Digital projectors, such as digital mirror devices (DMD) and liquid crystal display (LCD) projectors, project high-quality images onto a viewing surface. Both DMD and LCD projectors utilize high-intensity lamp assemblies to generate the light needed for projection. Light generated by the lamp assembly is created by a burner that produces light concentrated as a “fireball,” located at a focal point of a reflector. This light is directed into a projection assembly that produces images and utilizes the generated light to form the image. The image is then projected onto a viewing surface. Misalignment of the focal point causes degradation of the image, since less light is captured, and creates “hot spots” on the screen instead of a uniform brightness.
Efforts have been directed at making projectors more compact while making the image of higher and better quality. As a result, the burners utilized have become more compact and of higher intensity. Higher intensity burners produce high, even extreme heat. The outer surface of the burners can approach temperatures of 900° C. As a result, projector designs must account for the intense heat. In addition, losses due to misalignment of the fireball with respect to the reflector are amplified in systems utilizing high-intensity burners.
Some designs attempt to account for the heat by permanently placing the burner within the reflector. The use of a high temperature “epoxy” holds the burner relative to the reflector. When the burner has surpassed its useful life, the entire lamp assembly, including the costly reflector and burner, is discarded and replaced with a new assembly.
Recent efforts have been directed to replaceably coupling the burner to the reflector. These designs frequently make use of a header that includes electrical connections and that provides alignment for the burner relative to the reflector. Metal electrical connections placed on the header may cause the electrical connections to heat as the burner heats up. The elevated temperature of the burner may increase the oxidation and/or corrosion rate of the contacts.
A burner assembly includes a burner, a header coupled to the burner, a holder coupled to the header, contacts coupled to the holder, and electrical connections coupling the contacts to the burner.
The accompanying drawings illustrate various embodiments of the present apparatus and method and are a part of the specification. The illustrated embodiments are merely examples of the present apparatus and method and do not limit the scope of the disclosure.
Throughout the drawings similar elements in different embodiments are designated with similar prefixes and different suffixes. Identical reference numbers designate similar, but not necessarily identical, elements.
Burner assemblies, lamp assemblies, and methods of forming such are provided herein that include burners, headers, and holders. These assemblies and methods place the holder contacts at a location that is relatively remote from the burner. The separation of the burner and the holder contacts may allow for the use of a relatively simple header.
Further, such a separation may allow for the use of relatively inexpensive materials for the holder contacts due to the lower temperature associated at the offset location. In addition, the offset may provide space to use relatively simple coupling operations to couple the burner leads to the holder contacts, such as by crimping the burner leads to the flexible wires.
A general display system will first be discussed, followed by the interaction of another exemplary burner assembly associated with a display system. The exemplary burner assembly is then discussed in more detail, as well as suitable methods for forming the burner assembly.
In the following description, for purposes of explanation, numerous specific details are set forth in order to provide a thorough understanding of the present method and apparatus. It will be apparent, however, to one skilled in the art, that the present method and apparatus may be practiced without these specific details. Reference in the specification to “one embodiment” or “an embodiment” means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment. The appearance of the phrase “in one embodiment” in various places in the specification are not necessarily all referring to the same embodiment.
Display System
In particular, the burner assembly (20) includes a burner (40) coupled to a header (45). The header (45) provides support and alignment for the burner (40) relative to the reflector (25). The burner assembly (20) also includes a holder (50) coupled to the header (45). Electrodes extend from the burner (40), through the header (45) and holder (50) to holder contacts (55-1, 55-2) on the holder (50). Accordingly, the burner connections (55-1, 55-2) are located remotely from the burner (40) and the header (45).
The burner assembly (20) is configured to be replaceably coupled to the reflector (25). According to one exemplary embodiment, the housing (27) has an opening defined therein that corresponds closely to the cross sectional shape of the holder (50). The burner (40) and header (45) may thus be inserted into the opening until the holder (50) comes into contact with the opening. The holder (50) is then slid toward the reflector (25) until the header (45) comes into contact with the reflector (25).
The housing (27) includes housing contacts coupled to the power source (15). These housing contacts are located such that when the burner (40) is thus coupled to the reflector (25), the housing contacts are in contact with the holder contacts (55-1, 55-2) on the holder (50), thereby coupling the power source (15) to the burner (40). Thus, the power source (15) is able to provide power to the burner (40) when the burner assembly (20) is coupled to the housing (27).
