The present disclosure generally relates to a burner base having a geometry that contributes to flow distribution within the burner mixture chamber.
One aspect provides a burner base for a burner assembly, where the burner base defines a bottom surface for a gas mixture chamber. The burner base includes a first barrier structure disposed along a perimeter of the gas mixture chamber, a second barrier structure disposed along the perimeter of the gas mixture chamber adjacent to the first barrier structure, and a third barrier structure disposed along a perimeter of the gas mixture chamber adjacent to the second barrier structure. Further, the first barrier structure, the second barrier structure and the third barrier structure have different geometries.
Another aspect provides a burner assembly that defines a gas mixture chamber. The gas mixture chamber includes a structural zone located radially outwardly from a gas injection port. The structural zone includes a geometry having a middle portion and two end portions, and the middle portion geometry of the structural zone is different than end portion geometries of the structural zone.
Still another aspect provides a burner body for a burner assembly, where the burner body defines at least a portion of a gas mixture chamber. The burner body includes a first barrier structure disposed along a perimeter of the burner body, a second barrier structure disposed along the perimeter of the burner body adjacent to the first barrier structure, and a third barrier structure disposed along a perimeter of the burner body adjacent to the second barrier structure. Further, the first barrier structure, the second barrier structure and the third barrier structure have different geometries.
These and other features, advantages, and objects of the present disclosure will be further understood and appreciated by those skilled in the art by reference to the following specification, claims, and appended drawings.
Further advantages and features according to the present disclosure will become clear from the following detailed description provided as a non-limiting example, with reference to the attached drawings in which:
The present illustrated embodiments reside primarily in combinations of apparatus components related to a burner base 10 for a stack burner assembly 110, for use in a cooking appliance, such as cooking appliance 100. Accordingly, the apparatus components have been represented, where appropriate, by conventional symbols in the drawings, showing only those specific details that are pertinent to understanding the embodiments of the present disclosure. Further, like numerals in the description and drawings represent like elements.
It is to be understood that the disclosure may assume various alternative orientations, except where expressly specified to the contrary. It is also to be understood that the specific devices and processes illustrated in the attached drawings, and described in the following specification are simply exemplary embodiments of the inventive concepts defined in the appended claims. Hence, specific dimensions and other physical characteristics relating to the embodiments disclosed herein are not to be considered as limiting, unless the claims expressly state otherwise.
The terms “including,” “comprises,” “comprising,” or any other variation thereof, are intended to cover a non-exclusive inclusion, such that a process, method, article, or apparatus that comprises a list of elements does not include only those elements but may include other elements not expressly listed or inherent to such process, method, article, or apparatus. For example, an element proceeded by “comprises a . . . ” does not, without more constraints, preclude the existence of additional identical elements in the process, method, article, or apparatus that comprises the element.
For purposes of this disclosure, the term “coupled” (in all of its forms, couple, coupling, coupled, etc.) generally means the joining of two components directly or indirectly to one another. Such joining may be stationary in nature or movable in nature. Such joining may be achieved with the two components and any additional intermediate members being integrally formed as a single unitary body with one another or with the two components. Such joining may be permanent in nature or may be removable or releasable in nature unless otherwise stated.
Referring to the attached
The disclosed burner base and burner assembly may be incorporated into a gas cooktop cooking appliance as would be known in the art.
In the illustrated embodiment, burner base 10 is configured as a substantially round disc that includes a perimeter edge structure 12 defining a portion of a perimeter of burner assembly 110. Perimeter edge structure 12 includes a top surface 14 as well as a barrier lip 13. Perimeter top surface 14 and barrier lip 13, together with openings 96 (
According to one embodiment, the geometry of burner base 10 within mixture chamber 112 includes a sloped bottom surface 18 that extends from internal perimeter lip 15 down to first barrier structure 30, a second barrier structure 40, a third barrier structure 50, and fourth barrier structure 60. Burner base 10 also includes an ignition barrier structure 70, adjacent to an ignition passage 24. Ignition passage 24 may be coupled to an ignition source for burner assembly 110. For example, a spark may be introduced through ignition passage 24 to ignite gas contained within mixture chamber 112. Burner base 10 may also include one or more fixation apertures 20 for affixing burner base 10 or burner assembly 110 to a cooking appliance 100.
