The present application is a 35 U.S.C. §§371 national phase conversion of PCT/JP2010/061915, filed Jul. 14, 2010, which claims priority of Japanese Patent Application No. 2009-165869, filed Jul. 14, 2009, and Japanese Patent Application No. 2009-226713, filed Sep. 30, 2009, the contents of which are incorporated herein by reference. The PCT International Application was published in the Japanese language.
The present invention relates to a burner apparatus that combusts air-fuel mixture of an oxidizing agent and fuel.
Minute particles (particulate matter) are contained in exhaust gas from a diesel engine and the like. The adverse effects on the environment when these minute particles are discharged into the atmosphere are a cause for serious concern. As a consequence, in recent years, a filter that is used to remove the minute particles from the exhaust gas (DPF) has been mounted on vehicles powered by the diesel engine and the like.
This filter is formed from ceramics and the like that are porous material which is provided with a plurality of holes which are smaller than the minute particles. This filter obstructs the passage of the minute particles, and collects the minute particles.
However, when the filter like this has been used for a prolonged period, the collected minute particles are accumulated therein and the filter becomes clogged.
In order to prevent the filter like this from becoming clogged, as is shown, for example, in Patent Document 1, the method is used in which high-temperature gas is supplied to the filter so that the collected minute particles in the filter are burned and removed.
Specifically, in Patent Document 1, a burner apparatus is placed between the diesel engine and the filter. Air-fuel mixture which exhaust gas and fuel were mixed is combusted in the burner apparatus so as to generate high-temperature gas. The minute particles are burned by supplying this high-temperature gas to the filter.
In the above-described burner apparatus, fuel which is injected from a fuel injection system is mixed together with exhaust gas or the outside air which is supplied as an oxidizing agent so as to create air-fuel mixture. This air-fuel mixture is heated to its ignition temperature or more by an ignition system, thereby air-fuel mixture is ignited. The flame created by this ignition is maintained so as to continue the combustion.
However, if the flow rate of the oxidizing agent and the like supplied to the ignition system is high, then the flow rate of the air-fuel mixture supplied to the combustion chamber becomes high. In this case, there is a possibility that the combustion state in the combustion chamber will become unstable.
The present invention was conceived in view of the above described problems, and it is an object thereof to provide a burner apparatus that is able to stabilize the combustion state of air-fuel mixture, and to also generate high-temperature gas stably.
The present invention employs the following structure as a means of solving the above-described problems.
The first aspect of the present invention is a burner apparatus that combusts air-fuel mixture of an oxidizing agent and fuel. This burner apparatus includes a partitioning component that separates an ignition chamber where the air-fuel mixture is ignited and a combustion holding chamber where the combustion of the air-fuel mixture is maintained such that the air-fuel mixture is able to pass between them. This partitioning component adjusts the flow rate of the air-fuel mixture that is supplied from the ignition chamber to the combustion holding chamber.
The second aspect of the present invention may employ the structure in which, in the above first aspect of the present invention, the partitioning component enables the air-fuel mixture to flow from the ignition chamber to the combustion holding chamber such that it collides with a flow of an oxidizing agent supplied from the outside to the combustion holding chamber.
The third aspect of the present invention may employ the structure in which, in the above first or second aspect of the present invention, the partitioning component is provided with through-holes that are communicated with both the ignition chamber and the combustion holding chamber, and enables the air-fuel mixture to flow from the ignition chamber to the combustion holding chamber through these through-holes.
The fourth aspect of the present invention may employ the structure in which, in any one of the above first through third aspects of the present invention, there is provided with a combustion assisting component that is placed in the combustion holding chamber.
The fifth aspect of the present invention may employ the structure in which, in any one of the above first through fourth aspects of the present invention, there is provided with a partitioning wall that separates at least the combustion holding chamber from an outer wall that is in contact with the outside air.
In a conventional burner apparatus, because the ignition chamber and the combustion holding chamber are not partitioned, it is not possible to adjust the flow rate of the air-fuel mixture supplied to the combustion holding chamber.
