Burner base

Information

  • Patent Grant
  • 10551056
  • Patent Number
    10,551,056
  • Date Filed
    Thursday, February 23, 2017
    8 years ago
  • Date Issued
    Tuesday, February 4, 2020
    5 years ago
Abstract
A burner base for a stacked burner assembly to secure a uniform distribution of gas flow. The burner base couples with a top burner cover and together define an internal gas mixture chamber. The burner base includes a barrier structure along a perimeter having a plurality of structural zones. A first structural zone includes a semi-circular barrier structure having a height that is taller at a middle portion than at the end portions. A second structural zone includes an arc structure having a height that is taller than the heights of adjacent structural zone heights. A third structural zone includes a semi-circular structure having a consistent height along the structure. A fourth structural zone includes a non-raised semi-circular structure. The barrier structure is configured to facilitate the distribution of the gas within the mixture chamber.
Description
FIELD OF THE DISCLOSURE

The present disclosure generally relates to a burner base having a geometry that contributes to flow distribution within the burner mixture chamber.


SUMMARY OF THE DISCLOSURE

One aspect provides a burner base for a burner assembly, where the burner base defines a bottom surface for a gas mixture chamber. The burner base includes a first barrier structure disposed along a perimeter of the gas mixture chamber, a second barrier structure disposed along the perimeter of the gas mixture chamber adjacent to the first barrier structure, and a third barrier structure disposed along a perimeter of the gas mixture chamber adjacent to the second barrier structure. Further, the first barrier structure, the second barrier structure and the third barrier structure have different geometries.


Another aspect provides a burner assembly that defines a gas mixture chamber. The gas mixture chamber includes a structural zone located radially outwardly from a gas injection port. The structural zone includes a geometry having a middle portion and two end portions, and the middle portion geometry of the structural zone is different than end portion geometries of the structural zone.


Still another aspect provides a burner body for a burner assembly, where the burner body defines at least a portion of a gas mixture chamber. The burner body includes a first barrier structure disposed along a perimeter of the burner body, a second barrier structure disposed along the perimeter of the burner body adjacent to the first barrier structure, and a third barrier structure disposed along a perimeter of the burner body adjacent to the second barrier structure. Further, the first barrier structure, the second barrier structure and the third barrier structure have different geometries.


These and other features, advantages, and objects of the present disclosure will be further understood and appreciated by those skilled in the art by reference to the following specification, claims, and appended drawings.





BRIEF DESCRIPTION OF THE DRAWINGS

Further advantages and features according to the present disclosure will become clear from the following detailed description provided as a non-limiting example, with reference to the attached drawings in which:



FIG. 1 is a top perspective view of a burner base, according to an embodiment of the present disclosure;



FIG. 2 is a top perspective view of a cooking appliance incorporating the burner base, according to an embodiment of the present disclosure;



FIG. 3 is a top view of the burner base, according to an embodiment of the present disclosure;



FIG. 4 is a top perspective view of a burner base assembly, according to an embodiment of the present disclosure;



FIG. 5 is a cross-sectional view of the burner base assembly, according to an embodiment of the present disclosure;



FIGS. 6A and 6B depict a side perspective view and a related cross-sectional view of the burner base, according to an embodiment of the present disclosure;



FIGS. 7A and 7B depict another side perspective view and a related cross-sectional view of the burner base, according to an embodiment of the present disclosure;



FIGS. 8A and 8B depict another side perspective view and a related cross-sectional view of the burner base, according to an embodiment of the present disclosure;



FIGS. 9A and 9B depict yet another side perspective view and a related cross-sectional view of the burner base, according to an embodiment of the present disclosure;



FIG. 10 depicts an exploded bottom perspective view of a burner assembly according to an embodiment described herein.





DETAILED DESCRIPTION

The present illustrated embodiments reside primarily in combinations of apparatus components related to a burner base 10 for a stack burner assembly 110, for use in a cooking appliance, such as cooking appliance 100. Accordingly, the apparatus components have been represented, where appropriate, by conventional symbols in the drawings, showing only those specific details that are pertinent to understanding the embodiments of the present disclosure. Further, like numerals in the description and drawings represent like elements.


It is to be understood that the disclosure may assume various alternative orientations, except where expressly specified to the contrary. It is also to be understood that the specific devices and processes illustrated in the attached drawings, and described in the following specification are simply exemplary embodiments of the inventive concepts defined in the appended claims. Hence, specific dimensions and other physical characteristics relating to the embodiments disclosed herein are not to be considered as limiting, unless the claims expressly state otherwise.


The terms “including,” “comprises,” “comprising,” or any other variation thereof, are intended to cover a non-exclusive inclusion, such that a process, method, article, or apparatus that comprises a list of elements does not include only those elements but may include other elements not expressly listed or inherent to such process, method, article, or apparatus. For example, an element proceeded by “comprises a . . . ” does not, without more constraints, preclude the existence of additional identical elements in the process, method, article, or apparatus that comprises the element.


For purposes of this disclosure, the term “coupled” (in all of its forms, couple, coupling, coupled, etc.) generally means the joining of two components directly or indirectly to one another. Such joining may be stationary in nature or movable in nature. Such joining may be achieved with the two components and any additional intermediate members being integrally formed as a single unitary body with one another or with the two components. Such joining may be permanent in nature or may be removable or releasable in nature unless otherwise stated.


Referring to the attached FIGS. 1-9B, the present disclosure provides a burner base for a burner assembly 110. As shown in the illustrated embodiment of FIGS. 4 and 5, burner base 10 may be coupled with a burner spreader 80, and, when positioned together, define a gas mixture chamber 112 within burner assembly 110. According to the present disclosure, burner base 10 may include a plurality of structural zones, each structural zone having a unique geometry to enable the distribution of gas around the burner assembly 110 and to facilitate an even flame for the burner. In at least one case, burner base 10 includes a first barrier structure 30 disposed in a first structural zone of a gas mixture chamber 112, a second barrier structure 40 disposed in a second structural zone of the gas mixture chamber 112, a third barrier structure 50 disposed in a third structural zone of the gas mixture chamber 112, and a fourth barrier structure 60 disposed in a fourth structural zone of the gas mixture chamber 112. The burner base 10 as well as other embodiments of gas burner assemblies contemplated herein will be discussed in more detail in the following paragraphs.


