36 and a lower surface 38, and one or more non-central passages 34. In
As illustrated in embodiments 100 and 200 of
Hub 26 includes, in embodiments 100 and 200, an angled or tapered section 27 connecting exit 25 and a vertical connector section 29 that connects angled section 27 with a threaded section 28. Threads on threaded section 28 mate with corresponding threads 30 on an upper end 32 of inner conduit 2. This threaded connection allows removal of insert 24 and/or adjustment of burner parameters, as discussed further herein.
In embodiment 60 illustrated schematically in cross-section in
Another method of this disclosure is presented in the logic diagram of
In operation of burners of the disclosure, in exemplary embodiments oxidant may be fed to the primary annulus, and a fuel to the longitudinal bore of the first conduit. In inorganic glass-forming material is charged to the melter. The mass flow rate of the inorganic material, for example glass, is a function of the composition of the feed material, desired composition, viscosity, and temperature of the molten glass, the flame temperature of the burner(s), the burner geometry, for example burner exit, nozzle exit, and non-central passages sizes, the pressure in the mixing region of the burner, and other parameters. The process operating conditions are generally not independent values but have some degree of interaction. Oxygen-enhanced oxidant/fuel melting is markedly different than the traditional air-fuel melting processes. The general principle is to operate combustion in the mixing region of the burner in a manner that replaces some of the air with a separate source of oxygen. The overall combustion ratio may not change. The process of combining fuel and oxygen-enriched oxidant will, in most embodiments, primarily occur in the mixing region, after the gases have passed over a flame arrestor safety device. Varying the oxygen content of the oxidant can control the flame temperature of the combustion gases.
The length of non-central passages 34 and central passage through hub 26 may vary widely, but generally may range from about 0.25 inch to about 10 inches, or from about 0.5 inch to about 3 inches, while the diameter of the non-central passages 34 may range from about 1/32 inch up to 1 inch, or from about 0.25 inch up to about 0.5 inch, depending on the number and location of non-central passages 34. The greater the number of non-central passages 34, generally the smaller their diameter, although this may not be so in every embodiment. Also, the greater the diameter of the central passage through hub 26, generally the larger the diameter, or greater number, or both of non-central passages 34. If oxidant flows through non-central passages 34, the ratio of number of non-central oxidant passages 34 to central fuel passage through hub 26 may range from about 2 to 1 to about 30 to 1, or from about 4 to 1 to about 10 to 1. The non-central passages 34 may all be circular in cross-section and have the same diameter; in other embodiments they may not. Apparatus within this disclosure include those wherein the non-central conduits 34 may all be equal in length, although the disclosure is not so limited. The diameters of the central and non-central passages may adjusted in accordance with a number of factors such as glass depth, system pressure drops, and burner outputs.
In general, the inner conduit 2 may have an inner diameter (ID) ranging from about 1 inch up to about 5 inches (2.5 cm to 13 cm), or from about 2 inches up to about 4 inches (5 cm to 10 cm).
The total quantities of fuel and oxidant used by burners of the present disclosure may be such that the flow of oxygen may range from about 0.9 to about 1.2 of the theoretical stoichiometric flow of oxygen necessary to obtain the complete combustion of the fuel flow. Another expression of this statement is that the combustion ratio may range from about 0.9 to about 1.2.
The velocity of the fuel in the various burner embodiments of the present disclosure depends on the burner geometry used, but generally is at least about 15 meters/second (m/s). The upper limit of fuel velocity depends primarily on the desired penetration of flame and/or combustion products into the glass melt and the geometry of the burner; if the fuel velocity is too low, the flame temperature may be too low, providing inadequate temperature in the melter, which is not desired, and if the fuel flow is too high, flame and/or combustion products might impinge on a melter wall or roof, or cause carryover of melt into the exhaust, or be wasted, which is also not desired. Similarly, oxidant velocity should be monitored so that flame and/or combustion products do not impinge on a melter wall or roof, or cause carryover of melt into the exhaust, or be wasted. Oxidant velocities depend on fuel flow rate and fuel velocity, but in general should not exceed about 200 ft/sec at 400 scfh flow rate. The pressure in mixing region 9 of burners in accordance with the present disclosure should not exceed about 10 psig.
