Burner control system

Information

  • Patent Grant
  • 9657946
  • Patent Number
    9,657,946
  • Date Filed
    Monday, January 11, 2016
    9 years ago
  • Date Issued
    Tuesday, May 23, 2017
    7 years ago
Abstract
A burner control system for improving burner performance and efficiency. The system may determine fuel and air channel or manifold parameters. Determination of parameters may be performed with a sensor connected across the air and fuel channels. A signal from the sensor may control the parameters which in turn affect the amounts of fuel and air to the burner via a controller. Parameter control of the fuel and air in their respective channels may result in more accurate fuel and air ratio control. One or more flow restrictors in fuel and/or air bypass channels may further improve accuracy of the fuel and air ratio. The channels may be interconnected with a pressure or flow divider. Byproducts of combustion in the exhaust, temperatures of gas and air, flame quality and/or other items may be monitored and adjusted with control of the fuel and air ratio for optimum combustion in the burner.
Description
BACKGROUND

The present disclosure pertains to heating and particularly to burners. More particularly, the disclosure pertains to fuel and air mixture control of the burners.


SUMMARY

The disclosure reveals a burner control system for improving overall burner performance and efficiency. The system may determine fuel and air channel or manifold parameters. Determination of the parameters may be performed with one sensor (e.g., a differential pressure or flow sensor). A signal from the sensor may be used to control the parameters which in turn affect the amount of fuel and air to the burner via a controller. Parameter control of the fuel and air in their respective channels may result in accurate fuel and air ratio control of the fuel and air mixture to the burner. One or more flow restrictors in fuel and/or air channels may further improve accuracy of the fuel and air ratio of the mixture. Byproducts in the burner exhaust may also be monitored and reduced or increased depending on what the byproducts are, with control of the fuel and air ratio of the mixture for further optimization of the combustion in the burner. The system may be a combination of two systems, that is, incorporating a use of the pressure divider with the sensor as the core, and adding combustion feedback or gas/air temperature feedback or any other feedback to increase the accuracy, by fine-tuning the sensor's offset that one is regulating to.





BRIEF DESCRIPTION OF THE DRAWING


FIG. 1 is a diagram of a burner control system having a burner fuel and air mixture where a fuel parameter detected by the sensor is adjustable;



FIG. 2 is a diagram of a burner control system having a burner fuel and air mixture where an air parameter detected by the sensor is adjustable; and



FIG. 3 is a diagram of a burner control system having a burner fuel and air mixture where both the air and fuel parameters detected across the sensor are adjustable.





DESCRIPTION

Precise control of the fuel/air ratio may be one of the most important aspects of improving overall burner performance and efficiency. Related art control systems appear to lack the accuracy, flexibility, and function/feature sets to take full advantage of modern day burner performance or to advance burner designs to the next level. Two of the most common control systems for controlling burners in the related art may be the parallel positioning system and the pneumatic gas-air system. Both have drawbacks.


The parallel positioning system may rely on precisely positioning two actuators (one on a fuel control valve, one on an air damper) along a known, predefined curve. A drawback to this system may be that the actual flow of gas and air is not necessarily being measured directly and that certain shifts (i.e., temperature change, upstream pressure regulator drift, obstructed air supply, and so forth) might go undetected and uncompensated. An advantage of the parallel positioning system appears to be that it is flexible. This system may be used to control any fuel/air ratio profile (e.g., non-linear) and do it precisely.


The pneumatic gas-air system may utilize pneumatic feedback signals from gas, air, and optionally from the combustion chamber to control the amount of fuel. Since this system may rely on the fluid parameters of the gas and air directly, it is not necessarily sensitive to certain components' shifting (e.g., upstream pressure regulator drift or obstructed air supply). A disadvantage may be that only two points of the system might be calibrated and the fuel/air (F/A) curve would be a linear approximation to what the burner really needs between the two points. Additionally, this type of system may be sensitive to, for example, pressure surges due to ignition and pressure instabilities around the pressure pick-up detection points for Pgas (gas pressure), Pair (air pressure), and Pcc (combustion chamber pressure).