The disclosed burner base and burner assembly may be incorporated into a gas cooktop cooking appliance as would be known in the art. FIG. 2 illustrates an exemplary free-standing cooking appliance 100 with which the described embodiments may be incorporated. The illustrated cooking appliance 100 includes an outer body or cabinet 102, a cooktop surface 104, an access door 106 for access to an oven cavity (not shown). Cooktop surface 104 includes a plurality of burner assemblies 110, described in more detail below. Burner assemblies 110 may be enclosed by a cooktop rack 108 for resting a pan thereon, and may be controlled by various burner controls 109. It will be understood, however, that the herein described burner base 10 and burner assembly 110 may be applicable to other types of cooktops, including those which do not form a top portion of a free-standing cooking appliance 100 as shown in FIG. 2, but also those such as built-in cooktops or commercial grade cabinet cooktops. Therefore, cooking appliance 100 is provided by way of illustration only and is not intended to limit the application of the burner base 10 and burner assembly 110 as described herein.



FIGS. 1 and 3 depict a top perspective view and a top view, respectively, of a burner base 10 according to one embodiment described herein. Burner base 10 is configured as a portion of a burner assembly, such as burner assembly 110, which is configured to receive a gas injection for creating a cooking flame for cooking appliance 100. As described in more detail below, and referring to the embodiment depicted in FIGS. 4, 5, and 10, burner base 10 may be configured to receive a burner spreader 80, which together with burner base 10 creates a mixture chamber 112 formed in part by a bottom surface 18 of burner base 10 and a bottom surface 84 of burner spreader 80. Accordingly, because a surface of burner base 10 creates a portion of mixture chamber 112, the structural geometry of burner base 10 may affect the distribution of gas within mixture chamber 112.


In the illustrated embodiment, burner base 10 is configured as a substantially round disc that includes a perimeter edge structure 12 defining a portion of a perimeter of burner assembly 110. Perimeter edge structure 12 includes a top surface 14 as well as a barrier lip 13. Perimeter top surface 14 and barrier lip 13, together with openings 96 (FIG. 10) on bottom surface 84 of burner spreader 80 may serve as the exit structure through which a cooking flame may flow. In the central portion of burner base 10 an opening 17 may be defined with an internal perimeter lip 15. Internal perimeter lip 15, together with internal edge 87 of the bottom surface 84 of burner spreader 80 may create an internal barrier for gas mixture chamber 112.


According to one embodiment, the geometry of burner base 10 within mixture chamber 112 includes a sloped bottom surface 18 that extends from internal perimeter lip 15 down to first barrier structure 30, a second barrier structure 40, a third barrier structure 50, and fourth barrier structure 60. Burner base 10 also includes an ignition barrier structure 70, adjacent to an ignition passage 24. Ignition passage 24 may be coupled to an ignition source for burner assembly 110. For example, a spark may be introduced through ignition passage 24 to ignite gas contained within mixture chamber 112. Burner base 10 may also include one or more fixation apertures 20 for affixing burner base 10 or burner assembly 110 to a cooking appliance 100.


According to aspects of the present disclosure, a burner base may include structural features, geometries, and zones to help distribute the flow of gas within a mixture chamber in a predictable manner to create a more even flame around the associated burner assembly. For example, in some cases, a burner base may include one or more structural zones around a gas ignition port to help distribute the gas being released from the gas ignition port around the entirety of the burner assembly. In at least one case, as shown in the illustrated embodiment, burner base 10 may include at least four different structural zones to enable the distribution of gas. In the illustrated embodiment, burner base 10 includes a first structural zone having a first barrier structure 30, a second structural zone having a second barrier structure 40, a third structural zone having a third barrier structure 50, a fourth structural zone having a fourth barrier structure 60.



FIGS. 6A and 6B depict a top perspective view and a cross-sectional view, respectively, of a first structural zone having a first barrier structure 30 according to the illustrated embodiment. In particular, FIG. 6B is a top perspective cross-sectional view of first barrier structure 30 as shown across cross-sectional line VI B in FIG. 6A. The geometry of the first structural zone having first barrier structure 30 is situated around gas injection port 26, as shown in detail in FIG. 6B. Specifically, first structural zone includes sloped bottom surface 18 extending, at a high end, from internal perimeter lip 15 down to, and including, a first barrier structure 30 at a low end. As depicted, first barrier structure 30 includes a semi-circular projection above bottom surface 18 that is adjacent to perimeter top surface 14.


As illustrated, first barrier structure 30 includes a first end 32, a second end 34 and a middle section 36. First end 32 is proximate ignition barrier structure 70, and includes a first end height 33 as measured above bottom surface 18. Second end 34 is proximate second barrier structure 40, and includes a second end height 35 as measured above bottom surface 18. Middle section 36 is proximate gas injection port 26 and includes a middle section height 37 as measured above bottom surface 18. First barrier structure 30 may also include a top surface 38 which may be sloped or may be in the same plane as perimeter top surface 14. As illustrated in FIG. 6B, at first end 32, top surface 38 is in the same plane as perimeter top surface 14, and then gradually slopes down toward second end 34 such that there is a height difference at step down 39 between perimeter top surface 14 and top surface 38 at second end 34.


Referring to FIG. 6B, middle section height 37 may be different than first end height 33 and second end height 35. In at least one case, middle section height 37 is taller than first end height 33 as well as second end height 35. In still another case, first barrier structure 30 is symmetric such that the middle section height 37, directly proximate and on both sides of injection port 26, is substantially the same, and first end height 33 is substantially the same as second end height 35. In other cases, however, first barrier structure 30 and its associated heights may vary and not be perfectly symmetric around the entirety of the semi-circle.