Additionally, certain burner embodiments of this disclosure may also be provided with stabilization of the flame with an auxiliary injection of fuel and/or oxidant gases. For example, a portion of the oxidant may be premixed with fuel as a primary oxidant, usually air, in conduit 2, in addition to a secondary oxidant injection in primary annulus 8.
Apparatus and methods of the present disclosure are intended to be used, for example, to replace combustion burners in already existing melters, and/or to be used as the main source of energy in new submerged combustion melters.
Conduits and adjustable, changeable, removable bodies used in burners of the present disclosure may be comprised of metal, ceramic, ceramic-lined metal, or combination thereof. Suitable metals include stainless steels, for example, but not limited to, 306, 316, as well as titanium alloys, aluminum alloys, and the like. High-strength materials like C-110 and C-125 metallurgies that are NACE qualified may be employed. (As used herein, “NACE” refers to the corrosion prevention organization formerly known as the National Association of Corrosion Engineers, now operating under the name NACE International, Houston, Tex.) Use of high strength steel and other high strength materials may significantly reduce the wall thickness required, reducing weight of the burners. Threaded connections may eliminate the need for 3rd party forgings and expensive welding processes—considerably improving system delivery time and overall cost. It will be understood, however, that the use of 3rd party forgings and welding is not ruled out for burners described herein, and may actually be preferable in certain situations. The skilled artisan, having knowledge of the particular application, pressures, temperatures, and available materials, will be able design the most cost effective, safe, and operable burners for each particular application without undue experimentation.
If ceramic materials are used, suitable materials may include fused zirconia (ZrO2), fused cast AZS (alumina-zirconia-silica), rebonded AZS, or fused cast alumina (Al2O3). The choice of a particular material is dictated among other parameters by the chemistry, pressure, and temperature of fuel and oxidant used and type of glass melt to be produced.
A combustion process control scheme may be employed. A master controller may be employed, but the disclosure is not so limited, as any combination of controllers could be used. The controller may be selected from PI controllers, PID controllers (including any known or reasonably foreseeable variations of these), and may compute a residual equal to a difference between a measured value and a set point to produce an output to one or more control elements. The controller may compute the residual continuously or non-continuously. Other possible implementations of the disclosure are those wherein the controller comprises more specialized control strategies, such as strategies selected from feed forward, cascade control, internal feedback loops, model predictive control, neural networks, and Kalman filtering techniques. Sensors may be provided for the following parameters, which are merely exemplary examples: Vfuel, velocity of fuel entering burner; VPO, velocity of primary oxidant entering burner; VSO, velocity of secondary oxidant entering burner; Mfuel, mass flow rate of fuel entering burner; MPO, mass flow rate of primary oxidant entering burner; Tfuel, temperature of fuel entering burner; TPO, temperature of primary oxidant entering burner; PPO, pressure of primary oxidant entering burner; HPO, humidity of primary oxidant. Outputs may be provided for the following parameters, which are merely exemplary: Vfuel, velocity of fuel entering burner; VPO, velocity of primary oxidant entering burner; Mfuel, mass flow rate of fuel entering burner; MSO, mass flow rate of secondary oxidant entering burner; Tfuel, temperature of fuel entering burner; TPO, temperature of primary oxidant entering burner; PSO, pressure of secondary oxidant entering burner; MEFF (or MHTF), mass flow rate of hot effluent (or heat transfer fluid). Other parameters may be included as inputs, such as burner geometry, and combustion ratio, melt viscosity, and the like.