In contrast to this, in the burner apparatus of the present invention, the ignition chamber and the combustion holding chamber are partitioned by a partitioning component such that the air-fuel mixture is able to pass between them. Because of this, it is possible to adjust the flow rate of the air-fuel mixture supplied from the ignition chamber to the combustion holding chamber. In other words, it is possible to adjust the flow rate of the air-fuel mixture supplied to the combustion holding chamber to a flow rate at which the combustion in the combustion holding chamber is stabilized.
Therefore, according to the burner apparatus of the present invention, it is possible to stabilize the combustion state of air-fuel mixture, and to also generate high-temperature gas stably.
Hereinafter, an embodiment of a burner apparatus related to the present invention will be described with reference made to the drawings. Note that in the following drawings, the scales of respective components have been suitably altered in order to describe each component in a recognizable size.
This burner apparatus S1 is connected to an exhaust outlet of an apparatus that expels exhaust gas such as a diesel engine or the like which is located on the upstream side of the burner apparatus S1. This burner apparatus S1 mixes together supplied exhaust gas X (i.e., an oxidizing agent) and fuel, and then combusts them so as to generate high-temperature gas Z. It also supplies this high-temperature gas Z to a downstream-side filter. The burner apparatus S1 is located, for example, between the diesel engine and a particulate filter, and is provided with a supply flow path 1 and a combustion unit 2.
The supply flow path 1 is a flow path which is used to supply the exhaust gas X, which is supplied from the diesel engine or the like, directly to the filter. This supply flow path 1 is formed in a circular cylinder-shaped pipe. One end portion of this supply flow path 1 is connected to an exhaust outlet of the diesel engine or the like, while the other end portion thereof is connected to the filter.
The combustion unit 2 is connected to the supply flow path 1. This combustion unit 2 mixes together a part of the exhaust gas X which flows through the supply flow path 1 and fuel therein, and then combusts them so as to generate high-temperature gas. This combustion unit 2 is provided with a pipe body 4, a fuel supply portion 5, an ignition system 7, a partitioning component 8, and a combustion supporting air supply apparatus 9.
The pipe body 4 is a pipe-shaped component which forms the outer shape of the combustion unit 2, and has a hollow interior. This pipe body 4 is connected to the supply flow path 1 in a perpendicular direction relative to the direction in which the supply flow path 1 extends.
The fuel supply portion 5 is provided with a fuel holding portion 5a which is located at the distal end of the ignition system 7, and with a supply portion 5b which is used to supply fuel to the fuel holding portion 5a. The fuel holding portion 5a is formed, for example, from metal, sintered metal, metal fibers, glass fabric, a ceramic porous body, ceramic fibers, or pumice or the like.
The ignition system 7 includes a glow plug which is a heater which is heated to a temperature equal to or greater than the ignition temperature of the air-fuel mixture of fuel and the exhaust gas X, and a distal end portion thereof is surrounded by the fuel holding portion 5a.
The partitioning component 8 partitions the interior of the pipe body 4 into an exhaust gas flow path R1 through which exhaust gas X supplied from the supply flow path 1 flows, an ignition chamber R2 where the ignition system 7 is located, and a combustion holding chamber R3 where the combustion of the air-fuel mixture Y is maintained. This partitioning component 8 is provided with a central plate 8a which extends vertically in a central portion of the pipe body 4 and which is located away from a bottom surface of the pipe body 4. As is shown in
As is shown in
This partitioning component 8 is positioned so that a gap is formed between itself and the pipe body 4, and causes the air-fuel mixture Y to pass from the ignition chamber R2 to the combustion holding chamber R3 through this gap. As a result, the flow rate of the air-fuel mixture Y is adjusted to a flow rate at which the combustion in the combustion holding chamber R3 is stabilized.
The partitioning component 8 causes the air-fuel mixture Y to flow from below toward above through the gap opened adjacent to the pipe body 4. Because of this, the air-fuel mixture Y is made to collide with the flow of the exhaust gas X (i.e., the flow of an oxidizing agent) which is supplied from above the combustion holding chamber R3 (i.e., outside) along the side wall of the pipe body 4 to the combustion holding chamber R3.