FIGS. 7A and 7B depict a top perspective view and a cross-sectional view, respectively, of a second structural zone having a second barrier structure 40 according to the illustrated embodiment. More specifically, FIG. 7B is a top perspective cross-sectional view of second barrier structure 40 as shown across cross-sectional line VII B in FIG. 7A. Second barrier structure 40 may be located between first barrier structure 30 and third barrier structure 50, and may be diametrically opposite from ignition barrier structure 70. In one embodiment, the geometry of the second structural zone consists of a semi-circular arc structure that rises above bottom surface 18, with a peak or midpoint 43 oriented toward the center of burner base 10, a first end 46 proximate perimeter top surface 14, and a second end 48 proximate perimeter top surface 14.


As shown in detail in the embodiment depicted in FIG. 7B, second barrier structure 40 rises above bottom surface 18 at a plurality of heights. First, second barrier structure 40 defines a midpoint height 44 at midpoint 43 from bottom surface 18 to a top surface 42. Second barrier structure 40 also defines a first interface height 47 and a second interface height 49. First interface height 47 is defined between bottom surface 18 and top surface 42 where second barrier structure 40 interfaces with first barrier structure 30. Second interface height 49 is defined between bottom surface 18 and top surface 42 where second barrier structure 40 interfaces with third barrier structure 50. In some cases midpoint height 44 is different than first interface height 47 and second interface height 49. In at least one embodiment, midpoint height 44 is smaller than first interface height 47 and second interface height 49. In the illustrated embodiment, first interface height 47 and second interface height 49 are equal, and larger, than midpoint height 44. Further, as can be seen in FIG. 7B, in at least one embodiment, second end 48 of second barrier structure 40 rises above a top surface 52 of third barrier structure 50 more than first end 46 of second barrier structure 40 rises above top surface 38 of first barrier structure 30.



FIGS. 8A and 8B depict a top perspective view and a cross-sectional view, respectively, of a third structural zone having a third barrier structure 50 according to the illustrated embodiment. In particular, FIG. 8B is a top perspective cross-sectional view of third barrier structure 50 as shown across cross-sectional line VIII B in FIG. 8A. The geometry of the third structural zone having third barrier structure 50 is located between second barrier structure 40 and fourth barrier structure 60, along the perimeter of burner base 10. Specifically, third structural zone includes sloped bottom surface 18 extending, at a high end, from internal perimeter lip 15 down to a third barrier structure 50 at a low end. As depicted, third barrier structure 50 includes a semi-circular projection above bottom surface 18 that is adjacent to perimeter edge structure 12 and perimeter top surface 14.


Third barrier structure 50 includes a first end 54 and a second end 56. First end 54 interfaces with second barrier structure 40 and second end 56 interfaces with fourth barrier structure 60. According to the illustrated embodiment, third barrier structure extends above bottom surface 18 at a height 55. Third barrier structure 50 also includes a top surface 52 which may be sloped or may be in the plane that is parallel to perimeter top surface 14. As illustrated in FIG. 8B, top surface 52 is in a plane that is parallel to perimeter top surface 14, but is separated from perimeter top surface 14 by a distance 58.


Referring to FIG. 8B, in the illustrated embodiment, the height above bottom surface 18, i.e. height 57, is consistent along the length of third barrier structure 50. However, in other cases, a height along third barrier structure 50 may vary from the first end 54 to the second end 56 to produce different gas flow patterns within mixture chamber 112.



FIGS. 9A and 9B depict a top perspective view and a cross-sectional view, respectively, of a fourth structural zone having a fourth barrier structure 60 according to the illustrated embodiment. In particular, FIG. 9B is a top perspective cross-sectional view of fourth barrier structure 60 as shown across cross-sectional line IX B in FIG. 9A. The geometry of the fourth structural zone having fourth barrier structure 60 is located between third barrier structure 50 and ignition barrier structure 70, along the perimeter of burner base 10. Specifically, fourth structural zone includes sloped bottom surface 18 extending, at a high end, from internal perimeter lip 15 down to fourth barrier structure 60 at a low end. As depicted, fourth barrier structure 60 includes a semi-circular projection area extending away from bottom surface 18 to perimeter edge structure 12.


Fourth barrier structure 60 includes a first end 64 and a second end 66. First end 64 interfaces with third barrier structure 50 and second end 66 interfaces with ignition barrier structure 70. According to the illustrated embodiment, fourth barrier structure 60 extends away from bottom surface 18, without introducing a height to the fourth structural zone. Fourth barrier structure 60 also includes a top surface 62 which may be sloped or may be in a plane that is parallel to perimeter top surface 14. As illustrated in FIG. 9B, top surface 62 is in a plane that is parallel to perimeter top surface 14, but is separated from perimeter top surface 14 by a distance 68.



FIG. 9B also depicts ignition barrier structure 70, which is adjacent to fourth barrier structure 60 and ignition passage 24, which allows an ignition to be introduced into mixture chamber 112. In the illustrated embodiment, as discussed above, ignition barrier structure 70 may be located diametrically opposite from second barrier structure 40. Similar to the geometry of the second structural zone, ignition barrier structure 70 consists of a semi-circular arc structure that rises above bottom surface 18, with a peak or midpoint 73 oriented toward the center of burner base 10, a first end 76 proximate perimeter top surface 14, and a second end 78 proximate ignition passage 24.