The term “control”, used as a transitive verb, means to verify or regulate by comparing with a standard or desired value. Control may be closed loop, feedback, feed-forward, cascade, model predictive, adaptive, heuristic and combinations thereof. The term “controller” means a device at least capable of accepting input from sensors and meters in real time or near-real time, and sending commands directly to burner control elements, and/or to local devices associated with burner control elements able to accept commands. A controller may also be capable of accepting input from human operators; accessing databases, such as relational databases; sending data to and accessing data in databases, data warehouses or data marts; and sending information to and accepting input from a display device readable by a human. A controller may also interface with or have integrated therewith one or more software application modules, and may supervise interaction between databases and one or more software application modules.
The phrase “PID controller” means a controller using proportional, integral, and derivative features. In some cases the derivative mode may not be used or its influence reduced significantly so that the controller may be deemed a PI controller. It will also be recognized by those of skill in the control art that there are existing variations of PI and PID controllers, depending on how the discretization is performed. These known and foreseeable variations of PI, PID and other controllers are considered within the disclosure.
The controller may utilize Model Predictive Control (MPC). MPC is an advanced multivariable control method for use in multiple input/multiple output (MIMO) systems. MPC computes a sequence of manipulated variable adjustments in order to optimise the future behavior of the process in question. At each control time k, MPC solves a dynamic optimization problem using a model of the controlled system, so as to optimize future behavior (at time k+1, k+2 . . . k+n) over a prediction horizon n. This is again performed at time k+1, k+2 . . . . MPC may use any derived objective function, such as Quadratic Performance Objective, and the like, including weighting functions of manipulated variables and measurements. Dynamics of the process and/or system to be controlled are described in an explicit model of the process and/or system, which may be obtained for example by mathematical modeling, or estimated from test data of the real process and/or system. Some techniques to determine some of the dynamics of the system and/or process to be controlled include step response models, impulse response models, and other linear or non-linear models. Often an accurate model is not necessary. Input and output constraints may be included in the problem formulation so that future constraint violations are anticipated and prevented, such as hard constraints, soft constraints, set point constraints, funnel constraints, return on capital constraints, and the like. It may be difficult to explicitly state stability of an MPC control scheme, and in certain embodiments of the present disclosure it may be necessary to use nonlinear MPC. In so-called advanced control of various systems, PID control may be used on strong mono-variable loops with few or nonproblematic interactions, while one or more networks of MPC might be used, or other multivariable control structures, for strong interconnected loops. Furthermore, computing time considerations may be a limiting factor. Some embodiments may employ nonlinear MPC.
A feed forward algorithm, if used, will in the most general sense be task specific, meaning that it will be specially designed to the task it is designed to solve. This specific design might be difficult to design, but a lot is gained by using a more general algorithm, such as a first or second order filter with a given gain and time constants.
Although only a few exemplary embodiments of this disclosure have been described in detail above, those skilled in the art will readily appreciate that many modifications are possible in the exemplary embodiments without materially departing from the novel teachings and advantages of this disclosure. Accordingly, all such modifications are intended to be included within the scope of this disclosure as defined in the following claims. In the claims, no clauses are intended to be in the means-plus-function format allowed by 35 U.S.C. §112, paragraph 6 unless “means for” is explicitly recited together with an associated function. “Means for” clauses are intended to cover the structures described herein as performing the recited function and not only structural equivalents, but also equivalent structures.