According to aspects of the present disclosure, a burner base may include structural features, geometries, and zones to help distribute the flow of gas within a mixture chamber in a predictable manner to create a more even flame around the associated burner assembly. For example, in some cases, a burner base may include one or more structural zones around a gas ignition port to help distribute the gas being released from the gas ignition port around the entirety of the burner assembly. In at least one case, as shown in the illustrated embodiment, burner base 10 may include at least four different structural zones to enable the distribution of gas. In the illustrated embodiment, burner base 10 includes a first structural zone having a first barrier structure 30, a second structural zone having a second barrier structure 40, a third structural zone having a third barrier structure 50, a fourth structural zone having a fourth barrier structure 60.
As illustrated, first barrier structure 30 includes a first end 32, a second end 34 and a middle section 36. First end 32 is proximate ignition barrier structure 70, and includes a first end height 33 as measured above bottom surface 18. Second end 34 is proximate second barrier structure 40, and includes a second end height 35 as measured above bottom surface 18. Middle section 36 is proximate gas injection port 26 and includes a middle section height 37 as measured above bottom surface 18. First barrier structure 30 may also include a top surface 38 which may be sloped or may be in the same plane as perimeter top surface 14. As illustrated in
Referring to
As shown in detail in the embodiment depicted in
Third barrier structure 50 includes a first end 54 and a second end 56. First end 54 interfaces with second barrier structure 40 and second end 56 interfaces with fourth barrier structure 60. According to the illustrated embodiment, third barrier structure extends above bottom surface 18 at a height 55. Third barrier structure 50 also includes a top surface 52 which may be sloped or may be in the plane that is parallel to perimeter top surface 14. As illustrated in
Referring to
Fourth barrier structure 60 includes a first end 64 and a second end 66. First end 64 interfaces with third barrier structure 50 and second end 66 interfaces with ignition barrier structure 70. According to the illustrated embodiment, fourth barrier structure 60 extends away from bottom surface 18, without introducing a height to the fourth structural zone. Fourth barrier structure 60 also includes a top surface 62 which may be sloped or may be in a plane that is parallel to perimeter top surface 14. As illustrated in
Ignition barrier structure 70 rises above bottom surface 18 at a plurality of heights. First, ignition barrier structure 70 defines a midpoint height 74 at midpoint 73 from bottom surface 18 to a top surface 72. Ignition barrier structure 70 also defines a first end height 77 and a second end height 79. First end height 77 is defined between bottom surface 18 and top surface 72 where ignition barrier structure 70 interfaces with fourth barrier structure 60. Second end height 79 is defined between bottom surface 18 and top surface 72 where ignition barrier structure 70 interfaces with ignition passage 24. In some cases midpoint height 74 is different than first end height 77 and second end height 79. In at least one embodiment, midpoint height 74 is smaller than first end height 77 and second end height 79. In the illustrated embodiment, first end height 77 and second end height 79 are equal, and larger, than midpoint height 74. Further, as can be seen in
When burner base 10 is coupled with a cover such as burner spreader 80, the various surface geometries of the burner base, together with the bottom surface 84 of burner spreader 80, may define the overall surface structure of mixture chamber 112. In operation, the overall surface structure of mixture chamber 112 may facilitate the flow of gas inside burner mixture chamber 112, enabling a cooking flame to exit the entire circular path of burner assembly 110. More specifically, the variable geometries of the first structural zone, the second structural zone, the third structural zone, and the fourth structural zone, as described herein, may create pressure differentials within mixture chamber 112 that effect the velocity and stability of the gas around the burner assembly 110. Thus, when gas is injected through injection port 26, and ignited by an ignition introduced through ignition passage 24, the pressure differentials created by the structural zones can serve to move the injected gas, and thus the cooking flame, consistently and stably around burner assembly 110.
As described above, the first barrier structure 30 of the first structural zone, the second barrier structure 40 of the second structural zone, the third barrier structure 50 of the third structural zone, the fourth barrier structure 60 of the fourth structural zone, as well as the ignition barrier structure 70, each comprise distinct surface geometries. Accordingly, in at least one embodiment, the radial cross-sectional area of the mixture chamber varies between the structural zones, and in some cases, varies along a single structural zone.