Ignition barrier structure 70 rises above bottom surface 18 at a plurality of heights. First, ignition barrier structure 70 defines a midpoint height 74 at midpoint 73 from bottom surface 18 to a top surface 72. Ignition barrier structure 70 also defines a first end height 77 and a second end height 79. First end height 77 is defined between bottom surface 18 and top surface 72 where ignition barrier structure 70 interfaces with fourth barrier structure 60. Second end height 79 is defined between bottom surface 18 and top surface 72 where ignition barrier structure 70 interfaces with ignition passage 24. In some cases midpoint height 74 is different than first end height 77 and second end height 79. In at least one embodiment, midpoint height 74 is smaller than first end height 77 and second end height 79. In the illustrated embodiment, first end height 77 and second end height 79 are equal, and larger, than midpoint height 74. Further, as can be seen in FIG. 9B, in at least one embodiment, second end height 79 of ignition barrier structure 70 is substantially the same as the first end height 33 of first barrier structure 30. In other words, top surface 72 is in substantially the same plane as top surface 38 of first barrier structure 30 at the first end 32. In addition, according to the illustrated embodiment, at first end 76, top surface 72 of ignition barrier structure 70 is substantially higher than top surface 62 of fourth barrier structure 60. Further, top surface 72 is in substantially the same plane as perimeter top surface 14.



FIGS. 4, 5, and 10 depict burner spreader 80 of burner assembly 110 according to the illustrated embodiment. Burner spreader 80 includes a top surface 82 and a bottom surface 84 (FIG. 10). Top surface 82 includes a plurality of projections 92 that coincide with, and may be offset from, plurality of ridges 94 on the bottom surface 84. As can be seen in FIGS. 5 and 10, burner spreader 80 includes a central portion 86 that extends downward and is received within opening 17 of burner base 10. Accordingly, bottom surface 84 of burner spreader 80 and internal perimeter lip 15 create an upper barrier having a height 16 of mixture chamber 112. Ridges 94 of burner spreader 80 may further align with perimeter top surface 14 of burner base 10, creating openings 96 for gas and a cooking flame to be distributed around burner assembly 110. Burner spreader 80 further includes one or more securement apertures 88 that align with fixation apertures 20 of burner base 10 for securing burner assembly 110 to a cooktop appliance 100 or other cooktop surface. Burner assembly 110 may be secured with fasteners 90 as shown in FIG. 10 or other securement methods as would be known in the art.


When burner base 10 is coupled with a cover such as burner spreader 80, the various surface geometries of the burner base, together with the bottom surface 84 of burner spreader 80, may define the overall surface structure of mixture chamber 112. In operation, the overall surface structure of mixture chamber 112 may facilitate the flow of gas inside burner mixture chamber 112, enabling a cooking flame to exit the entire circular path of burner assembly 110. More specifically, the variable geometries of the first structural zone, the second structural zone, the third structural zone, and the fourth structural zone, as described herein, may create pressure differentials within mixture chamber 112 that effect the velocity and stability of the gas around the burner assembly 110. Thus, when gas is injected through injection port 26, and ignited by an ignition introduced through ignition passage 24, the pressure differentials created by the structural zones can serve to move the injected gas, and thus the cooking flame, consistently and stably around burner assembly 110.


As described above, the first barrier structure 30 of the first structural zone, the second barrier structure 40 of the second structural zone, the third barrier structure 50 of the third structural zone, the fourth barrier structure 60 of the fourth structural zone, as well as the ignition barrier structure 70, each comprise distinct surface geometries. Accordingly, in at least one embodiment, the radial cross-sectional area of the mixture chamber varies between the structural zones, and in some cases, varies along a single structural zone.


For example, in the illustrated embodiment, the variable height of first barrier structure 30 creates a variable radial cross-sectional area within mixture chamber 112 that causes gas injected through injection port 26 to be drawn away from middle section 36 and around the circle of burner base 10. In particular, because the middle section 36 of the first barrier structure 30 is taller (middle section height 37) than the first end 32 and the second end 34 (first end height 33 and second end height 35), a radial cross-sectional area of the middle section of the first structural zone is smaller than the radial cross-sectional areas at the ends of the first structural zone. Accordingly, the change in area, moving from the middle section, or proximate middle section 36, out to the ends, proximate first end 32 and the second end 34, creates a pressure differential. In at least one embodiment, due to the increase in the area of the mixture chamber 112, the pressure drops from the middle section 36 to the first end 32, and from the middle section to the second end 34. The pressure drop can cause the velocity of the gas to increase and the gas to be drawn from the gas injection port 26 and middle section 36 toward first end 32 and second end 34.


As previously discussed, second barrier structure 40 is geometrically similar to ignition barrier structure 70, which is located diametrically opposite from second barrier structure 40. Accordingly, second barrier structure 40 allows for the flow of gas at the first end 32 of first barrier structure 30 to mimic the flow of gas at the second end 34 of first barrier structure 30, creating a symmetrical flow at these locations within mixture chamber 112. Thus, in at least one embodiment, as the gas is moved toward the first end 32 and the second end 34 due to the geometry of the first structural zone, the symmetric structures of second barrier structure 40 and ignition barrier structure 70 help to ensure the symmetry and stability of the gas and cooking flame at the diametrically opposite areas of mixture chamber 112.


Third barrier structure 50, having a uniform height 57, creates a uniform geometry around the third structural zone as shown in FIG. 8B. This uniform geometry of mixture chamber 112 helps to create an even pressure in the zone opposite injection port 26 and reduces the volume of mixture chamber 112 as compared to the volumetric capacity at second end 34 of the first structural zone. Accordingly, the third barrier structure 50 creates yet another pressure differential, or drop in pressure, that causes gas to continue flowing around mixture chamber 112 from injection port 26 toward structural zone three and structural zone four, creating a steady, stable cooking flame around burner assembly 110.


It will be understood by one having ordinary skill in the art that construction of the described device and other components is not limited to any specific material. Other exemplary embodiments of the device disclosed herein may be formed from a wide variety of materials, unless described otherwise herein.