A present system may combine the strengths of the related-art systems and eliminate virtually all of their weaknesses. A control system may measure the ratio of the gas and air manifold parameters. The system may combine the measurement of gas and air in such a way that a single sensor can be used to measure both fluids. Optionally, a second sensor may be added for safety through redundancy or to expand the measurement range of the system. The sensor feedback signal may replace, or be used in conjunction with, the position feedback of a parallel positioning system. Since the sensor may be coupled directly to the air and fuel supply, the system is no longer necessarily sensitive to certain failure modes (e.g., regulator drift or obstructed air supply). The system may also have the desired flexibility. Any fuel air curve may be programmed and stored in the controller, despite non-linearity. In essence, this system may have virtually all of the flexibility of a parallel positioning system, and virtually all of the inherent safety of a pneumatic gas air system.


The present burner control arrangement may be a component of a heating system or a component of a heating, ventilation and air conditioning (HVAC) system.


Additional features may be added to the baseline system to make it even more useful to the end user. The gas and air flow may be trimmed by the controller to account for variability in the air and gas temperatures (i.e., densities). This may be achieved by measuring/estimating the temperature of the fluids and adjusting the flow restrictions of air and/or gas, accordingly. For example, by keeping the air flow constant and only changing the gas flow, the burner load may be kept constant. The system may be further trimmed based on the chemical composition of the flue gas. This may be achieved by measuring the byproducts (i.e., NOx, CO, HC, O2, and so forth) of combustion and adjusting the flow restrictions of air and/or gas accordingly. These two measures may be combined to eliminate nearly all of the tolerances from burner performance design, and should enable the end user of the system to run at optimum combustion across a turn-down ratio of the appliance.


In a standard burner configuration where a fan may be used to inject air into the burner under pressure, there may be a manifold for gas and a manifold for air coming into the burner. A bypass channel may be connected to the gas supply downstream of the control valve, but upstream of the burner orifice and then to the combustion chamber. In this bypass channel, there may be two orifices (at least one should be adjustable, but both can be adjustable for added flexibility of the system). These two orifices in series may form a pneumatic circuit commonly referred to as a pressure divider. The purpose of this circuit may be to reduce the gas pressure in the bypass channel from the manifold pressure to some pressure closer in value to the air pressure. Between the two orifices of the pressure divider circuit there may be a coupling between the gas bypass channel and the air supply channel. This may be referred to as a measurement channel. In the measurement channel, there may be mass flow, differential pressure or gauge pressure sensors. The sensors may measure the direction and magnitude of the flow through the measurement channel or of the differential pressure or gauge pressure, and provide feedback to the system's controller. The system constituting the sensor, measurement channel, bypass channel, pressure divider, fuel control valve, and controller may all be located in a single body, or may all be individual items, or may be made up of any combination. Optionally, a combustion sensor may be added to the control system for increased ease of system setup and for improved control accuracy during operation. A sensor may be placed in the flue of the combustion chamber or other appropriate location to observe byproducts of combustion.


Another feature may be an addition of temperature sensing to measure the air and gas temperatures. If this information is available to the system controller, then the temperature (density) affecting the system mass flow may be compensated out. The temperature compensation may or may not involve separate temperature sensors since many readily available pressure and flow sensors can have built-in temperature measurement used for compensating temperature drifts of the sensor and/or compensation of the system to account for temperature related changes in the working fluids.


To set up the present system in the field, the burner may be adjusted between minimum and maximum fire and the combustion byproducts may be observed (either manually or by the controller itself if it has its own combustion sensor). The air flow and gas flow may be adjusted to a desired amount at each point on the fuel/air curve between minimum and maximum fire, and the output of the sensor in the measurement channel may be recorded and stored by the controller. This process may be repeated until the entire fuel/air curve has been profiled and stored. Once the controller has this curve, it may adjust the air damper, fan or the fuel valve precisely based on a desired firing rate of the system and feedback from the sensor in the measurement channel.


One way that the system could work may be as follows: 1) A combustion sensor senses a byproduct concentration and sends a signal to the controller; 2) the controller recalculates the “predetermined magnitude of the parameter” based on the present and the desired byproduct concentrations; and the controller sends a signal to a control mechanism or mechanisms, adjusting fuel and/or air such that the parameter is driven to the new predetermined magnitude.


A system, where the temperature of both air and fuel is monitored, may work as follows: 1) A controller determines a difference between air and fuel temperatures; 2) The controller recalculates the “predetermined magnitude of the parameter” based on the temperature difference; and 3) The controller sends a signal to control mechanism(s), adjusting fuel and/or air such that the parameter is driven to the new predetermined magnitude.