For example, in the illustrated embodiment, the variable height of first barrier structure 30 creates a variable radial cross-sectional area within mixture chamber 112 that causes gas injected through injection port 26 to be drawn away from middle section 36 and around the circle of burner base 10. In particular, because the middle section 36 of the first barrier structure 30 is taller (middle section height 37) than the first end 32 and the second end 34 (first end height 33 and second end height 35), a radial cross-sectional area of the middle section of the first structural zone is smaller than the radial cross-sectional areas at the ends of the first structural zone. Accordingly, the change in area, moving from the middle section, or proximate middle section 36, out to the ends, proximate first end 32 and the second end 34, creates a pressure differential. In at least one embodiment, due to the increase in the area of the mixture chamber 112, the pressure drops from the middle section 36 to the first end 32, and from the middle section to the second end 34. The pressure drop can cause the velocity of the gas to increase and the gas to be drawn from the gas injection port 26 and middle section 36 toward first end 32 and second end 34.
As previously discussed, second barrier structure 40 is geometrically similar to ignition barrier structure 70, which is located diametrically opposite from second barrier structure 40. Accordingly, second barrier structure 40 allows for the flow of gas at the first end 32 of first barrier structure 30 to mimic the flow of gas at the second end 34 of first barrier structure 30, creating a symmetrical flow at these locations within mixture chamber 112. Thus, in at least one embodiment, as the gas is moved toward the first end 32 and the second end 34 due to the geometry of the first structural zone, the symmetric structures of second barrier structure 40 and ignition barrier structure 70 help to ensure the symmetry and stability of the gas and cooking flame at the diametrically opposite areas of mixture chamber 112.
Third barrier structure 50, having a uniform height 57, creates a uniform geometry around the third structural zone as shown in
It will be understood by one having ordinary skill in the art that construction of the described device and other components is not limited to any specific material. Other exemplary embodiments of the device disclosed herein may be formed from a wide variety of materials, unless described otherwise herein.
It is also important to note that the construction and arrangement of the various aspects of the burner base as shown in the exemplary embodiments is illustrative only. Although only a few embodiments of the present innovations have been described in detail in this disclosure, those skilled in the art who review this disclosure will readily appreciate that many modifications are possible (e.g., variations in sizes, dimensions, structures, shapes and proportions of the various elements, values of parameters, mounting arrangements, use of materials, colors, orientations, etc.) without materially departing from the novel teachings and advantages of the subject matter recited. For example, elements shown as integrally formed may be constructed of multiple parts or elements shown as multiple parts may be integrally formed, the operation of the interfaces may be reversed or otherwise varied, the length or width of the structures and/or members or connector or other elements of the system may be varied, the nature or number of adjustment positions provided between the elements may be varied. It should be noted that the elements and/or assemblies of the system may be constructed from any of a wide variety of materials that provide sufficient strength or durability, in any of a wide variety of colors, textures, and combinations. Accordingly, all such modifications are intended to be included within the scope of the present innovations. Other substitutions, modifications, changes, and omissions may be made in the design, operating conditions, and arrangement of the desired and other exemplary embodiments without departing from the spirit of the present innovations.
It is also to be understood that variations and modifications can be made on the aforementioned structures and methods without departing from the concepts of the present device. Further, it is to be understood that such concepts are intended to be covered by the following claims unless these claims by their language expressly state otherwise.
The above description is considered that of the illustrated embodiments only. Modifications of the device will occur to those skilled in the art and to those who make or use the device. Therefore, it is understood that the embodiments shown in the drawings and described above is merely for illustrative purposes and not intended to limit the scope of the device, which is defined by the following claims as interpreted according to the principles of patent law, including the Doctrine of Equivalents.