It is also important to note that the construction and arrangement of the various aspects of the burner base as shown in the exemplary embodiments is illustrative only. Although only a few embodiments of the present innovations have been described in detail in this disclosure, those skilled in the art who review this disclosure will readily appreciate that many modifications are possible (e.g., variations in sizes, dimensions, structures, shapes and proportions of the various elements, values of parameters, mounting arrangements, use of materials, colors, orientations, etc.) without materially departing from the novel teachings and advantages of the subject matter recited. For example, elements shown as integrally formed may be constructed of multiple parts or elements shown as multiple parts may be integrally formed, the operation of the interfaces may be reversed or otherwise varied, the length or width of the structures and/or members or connector or other elements of the system may be varied, the nature or number of adjustment positions provided between the elements may be varied. It should be noted that the elements and/or assemblies of the system may be constructed from any of a wide variety of materials that provide sufficient strength or durability, in any of a wide variety of colors, textures, and combinations. Accordingly, all such modifications are intended to be included within the scope of the present innovations. Other substitutions, modifications, changes, and omissions may be made in the design, operating conditions, and arrangement of the desired and other exemplary embodiments without departing from the spirit of the present innovations.


It is also to be understood that variations and modifications can be made on the aforementioned structures and methods without departing from the concepts of the present device. Further, it is to be understood that such concepts are intended to be covered by the following claims unless these claims by their language expressly state otherwise.


The above description is considered that of the illustrated embodiments only. Modifications of the device will occur to those skilled in the art and to those who make or use the device. Therefore, it is understood that the embodiments shown in the drawings and described above is merely for illustrative purposes and not intended to limit the scope of the device, which is defined by the following claims as interpreted according to the principles of patent law, including the Doctrine of Equivalents.