Note that the cross-sectional area of the flow passage from the exhaust gas flow path R1 to the ignition chamber R2 is preferably larger than the cross-sectional area of the flow passage from the ignition chamber R2 to the combustion holding chamber R3. By doing this, the ignition chamber R2 is kept constantly full of gas, and the flow rate of fluid in the ignition chamber R2 is reduced so that the ignitability thereof is improved.
The combustion supporting air supply apparatus 9 accessorily supplies air to the interior of the pipe body 4 (i.e., to the exhaust gas flow path R1) as necessary. This combustion supporting air supply apparatus 9 is provided with an air supply apparatus which supplies air, and with piping and the like which connect this air supply apparatus to the interior of the pipe body 4.
In the burner apparatus S1 of the present embodiment, the exhaust gas X which flows from the supply flow path 1 to the exhaust gas flow path R1 is supplied as an oxidizing agent from the exhaust gas flow path R1 to the ignition chamber R2.
Meanwhile, the ignition system 7 is heated under the control of a control unit (not shown), and fuel which is supplied from the supply portion 5b to the fuel holding portion 5a is volatilized in the ignition chamber R2.
Next, the air-fuel mixture Y is created by mixing the exhaust gas X supplied to the ignition chamber R2 together with the volatilized fuel, and this air-fuel mixture Y is then ignited by being heated to a temperature equal to or more than its ignition temperature by the ignition system 7.
Note that the cross-sectional area of the flow passage from the exhaust gas flow path R1 to the ignition chamber R2 is set to be larger than the cross-sectional area of the flow passage from the ignition chamber R2 to the combustion holding chamber R3. By doing this, the ignition chamber R2 is kept constantly full of gas, and the flow rate of fluid in the ignition chamber R2 is reduced. Accordingly, it is possible to easily ignite the air-fuel mixture Y in the ignition chamber R2.
When the air-fuel mixture Y is ignited in the ignition chamber R2 in this manner, the flame created by this ignition is propagated to the combustion holding chamber R3 together with uncombusted air-fuel mixture Y. As a result of this, a flame F is created in the combustion holding chamber R. Uncombusted air-fuel mixture Y and the exhaust gas X supplied from above the combustion holding chamber R3 are supplied to the flame F, resulting in the flame F being maintained and combusted stably. In addition, by this flame F being maintained, then the high-temperature gas Z can be generated stably.
Here, in the burner apparatus S1 of the present embodiment, the ignition chamber R2 and the combustion holding chamber R3 are partitioned by the partitioning component 8 such that the air-fuel mixture Y is able to pass between them. Furthermore, the flow rate of the air-fuel mixture Y supplied from the ignition chamber R2 to the combustion holding chamber R3 is adjusted to a flow rate at which the combustion in the combustion holding chamber R3 is stabilized.
Therefore, according to the burner apparatus S1 of the present embodiment, it is possible to stabilize the combustion state of the air-fuel mixture Y, and to also generate the high-temperature gas Z stably.
Moreover, in the burner apparatus S1 of the present embodiment, the air-fuel mixture Y which is supplied from the ignition chamber R2 to the combustion holding chamber R3 collides with the exhaust gas X which is supplied to the combustion holding chamber R3 from above. Consequently, it is possible to reduce the flow rates of the exhaust gas X and the air-fuel mixture Y in the combustion holding chamber R3, and the combustion taking place in the combustion holding chamber R3 can be made to proceed more stably.
Next, the second embodiment of the present invention will be described. Note that in the description of the present embodiment, any description of structure that is the same as in the above described first embodiment is either omitted or simplified.
The combustion assisting component 10 assists the combustion in the combustion holding chamber R3, and inhibits any poor burning of the flame F.
For this combustion assisting component 10, it is possible to use a ceramic porous body that maintains the temperature of the combustion holding chamber at a high temperature by being heated by the flame F to equal to or more than the ignition temperature, or a catalyst or the like that is self-burned by being heated so as to inhibit any poor burning of the flame F.