This application is a continuation of pending U.S. application Ser. No. 14/486,797, filed Sep. 15, 2014, which is a division of U.S. application Ser. No. 13/268,028, filed Oct. 7, 2011, now U.S. Pat. No. 8,875,544 issued Nov. 4, 2014, all of which are hereby incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
1716433 | Ellis | Jun 1929 | A |
2174533 | See et al. | Oct 1939 | A |
2118479 | McCaskey | Jan 1940 | A |
2269459 | Kleist | Jan 1942 | A |
2432942 | See et al. | Dec 1947 | A |
2455907 | Slayter | Jan 1948 | A |
2679749 | Poole | Jun 1954 | A |
2718096 | Henry et al. | Sep 1955 | A |
2773545 | Petersen | Dec 1956 | A |
2781756 | Kobe | Feb 1957 | A |
2878644 | Fenn | Mar 1959 | A |
2890166 | Heinze | Jun 1959 | A |
2902029 | Hill | Sep 1959 | A |
2981250 | Stewart | Apr 1961 | A |
3020165 | Davis | Feb 1962 | A |
3056283 | Tiede | Oct 1962 | A |
3073683 | Switzer et al. | Jan 1963 | A |
3084392 | Labino | Apr 1963 | A |
3088812 | Bitterlich et al. | May 1963 | A |
3104947 | Switzer et al. | Sep 1963 | A |
3160578 | Saxton et al. | Dec 1964 | A |
3165452 | Williams | Jan 1965 | A |
3170781 | Keefer | Feb 1965 | A |
3174820 | See et al. | Mar 1965 | A |
3215189 | Bauer | Nov 1965 | A |
3224855 | Plumat | Dec 1965 | A |
3237929 | Plumat et al. | Mar 1966 | A |
3241548 | See et al. | Mar 1966 | A |
3248205 | Dolf et al. | Apr 1966 | A |
3260587 | Dolf et al. | Jul 1966 | A |
3268313 | Burgman et al. | Aug 1966 | A |
3285834 | Guerrieri et al. | Nov 1966 | A |
3294512 | Penberthy | Dec 1966 | A |
3325298 | Brown | Jun 1967 | A |
3385686 | Plumat et al. | May 1968 | A |
3402025 | Garrett et al. | Sep 1968 | A |
3407805 | Bougard | Oct 1968 | A |
3407862 | Mustian, Jr. | Oct 1968 | A |
3432399 | Schutt | Mar 1969 | A |
3445214 | Oremesher | May 1969 | A |
3498779 | Hathaway | Mar 1970 | A |
3510393 | Burgman et al. | May 1970 | A |
3525674 | Barnebey | Aug 1970 | A |
3533770 | Adler et al. | Oct 1970 | A |
3563683 | Hess | Feb 1971 | A |
3592151 | Webber | Jul 1971 | A |
3592623 | Shepherd | Jul 1971 | A |
3606825 | Johnson | Sep 1971 | A |
3617234 | Hawkins et al. | Nov 1971 | A |
3627504 | Johnson et al. | Dec 1971 | A |
3692017 | Glachant et al. | Sep 1972 | A |
3717139 | Guillet et al. | Feb 1973 | A |
3738792 | Feng | Jun 1973 | A |
3746527 | Knavish et al. | Jul 1973 | A |
3747588 | Booth | Jul 1973 | A |
3754879 | Phaneuf | Aug 1973 | A |
3756800 | Phaneuf | Sep 1973 | A |
3763915 | Perry et al. | Oct 1973 | A |
3764287 | Brocious | Oct 1973 | A |
3771988 | Starr | Nov 1973 | A |
3818893 | Kataoka et al. | Jun 1974 | A |
3835909 | Douglas et al. | Sep 1974 | A |
3840002 | Douglas et al. | Oct 1974 | A |
3856496 | Nesbitt et al. | Dec 1974 | A |
3885945 | Rees et al. | May 1975 | A |
3907585 | Francel et al. | Sep 1975 | A |
3913560 | Lazarre et al. | Oct 1975 | A |