Claims
  • 1. A burner base for a cooking appliance burner assembly, the burner base comprising: a gas mixture chamber defined by a burner base bottom surface, a perimeter edge located radially outward of the burner base bottom surface, the perimeter edge having a top surface at a uniform height above the lowest point of burner base bottom surface and a barrier lip extending above the height of the perimeter edge top surface;a first barrier structure disposed along the perimeter edge of the gas mixture chamber and radially outward of the burner base bottom surface, the first barrier structure having a height at or below that of the outer perimeter edge top surface height;a second barrier structure disposed along the perimeter edge of the gas mixture chamber and radially outward of the burner base bottom surface, the second barrier structure circumferentially adjacent to the first barrier structure to promote a symmetrical flow of gas relative to the first barrier structure; anda third barrier structure disposed along the perimeter edge of the gas mixture chamber and radially outward of the burner base bottom surface, the third barrier structure having a height below that of the outer perimeter edge top surface height and extending circumferentially adjacent to the second barrier structure such that the second barrier structure lies between the first and third barrier structures along the perimeter edge of the gas chamber;wherein the first barrier structure, the second barrier structure, and the third barrier structure all have different relative geometries and lie interior to and are circumscribed by the outer perimeter edge to further promote a symmetrical flow of gas within the gas mixture chamber.
  • 2. The burner base of claim 1, wherein a height of the first barrier structure above the bottom surface of the gas mixture chamber varies along a length of the first barrier structure.
  • 3. The burner base of claim 2, wherein the height of the first barrier structure is taller at a midpoint of the first barrier structure than at either of two ends of the first barrier structure.
  • 4. The burner base of claim 1, wherein the first barrier structure is located radially outwardly from a gas injection port.
  • 5. The burner base of claim 1, wherein: a height of the second barrier structure relative to the bottom surface of the mixture chamber at an interface with the first barrier structure is taller than a height of the first barrier structure at the interface; and a height of the second barrier structure relative to the bottom surface of the mixture chamber at an interface with the third barrier structure is taller than a height of the third barrier structure at the interface.
  • 6. The burner base of claim 1, wherein the second barrier structure is located diametrically opposite from an ignition barrier structure.
  • 7. The burner base of claim 6, wherein the second barrier structure has a substantially similar geometry as the ignition barrier structure.
  • 8. The burner base of claim 1, wherein: the second barrier structure comprises an arc inward of the first barrier structure; a peak of the arc is oriented toward a center of the burner base; and the arc provides symmetrical flow of gas at a first end and a second end of the first barrier structure.
  • 9. The burner base of claim 1, wherein a height of the third barrier structure above the bottom surface of the gas mixture chamber is constant along a length of the third barrier structure.
  • 10. The burner base of claim 1, wherein the first barrier structure, the second barrier structure, and the third barrier structure together define only a portion of the perimeter edge of the gas mixture chamber.
US Referenced Citations (324)
Number Name Date Kind
1141176 Copeman Jun 1915 A
1380656 Lauth Jun 1921 A
1405624 Patterson Feb 1922 A
1598996 Wheelock Sep 1926 A
1808550 Harpman Jun 1931 A
2024510 Crisenberry Dec 1935 A
2530991 Reeves Nov 1950 A
2536613 Schulze et al. Jan 1951 A
2699912 Cushman Jan 1955 A
2777407 Schindler Jan 1957 A
2781038 Sherman Feb 1957 A
2791366 Geisler May 1957 A
2815018 Collins Dec 1957 A
2828608 Cowlin et al. Apr 1958 A
2847932 More Aug 1958 A
2930194 Perkins May 1960 A
2934957 Reinhart et al. May 1960 A
D191085 Kindl et al. Aug 1961 S
3017924 Jenson Jan 1962 A
3051813 Busch et al. Aug 1962 A
3065342 Worden Nov 1962 A
3089407 Kinkle May 1963 A
3259120 Keating Jul 1966 A
3289731 Geber Dec 1966 A
3386431 Branson Jun 1968 A
3463138 Lotter et al. Aug 1969 A
3548154 Christiansson Dec 1970 A
3602131 Dadson Aug 1971 A
3606612 Reid, Jr. Sep 1971 A
3645249 Henderson et al. Feb 1972 A
3691937 Meek et al. Sep 1972 A
3777985 Hughes et al. Dec 1973 A
3780954 Genbauffs Dec 1973 A
3857254 Lobel Dec 1974 A
3877865 Duperow Apr 1975 A
3899655 Skinner Aug 1975 A
D245663 Gordon Sep 1977 S
4104952 Brass Aug 1978 A
4149518 Schmidt et al. Apr 1979 A
4363956 Scheidler et al. Dec 1982 A
4413610 Berlik Nov 1983 A
4418456 Riehl Dec 1983 A
4447711 Fischer May 1984 A
4466789 Riehl Aug 1984 A
4518346 Pistien May 1985 A
4565523 Berkelder Jan 1986 A
4587946 Doyon et al. May 1986 A
4646963 Delotto et al. Mar 1987 A
4654508 Logel et al. Mar 1987 A
4689961 Stratton Sep 1987 A
4812624 Kern Mar 1989 A
4818824 Dixit et al. Apr 1989 A
4846671 Kwiatek Jul 1989 A
4886043 Homer Dec 1989 A
4891936 Shekleton et al. Jan 1990 A
D309398 Lund Jul 1990 S
4981416 Nevin et al. Jan 1991 A