According to the burner apparatus S2 of the present embodiment which has the above described structure, because the combustion in the combustion holding chamber R3 is assisted by the combustion assisting component 10, it is possible to further stabilize the combustion in the combustion holding chamber R3.
Next, the third embodiment of the present invention will be described. Note that in the description of the present embodiment as well, any description of structure that is the same as in the above described first embodiment is either omitted or simplified.
As is shown in
According to the burner apparatus S3 of the present embodiment which has the above described structure, the pipe body 4 which is cooled to a low temperature to be exposed to the outside air is separated by the partitioning wall 20 via the spaces K from the combustion holding chamber R3. Consequently, it is possible to prevent the combustion holding chamber R3 from being cooled, and to further stabilize the combustion in the combustion holding chamber R3.
Next, the fourth embodiment of the present invention will be described. Note that in the description of the present embodiment as well, any description of structure that is the same as in the above described first embodiment is either omitted or simplified.
As is shown in this figure, the side plate 8b of the present embodiment is in contact with and is connected to the entire side wall of the pipe body 4 so as to entirely close off the space on the combustion holding chamber R3 side in the interior spaces of the pipe body 4 which have been divided in half by a central plate 8a. Furthermore, circular holes 8A (i.e., through-holes) that enable the air-fuel mixture Y to pass through are formed in the side plate 8b.
A majority of the circular holes 8A are formed on the central plate 8a side (i.e., the upstream side), in contrast a minority of the circular holes 8A are formed on the inner wall side (i.e., the downstream side) of the pipe body 4. As a result, the opening area created by the circular holes 8A in the side plate 8b is relatively large on the upstream side in the flow direction of the air-fuel mixture Y, and is relatively small on the downstream side thereof.
According to the burner apparatus S4 of the present embodiment which employs the above described structure, the air-fuel mixture Y is supplied to the combustion holding chamber R3 through the narrow circular holes 8A. As a consequence, the flow of the air-fuel mixture Y is stirred, so that the mixing of the air-fuel mixture Y in the combustion holding chamber R3 is accelerated, and a preferable combustion of the air-fuel mixture can be achieved.
Moreover, in the burner apparatus S4 of the present embodiment, the opening area in the side plate 8b is relatively large on the upstream side in the flow direction of the air-fuel mixture Y, and is relatively small on the downstream side thereof. As a consequence, a more quantity of the air-fuel mixture Y is supplied to the combustion holding chamber R3 from the upstream side of the side plate 8b. As a result, it is possible to supply the air-fuel mixture Y to the combustion holding chamber R3 without obstructing the gas flow in the combustion holding chamber R3.
Note that it is preferable for the opening area on the upstream side of the side plate 8b to be approximately 1.5 times the opening area on the downstream side thereof.
It is also desirable for the sum of the areas of all of the circular holes 8A to be between 5% and 20% of the internal cross-sectional area of the pipe body 4a.
Moreover, in the present embodiment, the through-holes are in the form of the circular holes 8A, however, for example, as is shown in
In this case as well, it is preferable for the opening area in the side plate 8b to be relatively large on the upstream side in the flow direction of the air-fuel mixture Y, and to be relatively small on the downstream side thereof. It is also preferable to make the elongated holes 8B on the upstream side in the flow direction of the air-fuel mixture Y relatively long, and to make the elongated holes 8B on the downstream side thereof relatively short.
Preferred embodiments of the present invention have been described above with reference made to the figures, however, the present invention is not limited to the above embodiments. The various configurations and combinations and the like of the respective component elements illustrated in the above described embodiments are merely examples thereof. Various modifications and the like to the present invention may be made based on the design requirements and the like insofar as they do not depart from the spirit or scope of the present invention.
For example, in the above described embodiments, the air-fuel mixture Y flows from the ignition chamber R2 to the combustion holding chamber R3 through the gap that is formed by the side plate 8b being separated from the side surface of the pipe body 4.