Number | Name | Date | Kind |
---|---|---|---|
1141176 | Copeman | Jun 1915 | A |
1380656 | Lauth | Jun 1921 | A |
1405624 | Patterson | Feb 1922 | A |
1598996 | Wheelock | Sep 1926 | A |
1808550 | Harpman | Jun 1931 | A |
2024510 | Crisenberry | Dec 1935 | A |
2530991 | Reeves | Nov 1950 | A |
2536613 | Schulze et al. | Jan 1951 | A |
2699912 | Cushman | Jan 1955 | A |
2777407 | Schindler | Jan 1957 | A |
2781038 | Sherman | Feb 1957 | A |
2791366 | Geisler | May 1957 | A |
2815018 | Collins | Dec 1957 | A |
2828608 | Cowlin et al. | Apr 1958 | A |
2847932 | More | Aug 1958 | A |
2930194 | Perkins | May 1960 | A |
2934957 | Reinhart et al. | May 1960 | A |
D191085 | Kindl et al. | Aug 1961 | S |
3017924 | Jenson | Jan 1962 | A |
3051813 | Busch et al. | Aug 1962 | A |
3065342 | Worden | Nov 1962 | A |
3089407 | Kinkle | May 1963 | A |
3259120 | Keating | Jul 1966 | A |
3289731 | Geber | Dec 1966 | A |
3386431 | Branson | Jun 1968 | A |
3463138 | Lotter et al. | Aug 1969 | A |
3548154 | Christiansson | Dec 1970 | A |
3602131 | Dadson | Aug 1971 | A |
3606612 | Reid, Jr. | Sep 1971 | A |
3645249 | Henderson et al. | Feb 1972 | A |
3691937 | Meek et al. | Sep 1972 | A |
3777985 | Hughes et al. | Dec 1973 | A |
3780954 | Genbauffs | Dec 1973 | A |
3857254 | Lobel | Dec 1974 | A |
3877865 | Duperow | Apr 1975 | A |
3899655 | Skinner | Aug 1975 | A |
D245663 | Gordon | Sep 1977 | S |
4104952 | Brass | Aug 1978 | A |
4149518 | Schmidt et al. | Apr 1979 | A |
4363956 | Scheidler et al. | Dec 1982 | A |
4413610 | Berlik | Nov 1983 | A |
4418456 | Riehl | Dec 1983 | A |
4447711 | Fischer | May 1984 | A |
4466789 | Riehl | Aug 1984 | A |
4518346 | Pistien | May 1985 | A |
4565523 | Berkelder | Jan 1986 | A |
4587946 | Doyon et al. | May 1986 | A |
4646963 | Delotto et al. | Mar 1987 | A |
4654508 | Logel et al. | Mar 1987 | A |
4689961 | Stratton | Sep 1987 | A |
4812624 | Kern | Mar 1989 | A |
4818824 | Dixit et al. | Apr 1989 | A |
4846671 | Kwiatek | Jul 1989 | A |
4886043 | Homer | Dec 1989 | A |
4891936 | Shekleton et al. | Jan 1990 | A |
D309398 | Lund | Jul 1990 | S |
4981416 | Nevin et al. | Jan 1991 | A |
4989404 | Shekleton | Feb 1991 | A |
5021762 | Hetrick | Jun 1991 | A |
5083915 | Riehl | Jan 1992 | A |
5112218 | Sigler | May 1992 | A |
5136277 | Civanelli et al. | Aug 1992 | A |
5152276 | Brock | Oct 1992 | A |
5160256 | Riehl | Nov 1992 | A |
5171951 | Chartrain et al. | Dec 1992 | A |
D332385 | Adams | Jan 1993 | S |
5215074 | Wilson et al. | Jun 1993 | A |
5243172 | Hazan et al. | Sep 1993 | A |
D340383 | Addison et al. | Oct 1993 | S |
5266026 | Riehl | Nov 1993 | A |
5272317 | Ryu | Dec 1993 | A |
D342865 | Addison et al. | Jan 1994 | S |
5316423 | Kin | May 1994 | A |
5328357 | Riehl | Jul 1994 | A |
5397234 | Kwiatek | Mar 1995 | A |
5448036 | Husslein et al. | Sep 1995 | A |
D364993 | Andrea | Dec 1995 | S |
5491423 | Turetta | Feb 1996 | A |
D369517 | Ferlin | May 1996 | S |
5571434 | Cavener et al. | Nov 1996 | A |
D378578 | Eberhardt | Mar 1997 | S |
5618458 | Thomas | Apr 1997 | A |
5649822 | Gertler | Jul 1997 | A |