4989404 Shekleton Feb 1991 A
5021762 Hetrick Jun 1991 A
5083915 Riehl Jan 1992 A
5112218 Sigler May 1992 A
5136277 Civanelli et al. Aug 1992 A
5152276 Brock Oct 1992 A
5160256 Riehl Nov 1992 A
5171951 Chartrain et al. Dec 1992 A
D332385 Adams Jan 1993 S
5215074 Wilson et al. Jun 1993 A
5243172 Hazan et al. Sep 1993 A
D340383 Addison et al. Oct 1993 S
5266026 Riehl Nov 1993 A
5272317 Ryu Dec 1993 A
D342865 Addison et al. Jan 1994 S
5316423 Kin May 1994 A
5328357 Riehl Jul 1994 A
5397234 Kwiatek Mar 1995 A
5448036 Husslein et al. Sep 1995 A
D364993 Andrea Dec 1995 S
5491423 Turetta Feb 1996 A
D369517 Ferlin May 1996 S
5571434 Cavener et al. Nov 1996 A
D378578 Eberhardt Mar 1997 S
5618458 Thomas Apr 1997 A
5649822 Gertler Jul 1997 A
5785047 Bird et al. Jul 1998 A
5842849 Huang Dec 1998 A
5913675 Vago et al. Jun 1999 A
D414377 Huang Sep 1999 S
5961311 Moore, Jr. Oct 1999 A
5967021 Yung Oct 1999 A
6016096 Barnes et al. Jan 2000 A
6030207 Salmi Feb 2000 A
6035846 Saleri Mar 2000 A
6049267 Barnes et al. Apr 2000 A
6050176 Schultheis et al. Apr 2000 A
6067978 Schlosser May 2000 A
6078243 Barnes et al. Jun 2000 A
6089219 Kodera et al. Jul 2000 A
6092518 Dane Jul 2000 A
6111229 Schultheis Aug 2000 A
6114665 Garcia et al. Sep 2000 A
6133816 Barnes et al. Oct 2000 A
6155820 Döbbeling Dec 2000 A
6188045 Hansen et al. Feb 2001 B1
6192669 Keller et al. Feb 2001 B1
6196113 Yung Mar 2001 B1
6253759 Giebel et al. Jul 2001 B1
6253761 Shuler et al. Jul 2001 B1
6263868 Koch Jul 2001 B1
6320169 Clothier Nov 2001 B1
6322354 Carbone et al. Nov 2001 B1
6362458 Sargunam et al. Mar 2002 B1
6452136 Berkcan et al. Sep 2002 B1
6452141 Shon Sep 2002 B1
6589046 Harneit Jul 2003 B2
6614006 Pastore et al. Sep 2003 B2
6619280 Zhou et al. Sep 2003 B1
6655954 Dane Dec 2003 B2
6663009 Bedetti et al. Dec 2003 B1
6663025 Halsey Dec 2003 B1
6712605 Moresco Mar 2004 B2
6718965 Rummel et al. Apr 2004 B2
6733146 Vastano May 2004 B1
6806444 Lerner Oct 2004 B2
6837151 Chen Jan 2005 B2
6891133 Shozo et al. May 2005 B2
6910342 Berns et al. Jun 2005 B2
6930287 Gerola et al. Aug 2005 B2
6953915 Garris, III Oct 2005 B2
7017572 Cadima Mar 2006 B2
D524105 Poltronieri Jul 2006 S
7083123 Molla Aug 2006 B2
7220945 Wang May 2007 B1
D544753 Tseng Jun 2007 S
7274008 Arnal Valero et al. Sep 2007 B2
7281715 Boswell Oct 2007 B2
7291009 Kamal et al. Nov 2007 B2
7315247 Jung et al. Jan 2008 B2
7325480 Grühbaum et al. Feb 2008 B2
D564296 Koch et al. Mar 2008 S
7348520 Wang Mar 2008 B2
7368685 Nam et al. May 2008 B2
7411160 Duncan et al. Aug 2008 B2
7414203 Winkler Aug 2008 B2
7417204 Nam et al. Aug 2008 B2
D581736 Besseas Dec 2008 S
7468496 Marchand Dec 2008 B2
D592445 Sorenson et al. May 2009 S
7527495 Yam et al. May 2009 B2
D598959 Kiddoo Aug 2009 S
7589299 Fisher et al. Sep 2009 B2
7594812 Armanni Sep 2009 B2
D604098 Hamlin Nov 2009 S
7614877 McCrorey et al. Nov 2009 B2
7628609 Pryor et al. Dec 2009 B2
7640930 Little et al. Jan 2010 B2
7696454 Nam et al. Apr 2010 B2
7708008 Elkasevic et al. May 2010 B2
7721727 Kobayashi May 2010 B2
7731493 Starnini et al. Jun 2010 B2
7762250 Elkasevic et al. Jul 2010 B2
7781702 Nam et al. Aug 2010 B2
7823502 Hecker et al. Nov 2010 B2
7829825 Kuhne Nov 2010 B2
7841333 Kobayashi Nov 2010 B2
7964823 Armstrong et al. Jun 2011 B2
D642675 Scribano et al. Aug 2011 S
8006687 Watkins et al. Aug 2011 B2
8015821 Spytek Sep 2011 B2
8037689 Oskin et al. Oct 2011 B2
8057223 Pryor et al. Nov 2011 B2
8141549 Armstrong et al. Mar 2012 B2
8217314 Kim et al. Jul 2012 B2
8220450 Luo et al. Jul 2012 B2
8222578 Beier Jul 2012 B2
D665491 Goel et al. Aug 2012 S
8272321 Kalsi et al. Sep 2012 B1
8288690 Boubeddi et al. Oct 2012 B2
8302593 Cadima Nov 2012 B2
8304695 Bonuso et al. Nov 2012 B2
8342165 Watkins Jan 2013 B2
8344292 Franca et al. Jan 2013 B2
8393317 Sorenson et al. Mar 2013 B2
8398303 Kuhn Mar 2013 B2
3430310 Ho et al. Apr 2013 A1
8408897 Rossi Apr 2013 B2
8464703 Ryu et al. Jun 2013 B2
D685225 Santoyo et al. Jul 2013 S
D687675 Filho et al. Aug 2013 S
8526935 Besore et al. Sep 2013 B2
8535052 Cadima Sep 2013 B2
D693175 Saubert Nov 2013 S
8584663 Kim et al. Nov 2013 B2
8596259 Padgett et al. Dec 2013 B2
8616193 Padgett Dec 2013 B2
8660297 Yoon et al. Feb 2014 B2
8687842 Yoon et al. Apr 2014 B2
8689782 Padgett Apr 2014 B2
8707945 Hasslberger et al. Apr 2014 B2
8747108 Lona Santoyo et al. Jun 2014 B2
8753112 Armanni Jun 2014 B2
8800543 Simms et al. Aug 2014 B2
8845326 Shaffer Sep 2014 B2
D718061 Wu Nov 2014 S
8887710 Rossi et al. Nov 2014 B2
8930160 Wall et al. Jan 2015 B2
8932049 Ryu Jan 2015 B2
8950389 Horstkoetter et al. Feb 2015 B2
8978637 Ryu et al. Mar 2015 B2
D727489 Rohskopf et al. Apr 2015 S
9021942 Lee et al. May 2015 B2
9074765 Armanni Jul 2015 B2
D735525 Nguyen Aug 2015 S
9113503 Arnal Valero et al. Aug 2015 B2
9132302 Luongo et al. Sep 2015 B2
D743203 Filho et al. Nov 2015 S
9175858 Tisselli et al. Nov 2015 B2
D750314 Hobson et al. Feb 2016 S
9307888 Baldwin et al. Apr 2016 B2
D758107 Hamilton Jun 2016 S
D766036 Koch et al. Sep 2016 S
D766696 Kemker Sep 2016 S
9513015 Estrella et al. Dec 2016 B2
9521708 Adelmann et al. Dec 2016 B2
9557063 Cadima Jan 2017 B2
9572475 Gephart et al. Feb 2017 B2
9644847 Bhogal et al. May 2017 B2
9651247 Scheuring, III May 2017 B2
9696042 Hasslberger et al. Jul 2017 B2
9927129 Bhogal et al. Mar 2018 B2
9989248 Angulo Jun 2018 B2
10352558 Angulo Jul 2019 B2
10393386 Gasparini Aug 2019 B2
10393387 Cadima Aug 2019 B2
20020065039 Benezech et al. May 2002 A1