3951635 | Rough | Apr 1976 | A |
3976464 | Wardlaw | Aug 1976 | A |
4001001 | Knavish et al. | Jan 1977 | A |
4004903 | Daman et al. | Jan 1977 | A |
4083711 | Jensen | Apr 1978 | A |
4110098 | Mattmuller | Aug 1978 | A |
4153438 | Stream | May 1979 | A |
4185982 | Schwenninger | Jan 1980 | A |
4203761 | Rose | May 1980 | A |
4205966 | Horikawa | Jun 1980 | A |
4226564 | Takahashi et al. | Oct 1980 | A |
4238226 | Sanzenbacher et al. | Dec 1980 | A |
4249927 | Fukuzaki et al. | Feb 1981 | A |
4270740 | Sanzenbacher et al. | Jun 1981 | A |
4282023 | Hammel et al. | Aug 1981 | A |
4303435 | Sleighter | Dec 1981 | A |
4323718 | Buhring et al. | Apr 1982 | A |
4349376 | Dunn et al. | Sep 1982 | A |
4406683 | Demarest | Sep 1983 | A |
4413882 | Bailey et al. | Nov 1983 | A |
4488537 | Laurent | Dec 1984 | A |
4539034 | Hanneken | Sep 1985 | A |
4542106 | Sproull | Sep 1985 | A |
4545800 | Won et al. | Oct 1985 | A |
4626199 | Bounini | Dec 1986 | A |
4632687 | Kunkle et al. | Dec 1986 | A |
4634461 | Demarest, Jr. et al. | Jan 1987 | A |
4657586 | Masterson et al. | Apr 1987 | A |
4735642 | Jensen et al. | Apr 1988 | A |
4738938 | Kunkle et al. | Apr 1988 | A |
4758259 | Jensen | Jul 1988 | A |
4798616 | Knavish et al. | Jan 1989 | A |
4814387 | Donat | Mar 1989 | A |
4816056 | Tsai et al. | Mar 1989 | A |
4877436 | Sheinkop | Oct 1989 | A |
4877449 | Khinkis | Oct 1989 | A |
4878829 | Anderson | Nov 1989 | A |
4882736 | Pieper | Nov 1989 | A |
4919700 | Pecoraro et al. | Apr 1990 | A |
4927886 | Backderf et al. | May 1990 | A |
4953376 | Merlone | Sep 1990 | A |
5032230 | Shepherd | Jul 1991 | A |
5052874 | Johanson | Oct 1991 | A |
5062789 | Gitman | Nov 1991 | A |
5097802 | Clawson | Mar 1992 | A |
5168109 | Backderf et al. | Dec 1992 | A |
5169424 | Grinnen et al. | Dec 1992 | A |
5199866 | Joshi | Apr 1993 | A |
5204082 | Schendel | Apr 1993 | A |
5299929 | Yap | Apr 1994 | A |
5360171 | Yap | Nov 1994 | A |
5374595 | Dumbaugh et al. | Dec 1994 | A |
5405082 | Brown et al. | Apr 1995 | A |
5449286 | Snyder et al. | Sep 1995 | A |
5483548 | Coble | Jan 1996 | A |
5490775 | Joshi et al. | Feb 1996 | A |
5522721 | Drogue et al. | Jun 1996 | A |
5545031 | Joshi et al. | Aug 1996 | A |
5575637 | Slavejkov et al. | Nov 1996 | A |
5595703 | Swaelens et al. | Jan 1997 | A |
5606965 | Panz et al. | Mar 1997 | A |
5613994 | Muniz et al. | Mar 1997 | A |
5615668 | Panz et al. | Apr 1997 | A |
5636623 | Panz et al. | Jun 1997 | A |
5672827 | Jursich | Sep 1997 | A |
5713668 | Lunghofer et al. | Feb 1998 | A |
5718741 | Hull et al. | Feb 1998 | A |
5736476 | Warzke et al. | Apr 1998 | A |
5743723 | Iatrides et al. | Apr 1998 | A |
5765964 | Calcote et al. | Jun 1998 | A |
5814121 | Travis | Sep 1998 | A |
5829962 | Drasek et al. | Nov 1998 | A |