5785047 | Bird et al. | Jul 1998 | A |
5842849 | Huang | Dec 1998 | A |
5913675 | Vago et al. | Jun 1999 | A |
D414377 | Huang | Sep 1999 | S |
5961311 | Moore, Jr. | Oct 1999 | A |
5967021 | Yung | Oct 1999 | A |
6016096 | Barnes et al. | Jan 2000 | A |
6030207 | Salmi | Feb 2000 | A |
6035846 | Saleri | Mar 2000 | A |
6049267 | Barnes et al. | Apr 2000 | A |
6050176 | Schultheis et al. | Apr 2000 | A |
6067978 | Schlosser | May 2000 | A |
6078243 | Barnes et al. | Jun 2000 | A |
6089219 | Kodera et al. | Jul 2000 | A |
6092518 | Dane | Jul 2000 | A |
6111229 | Schultheis | Aug 2000 | A |
6114665 | Garcia et al. | Sep 2000 | A |
6133816 | Barnes et al. | Oct 2000 | A |
6155820 | Döbbeling | Dec 2000 | A |
6188045 | Hansen et al. | Feb 2001 | B1 |
6192669 | Keller et al. | Feb 2001 | B1 |
6196113 | Yung | Mar 2001 | B1 |
6253759 | Giebel et al. | Jul 2001 | B1 |
6253761 | Shuler et al. | Jul 2001 | B1 |
6263868 | Koch | Jul 2001 | B1 |
6320169 | Clothier | Nov 2001 | B1 |
6322354 | Carbone et al. | Nov 2001 | B1 |
6362458 | Sargunam et al. | Mar 2002 | B1 |
6452136 | Berkcan et al. | Sep 2002 | B1 |
6452141 | Shon | Sep 2002 | B1 |
6589046 | Harneit | Jul 2003 | B2 |
6614006 | Pastore et al. | Sep 2003 | B2 |
6619280 | Zhou et al. | Sep 2003 | B1 |
6655954 | Dane | Dec 2003 | B2 |
6663009 | Bedetti et al. | Dec 2003 | B1 |
6663025 | Halsey | Dec 2003 | B1 |
6712605 | Moresco | Mar 2004 | B2 |
6718965 | Rummel et al. | Apr 2004 | B2 |
6733146 | Vastano | May 2004 | B1 |
6806444 | Lerner | Oct 2004 | B2 |
6837151 | Chen | Jan 2005 | B2 |
6891133 | Shozo et al. | May 2005 | B2 |
6910342 | Berns et al. | Jun 2005 | B2 |
6930287 | Gerola et al. | Aug 2005 | B2 |
6953915 | Garris, III | Oct 2005 | B2 |
7017572 | Cadima | Mar 2006 | B2 |
D524105 | Poltronieri | Jul 2006 | S |
7083123 | Molla | Aug 2006 | B2 |
7220945 | Wang | May 2007 | B1 |
D544753 | Tseng | Jun 2007 | S |
7274008 | Arnal Valero et al. | Sep 2007 | B2 |
7281715 | Boswell | Oct 2007 | B2 |
7291009 | Kamal et al. | Nov 2007 | B2 |
7315247 | Jung et al. | Jan 2008 | B2 |
7325480 | Grühbaum et al. | Feb 2008 | B2 |
D564296 | Koch et al. | Mar 2008 | S |
7348520 | Wang | Mar 2008 | B2 |
7368685 | Nam et al. | May 2008 | B2 |
7411160 | Duncan et al. | Aug 2008 | B2 |
7414203 | Winkler | Aug 2008 | B2 |
7417204 | Nam et al. | Aug 2008 | B2 |
D581736 | Besseas | Dec 2008 | S |
7468496 | Marchand | Dec 2008 | B2 |
D592445 | Sorenson et al. | May 2009 | S |
7527495 | Yam et al. | May 2009 | B2 |
D598959 | Kiddoo | Aug 2009 | S |
7589299 | Fisher et al. | Sep 2009 | B2 |
7594812 | Armanni | Sep 2009 | B2 |
D604098 | Hamlin | Nov 2009 | S |
7614877 | McCrorey et al. | Nov 2009 | B2 |
7628609 | Pryor et al. | Dec 2009 | B2 |
7640930 | Little et al. | Jan 2010 | B2 |
7696454 | Nam et al. | Apr 2010 | B2 |
7708008 | Elkasevic et al. | May 2010 | B2 |
7721727 | Kobayashi | May 2010 | B2 |
7731493 | Starnini et al. | Jun 2010 | B2 |
7762250 | Elkasevic et al. | Jul 2010 | B2 |
7781702 | Nam et al. | Aug 2010 | B2 |
7823502 | Hecker et al. | Nov 2010 | B2 |
7829825 | Kuhne | Nov 2010 | B2 |