FIG. 1 is a diagram of a burner control system 10 having a burner fuel and air mixture where the fuel pressure within or flow through the bypass channel 18 is adjustable. System 10 may have an air supply channel 11 for pumping air 47 with a fan 12 at one end of channel 11 into a chamber 13, such as a combustion chamber. At the other end of channel 11, there may be a baffle plate 17. Fuel 48, such as gas, may be injected downstream of baffle plate 17 into the airflow. Baffle plate 17 may be essential to make sure that the gas pressure is related to, for instance, the combustion chamber 13 pressure. This may assure that the gas flow goes down in case of a reduced air flow as a result of a flow blockage, e.g., in the flue.


Chamber 13 may be a volume where the one or more bypass channels terminate. Basically, the bypass channel or channels should terminate at a volume that has the same pressure as the termination points of the gas and air channels. Combustion chamber may be regarded herein as an illustrative example of chamber 13. A fuel channel 14 may be connected to a valve 15 at one end and connected at another end to an orifice 16. A measurement channel 19 may connect one end of a sensor 22 to air channel 11. A bypass channel 18 may have one end connected to fuel channel 14 and another end connected to combustion chamber 13. A measurement channel 21 may connect another end of sensor 22 to bypass channel 18. A resistive orifice, R1, 23 may be situated in bypass channel 18 between fuel channel 14 and measurement channel 21. Another resistive orifice, R2, 24 may be situated in bypass channel 18 between measurement channel 21 and combustion chamber 13. Orifices 23 and 24 may constitute a pressure divider circuit. Orifice 23 may be varied when tuning burner system 10. Orifice 24 may be fixed but could also or instead be variable. An orifice may be variable, for example, in size, shape and/or other property.


Sensor 22 may be one or more flow sensors, one or more pressure sensors, one or more differential pressure sensors, and/or a manifold of similar or different sensors. The present examples in FIGS. 1-3 may utilize a differential pressure sensor for illustrative purposes, though the differential sensor may be substituted with other kinds of sensors such as a flow sensor or gauge pressure sensors. For instance, if sensor 22 is a flow sensor, then a flow may go from a channel that would have had been indicated by the differential pressure sensor as the channel to have a higher pressure, to the other channel indicated to have the lower pressure as indicated by the differential pressure sensor if it were situated in lieu of the flow sensor.


When tuning the burner system 10 for operation with nominal settings of air flow in channel 11 and fuel 48 in channel 14, orifice 23, may be adjusted in size to, for example, equalize the pressures or adjust them to predefined magnitudes in measurement channels 19 and 21, which may be designated as pressures 25 and 26, respectively. As a result, for equalization between ports 19 and 21 as a matter of course, there should be no flow through a flow sensor 22 or there should be a zero pressure difference indicated by a differential pressure sensor 22. The differential pressure, flow rate, gauge pressures, or other parameter value does not necessarily need to be zero or reflect similar magnitudes of parameters relating to the air and fuel channels. There may be a deviation or offset from zero as a setpoint referred to for control of the air pressure, gas pressure, flow, or other parameter. A sensor or sensors indicating a parameter comparison relative to the air and fuel channels may allow for a lambda adjustment as a function of the burner load and/or air flow. In lieu of zero, there may be a predefined differential pressure, gauge pressures, flow, or other parameter relative to the burner load, fuel consumption, air usage, fuel air mixture, and/or the like.


After burner system 10 is in place after being tuned and operating, for instance, pressures 25 and 26 may become different resulting in an indication by sensor 22 that the pressures are different either by a flow or differential pressure indication. A signal 32 of the indication of pressures 25 and 26 or other parameters may go to a controller 31. In response to the difference in pressures 25 and 26, controller 31 may send a signal 33 to valve 15. Valve 15 may be motorized in that it may open or close incrementally according to signal 33. For example, if pressure 25 is greater than pressure 26, then via signals 32 and 33 to and from controller 31, respectively, valve 15 may open to increase the fuel pressure in channels 14 and 18, and thus pressure 26 until it is about equal to pressure 25 if that is the goal, or some predefined differential pressure. If pressure 25 is less than pressure 26, then via signals 32 and 33 to and from controller 31, respectively, valve 15 may close to decrease the fuel pressure in channels 14 and 18, and thus, for example, pressure 26 until it is about equal to pressure 25 if that is the goal, or some predefined differential pressure.