5833447 | Bodelin et al. | Nov 1998 | A |
5849058 | Takeshita et al. | Dec 1998 | A |
5863195 | Feldermann | Jan 1999 | A |
5944507 | Feldermann | Aug 1999 | A |
5944864 | Hull et al. | Aug 1999 | A |
5954498 | Joshi et al. | Sep 1999 | A |
5975886 | Philippe | Nov 1999 | A |
5979191 | Jian | Nov 1999 | A |
5984667 | Philippe et al. | Nov 1999 | A |
5993203 | Koppang | Nov 1999 | A |
6029910 | Joshi et al. | Feb 2000 | A |
6036480 | Hughes et al. | Mar 2000 | A |
6039787 | Edlinger | Mar 2000 | A |
6045353 | VonDrasek et al. | Apr 2000 | A |
6068468 | Philippe et al. | May 2000 | A |
6071116 | Philippe et al. | Jun 2000 | A |
6074197 | Philippe | Jun 2000 | A |
6077072 | Marin et al. | Jun 2000 | A |
6085551 | Pieper et al. | Jul 2000 | A |
6109062 | Richards | Aug 2000 | A |
6113389 | Joshi et al. | Sep 2000 | A |
6116896 | Joshi et al. | Sep 2000 | A |
6120889 | Turner et al. | Sep 2000 | A |
6123542 | Joshi et al. | Sep 2000 | A |
6126438 | Joshi et al. | Oct 2000 | A |
6154481 | Sorg et al. | Nov 2000 | A |
6156285 | Adams et al. | Dec 2000 | A |
6171100 | Joshi et al. | Jan 2001 | B1 |
6183848 | Turner et al. | Feb 2001 | B1 |
6210151 | Joshi et al. | Apr 2001 | B1 |
6210703 | Novich | Apr 2001 | B1 |
6237369 | LeBlanc et al. | May 2001 | B1 |
6241514 | Joshi et al. | Jun 2001 | B1 |
6244197 | Coble | Jun 2001 | B1 |
6244857 | VonDrasek et al. | Jun 2001 | B1 |
6247315 | Marin et al. | Jun 2001 | B1 |
6250136 | Igreja | Jun 2001 | B1 |
6250916 | Philippe et al. | Jun 2001 | B1 |
6274164 | Novich | Aug 2001 | B1 |
6276924 | Joshi et al. | Aug 2001 | B1 |
6276928 | Joshi et al. | Aug 2001 | B1 |
6293277 | Panz et al. | Sep 2001 | B1 |
6314760 | Chenoweth | Nov 2001 | B1 |
6314896 | Marin et al. | Nov 2001 | B1 |
6338337 | Panz et al. | Jan 2002 | B1 |
6344747 | Lunghofer et al. | Feb 2002 | B1 |
6357264 | Richards | Mar 2002 | B1 |
6386271 | Kawamoto et al. | May 2002 | B1 |
6418755 | Chenoweth | Jul 2002 | B2 |
6422041 | Simpson et al. | Jul 2002 | B1 |
6454562 | Joshi et al. | Sep 2002 | B1 |
6460376 | Jeanvoine et al. | Oct 2002 | B1 |
6536651 | Ezumi et al. | Mar 2003 | B2 |
6558606 | Kulkarni et al. | May 2003 | B1 |
6660106 | Babel et al. | Dec 2003 | B1 |
6694791 | Johnson et al. | Feb 2004 | B1 |
6701617 | Li et al. | Mar 2004 | B2 |
6705118 | Simpson et al. | Mar 2004 | B2 |
6708527 | Ibarlucea et al. | Mar 2004 | B1 |
6711942 | Getman et al. | Mar 2004 | B2 |
6715319 | Barrow et al. | Apr 2004 | B2 |
6722161 | LeBlanc | Apr 2004 | B2 |
6736129 | Sjith | May 2004 | B1 |
6739152 | Jeanvoine et al. | May 2004 | B2 |
6796147 | Borysowicz et al. | Sep 2004 | B2 |
6797351 | Kulkarni et al. | Sep 2004 | B2 |
6854290 | Hayes et al. | Feb 2005 | B2 |
6857999 | Jeanvoine | Feb 2005 | B2 |
6883349 | Jeanvoine | Apr 2005 | B1 |
6918256 | Gutmark et al. | Jul 2005 | B2 |