7841333 | Kobayashi | Nov 2010 | B2 |
7964823 | Armstrong et al. | Jun 2011 | B2 |
D642675 | Scribano et al. | Aug 2011 | S |
8006687 | Watkins et al. | Aug 2011 | B2 |
8015821 | Spytek | Sep 2011 | B2 |
8037689 | Oskin et al. | Oct 2011 | B2 |
8057223 | Pryor et al. | Nov 2011 | B2 |
8141549 | Armstrong et al. | Mar 2012 | B2 |
8217314 | Kim et al. | Jul 2012 | B2 |
8220450 | Luo et al. | Jul 2012 | B2 |
8222578 | Beier | Jul 2012 | B2 |
D665491 | Goel et al. | Aug 2012 | S |
8272321 | Kalsi et al. | Sep 2012 | B1 |
8288690 | Boubeddi et al. | Oct 2012 | B2 |
8302593 | Cadima | Nov 2012 | B2 |
8304695 | Bonuso et al. | Nov 2012 | B2 |
8342165 | Watkins | Jan 2013 | B2 |
8344292 | Franca et al. | Jan 2013 | B2 |
8393317 | Sorenson et al. | Mar 2013 | B2 |
8398303 | Kuhn | Mar 2013 | B2 |
3430310 | Ho et al. | Apr 2013 | A1 |
8408897 | Rossi | Apr 2013 | B2 |
8464703 | Ryu et al. | Jun 2013 | B2 |
D685225 | Santoyo et al. | Jul 2013 | S |
D687675 | Filho et al. | Aug 2013 | S |
8526935 | Besore et al. | Sep 2013 | B2 |
8535052 | Cadima | Sep 2013 | B2 |
D693175 | Saubert | Nov 2013 | S |
8584663 | Kim et al. | Nov 2013 | B2 |
8596259 | Padgett et al. | Dec 2013 | B2 |
8616193 | Padgett | Dec 2013 | B2 |
8660297 | Yoon et al. | Feb 2014 | B2 |
8687842 | Yoon et al. | Apr 2014 | B2 |
8689782 | Padgett | Apr 2014 | B2 |
8707945 | Hasslberger et al. | Apr 2014 | B2 |
8747108 | Lona Santoyo et al. | Jun 2014 | B2 |
8753112 | Armanni | Jun 2014 | B2 |
8800543 | Simms et al. | Aug 2014 | B2 |
8845326 | Shaffer | Sep 2014 | B2 |
D718061 | Wu | Nov 2014 | S |
8887710 | Rossi et al. | Nov 2014 | B2 |
8930160 | Wall et al. | Jan 2015 | B2 |
8932049 | Ryu | Jan 2015 | B2 |
8950389 | Horstkoetter et al. | Feb 2015 | B2 |
8978637 | Ryu et al. | Mar 2015 | B2 |
D727489 | Rohskopf et al. | Apr 2015 | S |
9021942 | Lee et al. | May 2015 | B2 |
9074765 | Armanni | Jul 2015 | B2 |
D735525 | Nguyen | Aug 2015 | S |
9113503 | Arnal Valero et al. | Aug 2015 | B2 |
9132302 | Luongo et al. | Sep 2015 | B2 |
D743203 | Filho et al. | Nov 2015 | S |
9175858 | Tisselli et al. | Nov 2015 | B2 |
D750314 | Hobson et al. | Feb 2016 | S |
9307888 | Baldwin et al. | Apr 2016 | B2 |
D758107 | Hamilton | Jun 2016 | S |
D766036 | Koch et al. | Sep 2016 | S |
D766696 | Kemker | Sep 2016 | S |
9513015 | Estrella et al. | Dec 2016 | B2 |
9521708 | Adelmann et al. | Dec 2016 | B2 |
9557063 | Cadima | Jan 2017 | B2 |
9572475 | Gephart et al. | Feb 2017 | B2 |
9644847 | Bhogal et al. | May 2017 | B2 |
9651247 | Scheuring, III | May 2017 | B2 |
9696042 | Hasslberger et al. | Jul 2017 | B2 |
9927129 | Bhogal et al. | Mar 2018 | B2 |
9989248 | Angulo | Jun 2018 | B2 |
10352558 | Angulo | Jul 2019 | B2 |
10393386 | Gasparini | Aug 2019 | B2 |
10393387 | Cadima | Aug 2019 | B2 |
20020065039 | Benezech et al. | May 2002 | A1 |
20030000512 | Moresco | Jan 2003 | A1 |
20030075164 | Dane | Apr 2003 | A1 |
20040007566 | Staebler et al. | Jan 2004 | A1 |
20040031782 | Westfield | Feb 2004 | A1 |
20040195399 | Molla | Oct 2004 | A1 |
20040224273 | Inomata | Nov 2004 | A1 |
20040224274 | Tomiura | Nov 2004 | A1 |