However, the present invention is not limited to this. For example, it is also possible to form the horizontal cross-sectional shape of the pipe body 4 as a square shape, and to place the side plate 8b in contact with the side surface of the pipe body 4. Additionally, as is shown in
When the structure shown in
By employing the structure like this, the combustion in the combustion holding chamber R3 is stabilized.
Moreover, as is shown in
In addition, it is also possible to enable the air-fuel mixture Y to flow from the ignition chamber R2 to the combustion holding chamber R3 by forming the side plate 8b, for example, into a fine mesh.
Moreover, in the above described embodiments, the combustion supporting air supply apparatus 9 is provided. However, when the density of the oxygen contained in the exhaust gas X is sufficiently high, it is possible to omit the combustion supporting air supply apparatus 9.
Furthermore, in the above described embodiments, the exhaust gas X is used as an oxidizing agent.
However, the present invention is not limited to this and it is also possible to use air as an oxidizing agent.
In this case, for example, an end portion of the exhaust gas flow path R1 that is connected to the supply flow path 1 may be closed, and air may be supplied from the combustion supporting air supply apparatus 9 not as an auxiliary, but as a main oxidizing agent.
Moreover, as is shown in
Note that in
Furthermore, in the above described embodiments, the supply portion 5b which is connected to the fuel holding portion 5a is used. However, the present invention is not limited to this and it is also possible to use a supply portion that sprays fuel onto the fuel holding portion 5a.
In the burner apparatus of the present invention, an ignition chamber and a combustion holding chamber are partitioned by a partitioning component so that air-fuel mixture is able to pass between them. Because of this, it is possible to adjust the flow rate of the air-fuel mixture supplied from the ignition chamber to the combustion holding chamber. In other words, it is possible to adjust the flow rate of the air-fuel mixture supplied to the combustion holding chamber to a flow rate at which the combustion in the combustion holding chamber is stabilized. Therefore, according to the burner apparatus of the present invention, it is possible to stabilize the combustion state of the air-fuel mixture, and to also generate high-temperature gas stably.
Number | Date | Country | Kind |
---|---|---|---|
P2009-165869 | Jul 2009 | JP | national |
P2009-226713 | Sep 2009 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP2010/061915 | 7/14/2010 | WO | 00 | 12/6/2011 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2011/007808 | 1/20/2011 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4951464 | Eickhoff et al. | Aug 1990 | A |
5056501 | Ida | Oct 1991 | A |
5379592 | Waschkuttis | Jan 1995 | A |
5829248 | Clifton | Nov 1998 | A |
5846067 | Nishiyama et al. | Dec 1998 | A |
20090178394 | Crane, Jr. | Jul 2009 | A1 |
Number | Date | Country |
---|---|---|
1416517 | May 2003 | CN |
1540143 | Oct 2004 | CN |
1633550 | Jun 2005 | CN |
1982661 | Jun 2007 | CN |
10 2004 048 335 | Apr 2006 | DE |
8-093555 | Apr 1996 | JP |
8-233226 | Sep 1996 | JP |
8-260944 | Oct 1996 | JP |
2000-110548 | Apr 2000 | JP |
2005-265344 | Sep 2005 | JP |
2007-154772 | Jun 2007 | JP |
10-0230940 | Aug 1999 | KR |
2003-0040183 | May 2003 | KR |
10-0515013 | Sep 2005 | KR |
Entry |
---|
International Search Report and Written Opinion mailed Oct. 12, 2010 in corresponding PCT International Application No. PCT/JP2010/061915. |
Supplementary Search Report dated Mar. 20, 2012 issued in corresponding European Application No. 10799866.8 (5 pages). |
Office Action dated Jun. 28, 2013 issued in corresponding Canadian Patent Application No. 2,767,366. |
Chinese Office Action issued in corresponding Chinese Application No. 201080031286.X mailed on Oct. 17, 2013 (with English translation of Search Report only). |
Notice of Allowance issued in corresponding Korean Application No. 10-2011-7031476 mailed on Oct. 28, 2013 (with English translation). |
Number | Date | Country | |
---|---|---|---|
20120096840 A1 | Apr 2012 | US |