7027467 | Baev et al. | Apr 2006 | B2 |
7116888 | Aitken et al. | Oct 2006 | B1 |
7134300 | Hayes et al. | Nov 2006 | B2 |
7168395 | Engdahl | Jan 2007 | B2 |
7175423 | Pisano et al. | Feb 2007 | B1 |
7231788 | Karetta et al. | Jun 2007 | B2 |
7273583 | Rue et al. | Sep 2007 | B2 |
7383698 | Ichinose et al. | Jun 2008 | B2 |
7392668 | Adams et al. | Jul 2008 | B2 |
7428827 | Maugendre et al. | Sep 2008 | B2 |
7441686 | Odajima et al. | Oct 2008 | B2 |
7448231 | Jeanvoine et al. | Nov 2008 | B2 |
7454925 | DeAngelis et al. | Nov 2008 | B2 |
7509819 | Baker et al. | Mar 2009 | B2 |
7578988 | Jacques et al. | Aug 2009 | B2 |
7581948 | Borders et al. | Sep 2009 | B2 |
7622677 | Barberree et al. | Nov 2009 | B2 |
7624595 | Jeanvoine et al. | Dec 2009 | B2 |
7748592 | Koga et al. | Jul 2010 | B2 |
7767606 | McGinnis et al. | Aug 2010 | B2 |
7778290 | Sacks et al. | Aug 2010 | B2 |
7781562 | Crawford et al. | Aug 2010 | B2 |
7802452 | Borders et al. | Sep 2010 | B2 |
7832365 | Hannum et al. | Nov 2010 | B2 |
7845314 | Smith | Dec 2010 | B2 |
7855267 | Crawford et al. | Dec 2010 | B2 |
8033254 | Hannum et al. | Oct 2011 | B2 |
8279899 | Kitabayashi | Oct 2012 | B2 |
8285411 | Hull et al. | Oct 2012 | B2 |
8707739 | Huber et al. | Apr 2014 | B2 |
8707740 | Huber et al. | Apr 2014 | B2 |
8875544 | Charbonneau | Nov 2014 | B2 |
20020086077 | Noller et al. | Jul 2002 | A1 |
20020134112 | Barrow et al. | Sep 2002 | A1 |
20020152770 | Becher et al. | Oct 2002 | A1 |
20020162358 | Jeanvoine et al. | Nov 2002 | A1 |
20020166343 | LeBlanc | Nov 2002 | A1 |
20030015000 | Hayes et al. | Jan 2003 | A1 |
20030029197 | Jeanvoine et al. | Feb 2003 | A1 |
20030037571 | Kobayashi et al. | Feb 2003 | A1 |
20040131988 | Baker et al. | Jul 2004 | A1 |
20040224833 | Jeanvoine et al. | Nov 2004 | A1 |
20050039491 | Maugendre et al. | Feb 2005 | A1 |
20050103323 | Engdal | May 2005 | A1 |
20060000239 | Jeanvoine | Jan 2006 | A1 |
20060174655 | Kobayashi et al. | Aug 2006 | A1 |
20060233512 | Aitken et al. | Oct 2006 | A1 |
20060257097 | Aitken et al. | Nov 2006 | A1 |
20060287482 | Crawford et al. | Dec 2006 | A1 |
20060293494 | Crawford et al. | Dec 2006 | A1 |
20060293495 | Crawford et al. | Dec 2006 | A1 |
20070106054 | Crawford et al. | May 2007 | A1 |
20070122332 | Jacques et al. | May 2007 | A1 |
20070130994 | Boratav et al. | Jun 2007 | A1 |
20070212546 | Jeanvoine et al. | Sep 2007 | A1 |
20070220922 | Bauer et al. | Sep 2007 | A1 |
20080035078 | Li | Feb 2008 | A1 |
20080227615 | McGinnis et al. | Sep 2008 | A1 |
20080256981 | Jacques et al. | Oct 2008 | A1 |
20080276652 | Bauer et al. | Nov 2008 | A1 |
20080293857 | Crawford et al. | Nov 2008 | A1 |
20090042709 | Jeanvoine et al. | Feb 2009 | A1 |
20090220899 | Spangelo et al. | Sep 2009 | A1 |
20100064732 | Jeanvoine et al. | Mar 2010 | A1 |