20040241604 | Cadima | Dec 2004 | A1 |
20050029245 | Gerola et al. | Feb 2005 | A1 |
20050112520 | Todoli et al. | May 2005 | A1 |
20050199232 | Gama et al. | Sep 2005 | A1 |
20050268794 | Nesterov | Dec 2005 | A1 |
20070124972 | Ratcliffe | Jun 2007 | A1 |
20070141521 | Armanni | Jun 2007 | A1 |
20070181410 | Baier | Aug 2007 | A1 |
20070281267 | Li | Dec 2007 | A1 |
20080029081 | Gagas | Feb 2008 | A1 |
20080050687 | Wu | Feb 2008 | A1 |
20080173632 | Jang et al. | Jul 2008 | A1 |
20080210685 | Beier | Sep 2008 | A1 |
20080241777 | Rossi | Oct 2008 | A1 |
20090173730 | Baier et al. | Jul 2009 | A1 |
20090320823 | Padgett | Dec 2009 | A1 |
20100035197 | Cadima | Feb 2010 | A1 |
20100114339 | Kaiser et al. | May 2010 | A1 |
20100126496 | Luo et al. | May 2010 | A1 |
20100154776 | Czajka et al. | Jun 2010 | A1 |
20100192939 | Parks | Aug 2010 | A1 |
20110142998 | Johncook et al. | Jun 2011 | A1 |
20110163086 | Aldana Arjol et al. | Jul 2011 | A1 |
20110248021 | Gutierrez et al. | Oct 2011 | A1 |
20120017595 | Liu | Jan 2012 | A1 |
20120024835 | Artal Lahoz et al. | Feb 2012 | A1 |
20120036855 | Hull | Feb 2012 | A1 |
20120067334 | Kim et al. | Mar 2012 | A1 |
20120070791 | Armanni | Mar 2012 | A1 |
20120076351 | Yoon et al. | Mar 2012 | A1 |
20120099761 | Yoon et al. | Apr 2012 | A1 |
20120160228 | Kim et al. | Jun 2012 | A1 |
20120171343 | Cadima et al. | Jul 2012 | A1 |
20120261405 | Kurose et al. | Oct 2012 | A1 |
20130043239 | Anton Falcon et al. | Feb 2013 | A1 |
20130252188 | Chen | Sep 2013 | A1 |
20130255663 | Cadima et al. | Oct 2013 | A1 |
20130260618 | Bally et al. | Oct 2013 | A1 |
20130269676 | Quintaba′ | Oct 2013 | A1 |
20140048055 | Ruther | Feb 2014 | A1 |
20140060517 | Ren | Mar 2014 | A1 |
20140071019 | Lim | Mar 2014 | A1 |
20140090636 | Bettinzoli | Apr 2014 | A1 |
20140097172 | Kang et al. | Apr 2014 | A1 |
20140116416 | Saubert | May 2014 | A1 |
20140137751 | Bellm | May 2014 | A1 |
20140139381 | Sippel | May 2014 | A1 |
20140318527 | Silva et al. | Oct 2014 | A1 |
20140352549 | Upston et al. | Dec 2014 | A1 |
20150107577 | Jeong | Apr 2015 | A1 |
20150136760 | Lima et al. | May 2015 | A1 |
20150153041 | Neumeier | Jun 2015 | A1 |
20150241069 | Brant et al. | Aug 2015 | A1 |
20150253012 | Faveri | Sep 2015 | A1 |
20150330640 | Stork gennant Wersborg | Nov 2015 | A1 |
20150345800 | Cabrera Botello | Dec 2015 | A1 |
20150359045 | Neukamm et al. | Dec 2015 | A1 |
20160029439 | Kurose et al. | Jan 2016 | A1 |
20160061490 | Cho et al. | Mar 2016 | A1 |
20160091210 | Ceccoli | Mar 2016 | A1 |
20160116160 | Takeuchi | Apr 2016 | A1 |
20160153666 | Tcaciuc | Jun 2016 | A1 |
20160174768 | Deverse | Jun 2016 | A1 |
20160178209 | Park et al. | Jun 2016 | A1 |
20160178212 | Park et al. | Jun 2016 | A1 |
20160187002 | Ryu et al. | Jun 2016 | A1 |
20160201902 | Cadima | Jul 2016 | A1 |
20160209044 | Cadima | Jul 2016 | A1 |
20160209045 | Millius | Jul 2016 | A1 |
20160295644 | Khokle et al. | Oct 2016 | A1 |
20160296067 | Laws | Oct 2016 | A1 |
20170003033 | Lona Santoyo et al. | Jan 2017 | A1 |
20170067651 | Khokle et al. | Mar 2017 | A1 |