The burner (40) generates light when it receives power from the power source (15). This light is directed by the reflector (25) to the projection assembly (30). The projection assembly (30) modulates the light to form images that are projected onto the viewing surface (35).
The burner (40) emits concentrated light from a central portion or fireball generator (60). In some embodiments, the optimal operating position of the fireball generator (60) is the focal point of the reflector (25) during operation of the burner (40). Frequently, as the burner (40) is heated from a non-operating temperature to an operating temperature, the fireball generator (60) will change positions in response to heating or gravitational effects.
Accordingly, with some embodiments, once the burner (40) is cool, the position of the fireball generator (60) is offset slightly from the focal point to account for such heating or gravitational effects during operation. The interaction of a burner assembly with a reflector and housing and the orientation of that burner will be discussed in more detail below.
Lamp Assembly
The burner assembly (200) is shown schematically to focus on the electrical connections contained therein. The burner (210) is coupled to the header (220), which is in turn coupled to the holder assembly (230). A first burner lead (235-1) extends from the distal end of the burner (210), through the header and into the holder assembly (230). The proximal end of the burner (210) extends through the header (220) and into the holder assembly (230). A second burner lead (235-2) extends from this proximal end of the burner (210) and into the holder assembly (230). Accordingly, the first and second burner leads (235-1, 235-2) are routed into the holder assembly (230)
More specifically, the burner leads (235-1, 235-2) are routed near first and second holder contacts (240-1, 240-2). Flexible wires (245-1, 245-2) extend from the first and second holder contacts (240-1, 240-2) to burner leads (235-1, 235-2). These flexible wires (245-1, 245-2) are coupled to the burner leads (235-1, 235-2) by crimping couplers (270). While crimping couplers (270) may be used to couple the burner leads (235-1, 235-2), any other suitable method may be used, such as spot welding, etc. The flexible wires (245-1, 245-2) may allow relative motion between the header (220) and the holder assembly (230) while reducing the possibility that the burner leads (235-1, 235-2) will be decoupled from the flexible wires (245-1, 245-2) and hence the holder contacts (240-1, 240-2).
In addition, the flexible wires (245-1, 245-2) may allow relative displacement between the holder contacts (240-1, 240-2) and each of the side portions (245-1, 245-2) as the burner assembly (200) is coupled to the housing (205) and reflector (215). The interaction between the burner assembly (200) and the housing (205) and reflector (215) will now be discussed in more detail.
The first and second holder contacts (240-1, 240-2) according to one exemplary embodiment are located on guide rails (247). The guide rails (247) are located on opposing sides of the holder assembly (230). In
In particular, the housing contacts (250-1, 250-2) are located on the surface of a burner receiving portion (255) of the housing (205). The housing contacts (250-1, 250-2) are biased toward the center of the burner receiving portion (255). The burner receiving portion (255) includes an opening corresponding in size and shape to the cross section of the holder assembly (200). As a result, the holder assembly (230) is able to be placed within the lamp assembly such that the surfaces of the holder assembly (230) are in close proximity with the surfaces of the burner receiving portion.
As introduced, the header (220) is configured to be coupled to the reflector (215). To couple the header (220) to the reflector (215), the holder assembly (230) is advanced relative to the burner receiving portion (255) until the header (220) comes into contact with the reflector (215).
When the housing contacts (250-1, 250-2) come into physical contact with the holder contacts (240-1, 240-2), the holder contacts (240-1, 240-2) are displaced slightly in response to the biasing force applied thereto by the housing contacts (250-1, 250-2). This biasing force exerted by the housing contacts (250-1, 250-2) is balanced by a biasing force exerted by the holder contacts (240-1, 240-2) as the holder contacts (240-1, 240-2) are displaced. The opposing biasing forces, as noted by the arrows, may help ensure that the holder contacts (240-1, 240-2) remain coupled to the housing contacts (250-1, 250-2).
As previously discussed, flexible wires (245-1, 245-2) are used to couple the holder contacts (240-1, 240-2) to the burner leads (235-1, 235-2). As the holder contacts (240-1, 240-2) are displaced, the flexible wires (245-1, 245-2) flex relative to the relatively stiff burner leads (235-1, 235-2). Consequently, the flexible wires (245-1, 245-2) may decrease the possibility that the holder contacts (240-1, 240-2) will become decoupled from the burner leads (235-1, 235-2) and the burner (210).