20030000512 Moresco Jan 2003 A1
20030075164 Dane Apr 2003 A1
20040007566 Staebler et al. Jan 2004 A1
20040031782 Westfield Feb 2004 A1
20040195399 Molla Oct 2004 A1
20040224273 Inomata Nov 2004 A1
20040224274 Tomiura Nov 2004 A1
20040241604 Cadima Dec 2004 A1
20050029245 Gerola et al. Feb 2005 A1
20050112520 Todoli et al. May 2005 A1
20050199232 Gama et al. Sep 2005 A1
20050268794 Nesterov Dec 2005 A1
20070124972 Ratcliffe Jun 2007 A1
20070141521 Armanni Jun 2007 A1
20070181410 Baier Aug 2007 A1
20070281267 Li Dec 2007 A1
20080029081 Gagas Feb 2008 A1
20080050687 Wu Feb 2008 A1
20080173632 Jang et al. Jul 2008 A1
20080210685 Beier Sep 2008 A1
20080241777 Rossi Oct 2008 A1
20090173730 Baier et al. Jul 2009 A1
20090320823 Padgett Dec 2009 A1
20100035197 Cadima Feb 2010 A1
20100114339 Kaiser et al. May 2010 A1
20100126496 Luo et al. May 2010 A1
20100154776 Czajka et al. Jun 2010 A1
20100192939 Parks Aug 2010 A1
20110142998 Johncook et al. Jun 2011 A1
20110163086 Aldana Arjol et al. Jul 2011 A1
20110248021 Gutierrez et al. Oct 2011 A1
20120017595 Liu Jan 2012 A1
20120024835 Artal Lahoz et al. Feb 2012 A1
20120036855 Hull Feb 2012 A1
20120067334 Kim et al. Mar 2012 A1
20120070791 Armanni Mar 2012 A1
20120076351 Yoon et al. Mar 2012 A1
20120099761 Yoon et al. Apr 2012 A1
20120160228 Kim et al. Jun 2012 A1
20120171343 Cadima et al. Jul 2012 A1
20120261405 Kurose et al. Oct 2012 A1
20130043239 Anton Falcon et al. Feb 2013 A1
20130252188 Chen Sep 2013 A1
20130255663 Cadima et al. Oct 2013 A1
20130260618 Bally et al. Oct 2013 A1
20130269676 Quintaba′ Oct 2013 A1
20140048055 Ruther Feb 2014 A1
20140060517 Ren Mar 2014 A1
20140071019 Lim Mar 2014 A1
20140090636 Bettinzoli Apr 2014 A1
20140097172 Kang et al. Apr 2014 A1
20140116416 Saubert May 2014 A1
20140137751 Bellm May 2014 A1
20140139381 Sippel May 2014 A1
20140318527 Silva et al. Oct 2014 A1
20140352549 Upston et al. Dec 2014 A1
20150107577 Jeong Apr 2015 A1
20150136760 Lima et al. May 2015 A1
20150153041 Neumeier Jun 2015 A1
20150241069 Brant et al. Aug 2015 A1
20150253012 Faveri Sep 2015 A1
20150330640 Stork gennant Wersborg Nov 2015 A1
20150345800 Cabrera Botello Dec 2015 A1
20150359045 Neukamm et al. Dec 2015 A1
20160029439 Kurose et al. Jan 2016 A1
20160061490 Cho et al. Mar 2016 A1
20160091210 Ceccoli Mar 2016 A1
20160116160 Takeuchi Apr 2016 A1
20160153666 Tcaciuc Jun 2016 A1
20160174768 Deverse Jun 2016 A1
20160178209 Park et al. Jun 2016 A1
20160178212 Park et al. Jun 2016 A1
20160187002 Ryu et al. Jun 2016 A1
20160201902 Cadima Jul 2016 A1
20160209044 Cadima Jul 2016 A1
20160209045 Millius Jul 2016 A1
20160295644 Khokle et al. Oct 2016 A1
20160296067 Laws Oct 2016 A1
20170003033 Lona Santoyo et al. Jan 2017 A1
20170067651 Khokle et al. Mar 2017 A1
20170074522 Cheng Mar 2017 A1
20170082296 Jeong et al. Mar 2017 A1
20170082299 Rowley et al. Mar 2017 A1
20170108228 Park et al. Apr 2017 A1
20170115008 Erbe et al. Apr 2017 A1
20170261213 Park et al. Apr 2017 A1
20170223774 Cheng et al. Aug 2017 A1
20180058702 Jang et al. Mar 2018 A1
20180073730 Acosta Herrero Mar 2018 A1
20180195719 Angulo Jul 2018 A1
Foreign Referenced Citations (58)
Number Date Country
2365023 Jul 2002 CA
2734926 Oct 2011 CA
201680430 Dec 2010 CN
2845869 Apr 1980 DE
3014908 Oct 1981 DE
3446621 Jun 1986 DE
3717728 Dec 1988 DE
3150450 Aug 1989 DE
3839657 May 1990 DE
4103664 Jan 1992 DE
4445594 Jun 1996 DE
10218294 Nov 2003 DE
60004581 Jun 2004 DE
19912452 Oct 2007 DE
102006034391 Jan 2008 DE
102007021297 Nov 2008 DE
102008027220 Dec 2009 DE
102009002276 Oct 2010 DE
102013218714 Apr 2014 DE
0122966 Oct 1984 EP
0429120 May 1991 EP
0620698 Oct 1994 EP
0690659 Jan 1996 EP
1030114 Aug 2000 EP
1217306 Jun 2002 EP
1344986 Sep 2003 EP
1586822 Oct 2005 EP
1099905 Feb 2006 EP
2063181 May 2009 EP
2063444 May 2009 EP
2116775 Nov 2009 EP
2116829 Nov 2009 EP
2278227 Jan 2011 EP
2299181 Mar 2011 EP
2375170 Oct 2011 EP
2144012 Sep 2012 EP
2657615 Oct 2013 EP
2816291 Dec 2014 EP
2835580 Feb 2015 EP
3006832 Apr 2016 EP
2848867 Sep 2017 EP
2787556 Jun 2000 FR
2789753 Aug 2000 FR
3003338 Sep 2014 FR
2001141244 May 2001 JP
2005009693 Jan 2005 JP
2007147131 Jun 2007 JP
2010038475 Feb 2010 JP
2011257021 Dec 2011 JP
1991013526 Sep 1991 WO
9850736 Nov 1998 WO
2006072388 Jul 2006 WO
2006136363 Dec 2006 WO
2012077050 Jun 2012 WO
2013098330 Jul 2013 WO
2013182410 Dec 2013 WO
2014194176 Dec 2014 WO
2015086420 Jun 2015 WO
Non-Patent Literature Citations (4)
Entry
Built-In Gas Cooktop, image post date Feb. 18, 2015, originally cited by Examiner in U.S. Appl. No. 29/539,768 in Restriction Requirement dated Oct. 27, 2016, 10 pages, <http://www.bestbuy.com/site/kitchenaid-36-built-in-gas-cooktop-stainless-steel/8636634.p?skuId=8636634>.
True-Heat burner, image post date Jan. 30, 2015, originally cited by Examiner in U.S. Application No. 29/539,768 n. Restriction Requirement dated Oct. 27, 2016, 2 pp., <http://ovens.reviewed.com/news/kitchenaid-has-a-new-lame>.
Metal Cover Gas Hob, image post date 2012, originally in U.S. Appl. No. 29/539,768 in Restriction Requirement dated Oct. 27, 2016, 13 pages, <http://inse.gmc.globalmarket.com/products/details/metal-cover-gas-hob-8516959.html>.
Penny Stove, image post date 2004, originally in U.S. Appl. No. 29/539,768 in Restriction Requirement dated Oct. 27, 2016, 30 pages, <http://www.jureystudio.com/pennystove/stoveinstruction.html>.
Related Publications (1)
Number Date Country
20180238537 A1 Aug 2018 US