20170074522 | Cheng | Mar 2017 | A1 |
20170082296 | Jeong et al. | Mar 2017 | A1 |
20170082299 | Rowley et al. | Mar 2017 | A1 |
20170108228 | Park et al. | Apr 2017 | A1 |
20170115008 | Erbe et al. | Apr 2017 | A1 |
20170261213 | Park et al. | Apr 2017 | A1 |
20170223774 | Cheng et al. | Aug 2017 | A1 |
20180058702 | Jang et al. | Mar 2018 | A1 |
20180073730 | Acosta Herrero | Mar 2018 | A1 |
20180195719 | Angulo | Jul 2018 | A1 |
Number | Date | Country |
---|---|---|
2365023 | Jul 2002 | CA |
2734926 | Oct 2011 | CA |
201680430 | Dec 2010 | CN |
2845869 | Apr 1980 | DE |
3014908 | Oct 1981 | DE |
3446621 | Jun 1986 | DE |
3717728 | Dec 1988 | DE |
3150450 | Aug 1989 | DE |
3839657 | May 1990 | DE |
4103664 | Jan 1992 | DE |
4445594 | Jun 1996 | DE |
10218294 | Nov 2003 | DE |
60004581 | Jun 2004 | DE |
19912452 | Oct 2007 | DE |
102006034391 | Jan 2008 | DE |
102007021297 | Nov 2008 | DE |
102008027220 | Dec 2009 | DE |
102009002276 | Oct 2010 | DE |
102013218714 | Apr 2014 | DE |
0122966 | Oct 1984 | EP |
0429120 | May 1991 | EP |
0620698 | Oct 1994 | EP |
0690659 | Jan 1996 | EP |
1030114 | Aug 2000 | EP |
1217306 | Jun 2002 | EP |
1344986 | Sep 2003 | EP |
1586822 | Oct 2005 | EP |
1099905 | Feb 2006 | EP |
2063181 | May 2009 | EP |
2063444 | May 2009 | EP |
2116775 | Nov 2009 | EP |
2116829 | Nov 2009 | EP |
2278227 | Jan 2011 | EP |
2299181 | Mar 2011 | EP |
2375170 | Oct 2011 | EP |
2144012 | Sep 2012 | EP |
2657615 | Oct 2013 | EP |
2816291 | Dec 2014 | EP |
2835580 | Feb 2015 | EP |
3006832 | Apr 2016 | EP |
2848867 | Sep 2017 | EP |
2787556 | Jun 2000 | FR |
2789753 | Aug 2000 | FR |
3003338 | Sep 2014 | FR |
2001141244 | May 2001 | JP |
2005009693 | Jan 2005 | JP |
2007147131 | Jun 2007 | JP |
2010038475 | Feb 2010 | JP |
2011257021 | Dec 2011 | JP |
1991013526 | Sep 1991 | WO |
9850736 | Nov 1998 | WO |
2006072388 | Jul 2006 | WO |
2006136363 | Dec 2006 | WO |
2012077050 | Jun 2012 | WO |
2013098330 | Jul 2013 | WO |
2013182410 | Dec 2013 | WO |
2014194176 | Dec 2014 | WO |
2015086420 | Jun 2015 | WO |
Entry |
---|
Built-In Gas Cooktop, image post date Feb. 18, 2015, originally cited by Examiner in U.S. Appl. No. 29/539,768 in Restriction Requirement dated Oct. 27, 2016, 10 pages, <http://www.bestbuy.com/site/kitchenaid-36-built-in-gas-cooktop-stainless-steel/8636634.p?skuId=8636634>. |
True-Heat burner, image post date Jan. 30, 2015, originally cited by Examiner in U.S. Application No. 29/539,768 n. Restriction Requirement dated Oct. 27, 2016, 2 pp., <http://ovens.reviewed.com/news/kitchenaid-has-a-new-lame>. |
Metal Cover Gas Hob, image post date 2012, originally in U.S. Appl. No. 29/539,768 in Restriction Requirement dated Oct. 27, 2016, 13 pages, <http://inse.gmc.globalmarket.com/products/details/metal-cover-gas-hob-8516959.html>. |
Penny Stove, image post date 2004, originally in U.S. Appl. No. 29/539,768 in Restriction Requirement dated Oct. 27, 2016, 30 pages, <http://www.jureystudio.com/pennystove/stoveinstruction.html>. |
Number | Date | Country | |
---|---|---|---|
20180238537 A1 | Aug 2018 | US |