When the burner assembly (200) is thus coupled to the housing (205), the burner (210) is able to receive power from a power source coupled to the housing contacts (250-1, 250-2). In particular, the power is directed to the burner (210) from the housing contacts (250-1, 250-2), to the holder contacts (240-1, 240-2), to the flexible wires (245-1, 245-2), to the burner leads (235-1, 235-2), and to opposing electrodes in the burner (210).
A voltage differential is thereby created at the opposing electrodes in the burner (210). This voltage differential creates a fireball in a central portion (260) of the burner. In the case of a UHP burner, the burner includes a mercury vapor or other vapor-filled tube that results in the generation of a plasma caused by an arc across the two electrodes. The reflector (215) then directs the light out of the lamp assembly (17-1).
Accordingly, the burner assembly (200) places the holder contacts at a location that is relatively remote from the burner. As previously discussed, the separation of the burner and the holder contacts may allow for the use of a relatively simple header. Further, such a separation may allow for the use of relatively inexpensive materials for the holder contacts due to the lower temperature associated at the offset location. In addition, the offset may provide space to use relatively simple coupling operations to couple the burner leads to the holder contacts, such as by crimping the burner leads to the flexible wires.
Burner Assembly
The burner (210) is coupled to the header (220). In particular, the burner (210) may be aligned relative to the header (210) and secured in place using a high temperature adhesive. Thereafter, the burner leads (235-1, 235-2) may be coupled to the burner (210). The first burner lead (235-1) may then be routed through the header (220).
As previously discussed, the header (220) provides structural support and alignment of the burner (210). The header (220) may be made of any thermally stable material. For example, the header (220) may be made of solid ceramic material. The header (220), with the burner (210) and leads (235-1; 235-2, best seen in
In particular, the holder assembly (230) includes a generally hollow box-type structure formed by opposing side portions (300, 310), a top portion (320) a bottom portion (330), and first and second end portions (340, 350). The second end portion (340) is configured to have the header (220) coupled thereto. The opposing side portions (300, 310), the bottom portion (330) and the second end portion (340) may be formed as a base member (400), as seen in
Turning now to
Thereafter, the top portion (320;
Accordingly, the configuration of the burner assembly (200) places the holder contacts (240-1, 240-2) at a location that is relatively remote from the burner (210). The separation of the burner (210) and the holder contacts (240-1, 240-2) may allow for the use of a relatively simple header (220). Further, such a separation may allow for the use of relatively inexpensive materials for the holder contacts (240-1, 240-2) due to the lower temperature associated at the offset location. In addition, the offset may provide space to use relatively simple coupling operations to couple the burner leads (235-1, 235-2) to the holder contacts (240-1, 240-2), such as by crimping the burner leads (235-1, 235-2) to the flexible wires (245-1, 245-2).
In addition, the holder assembly (200) may provide an indication of the proper orientation thereof. In particular, the second end portion (350) has an indicator (360) formed thereon. According to the illustrated exemplary embodiment, the indicator (360), points in a generally upward direction when the burner assembly (200) is properly coupled to a reflector.
In some embodiments, the optimal operating position of the central portion (260;
The indicator (360) helps a user maintain the burner assembly (200) properly oriented, regardless of the mounting configuration of the reflector (215). One exemplary mounting configuration for the display system (10;
However, when the display system (10;
The indicator (360) indicates to the proper orientation of the burner assembly (200;
In conclusion, burner assemblies, lamp assemblies, and methods are provided here that places the electrical contacts of the burner assemblies at a location that is relatively remote from the burner. As previously discussed, the separation of the burner and the holder contacts may allow for the use of a relatively simple header. Further, such a separation may allow for the use of relatively inexpensive materials for the holder contacts due to the lower temperature associated at the offset location. In addition, the offset may provide space to use relatively simple coupling operations to couple the burner leads to the holder contacts, such as by crimping the burner leads to the flexible wires.
The preceding description has been presented only to illustrate and describe the present method and apparatus. It is not intended to be exhaustive or to limit the disclosure to any precise form disclosed. Many modifications and variations are possible in light of the above teaching. It is intended that the scope of the invention be defined by the following claims.
The present application is a continuation in part of commonly assigned U.S. patent application Ser. No. 10/903,536 filed Jul. 29, 2004.
Number | Date | Country | |
---|---|---|---|
Parent | 10903536 | Jul 2004 | US |
Child | 11005928 | Dec 2004 | US |