20100087574 | Crawford et al. | Apr 2010 | A1 |
20100089383 | Cowles | Apr 2010 | A1 |
20100120979 | Crawford et al. | May 2010 | A1 |
20100143601 | Hawtof et al. | Jun 2010 | A1 |
20100227971 | Crawford et al. | Sep 2010 | A1 |
20100236323 | D'Angelico et al. | Sep 2010 | A1 |
20100300153 | Zhang et al. | Dec 2010 | A1 |
20100304314 | Rouchy et al. | Dec 2010 | A1 |
20100307196 | Richardson | Dec 2010 | A1 |
20100326137 | Rouchy et al. | Dec 2010 | A1 |
20110054091 | Crawford et al. | Mar 2011 | A1 |
20110061642 | Rouchy et al. | Mar 2011 | A1 |
20110088432 | Purnode et al. | Apr 2011 | A1 |
20110107670 | Galley et al. | May 2011 | A1 |
20110236846 | Rue et al. | Sep 2011 | A1 |
20130086944 | Shock et al. | Apr 2013 | A1 |
20130086951 | Charbonneau et al. | Apr 2013 | A1 |
20130086952 | Charbonneau et al. | Apr 2013 | A1 |
20130283861 | Mobley et al. | Oct 2013 | A1 |
20130327092 | Charbonneau | Dec 2013 | A1 |
Number | Date | Country |
---|---|---|
196 19 919 | Aug 1997 | DE |
100 29 983 | Sep 2003 | DE |
10 2005 033330 | Aug 2006 | DE |
0 181 248 | Oct 1989 | EP |
1337789 | Dec 2004 | EP |
1 990 321 | Nov 2008 | EP |
2 133 315 | Dec 2009 | EP |
1986966 | Apr 2010 | EP |
1667934 | Feb 2011 | EP |
2 740 860 | Sep 1997 | FR |
191301772 | Jan 1914 | GB |
191407633 | Jan 1914 | GB |
164073 | May 1921 | GB |
1208172 | Jul 1989 | IT |
114827 | Jul 1999 | RO |
9855411 | Dec 1998 | WO |
2008103291 | Aug 2008 | WO |
2009091558 | Jul 2009 | WO |
2010011701 | Jan 2010 | WO |
2010045196 | Apr 2010 | WO |
Entry |
---|
Furman, BJ, ME 120 Experimental Methods Vibration Measumment, San Jose University Department of Mechanical and Aerospace Engineering, dated 2005. |
Higley, BA, Glass Melter System Technologies for Vitrification of High-Sodium Content Low-Level, Radioactive, Liquid Wastes—Phase I: SBS Demonstration With Simulated Low-Level Waste—Final Test Report, Westinghouse Hanford Company, dated 1995. |
Report for Treating Hanford LAW and WTP SW Simulants: Pilot Plant Mineralizing Flowsheet Apr. 2009, Department of Energy Environmental Management Consolidated Business Center by THOR Treatment Technologies, LLC. |
Olabin, V.M. et al., “Submerged Combustion Furnace for Glass Melts,” Ceramic Engineering and Science Proceedings, Jan. 1, 1996, pp. 84-92, vol. 17—No. 2, American Ceramic Society Inc., US. |
“Glass Industry of the Future”, United States Department of Energy, report 02-GA50113-03, pp. 1-17, Sep. 30, 2008. |
“Glass Melting Technology—A Technical and Economic Assessment”, 2004, U.S. Department of Energy, pp. 1-292. |
Number | Date | Country | |
---|---|---|---|
20150329400 A1 | Nov 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13268028 | Oct 2011 | US |
Child | 14486797 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14486797 | Sep 2014 | US |
Child | 14813496 | US |