Controller 31 may be connected to fan 12 which may be varied in speed according to a signal 34 from controller 31 and thus vary flow of air 47 through channel 11. Changing speed of fan 12 may increase or decrease pressure 25 to make it equal to pressure 26, or result in a predetermined differential pressure between pressures 25 and 26, or some other parameter such as a flow rate, indicated by sensor 22 via signals 32 and 34 to and from controller 31, respectively.


Controller 31 may be connected to a motorized damper/louver 36 which may vary closure or opening of channel 11 to affect an amount of air flow through channel 11 according to a signal 35 from controller and thus vary the flow of air 47 through channel 11. Opening or closing damper/louver 36 may increase or decrease pressure 25 to make it equal to pressure 26, or to result in a predetermined differential pressure between pressures 25 and 26, as indicated by sensor 22 via signals 32 and 35 to and from controller 31, respectively.


Pressures 25 and 26 may also be equalized or differentiated to a predetermined value, with a combination of two or more kinds of control which incorporate control of valve 15, control of fan 12 and/or control of damper 36, via signals 33, 34 and 35, respectively, from controller 31 according to signal 32 from sensor 22. In a basic form, the present system pressures 25 and 26, or a flow rate between channels 19 and 21, may be adjusted to some value through control over the fuel 48, such as, for instance, gas.


Air temperature may be detected by a sensor 27 in air channel 11 and provided as a signal to controller 31 of systems 10, 20 and 30 of FIGS. 1, 2 and 3, respectively. Fuel temperature may be detected by sensor 40 in fuel channel 14 and provided as a signal to controller 31 of systems 10, 20 and 30. Instead, temperature sensing of the air 47 and/or fuel 48 may be a built-in part of primary control of the air and/or fuel, respectively. Controller 31 may compensate for densities of air 47 and fuel 48 in a fuel air ratio control. Sensors 27 and 40 may be a combination of temperature and pressure sensors.


A demand signal 29 may also go to controller 31 in systems 10, 20 and 30. Signal 29 may be regarded as a load control signal. A predefined pressure drop or offset, or flow rate across sensor 22 may be nearly instantaneously set by controller 31 through adjusting fuel valve 15 via line 33 and/or manipulating the air supply with a mechanism such as, for example, fan 12 or damper/louver 36 via lines 34 and 35, respectively, from controller 31. The pressure offset or flow across sensor 22 may be induced as a function of a demand signal 29. Demand signal 29 may effectively tell system 10, 20 or 30, what a firing rate should be, taking into account that a desired fuel air ratio may be different at different firing rates.


Any of systems 10, 20 and 30, may be used with virtually any control scheme such as controlling fuel 48 or air 47 only, controlling both fuel 48 and air 47, controlling both fuel and air with a combustion byproduct sensor to offset the system, controlling both the fuel and air with the combustion byproduct sensor 37, and so on. A combustion sensor 37 may be mounted at an exhaust port 38 of combustion chamber 13 to provide a signal 39, indicating information about byproducts in exhaust gases 46 emanating from a flame 45 at orifice 16 in combustion chamber 13 for systems 10, 20 and 30. Byproducts of combustion in the burner exhaust, temperatures of the gas and air, and/or flame quality may be monitored and adjusted with control of the fuel and air ratio for optimum combustion in the burner. A quality of flame 45 may be inferred from information about byproducts and/or other information such as parameters relative to pressure, temperature, flow and so forth. A specific flame quality sensor (not shown) may be incorporated. Signal 39 may go to controller 31, which can adjust pressures 25 and/or 26 or flow rate to change an amount of certain byproducts in exhaust gases 46. Sensor 37 may also or instead be a temperature sensor of exhaust gases 46. There may also be a sensor 44 situated in chamber 13 and connected to controller 31. Sensor 44 may be a pressure sensor, or a temperature sensor, or both a pressure and temperature sensor. A basic form of the system may incorporate a pressure divider on the fuel (restrictors 23 and 24) or air side (restrictors 42 and 43), sensor 22, valve 15 and controller 31 that takes signal 32 from sensor 22 and drives valve 15 with signal 33. The system does not necessarily control air 47 but rather the system may simply follow an air signal that the system is given. A flame sensor monitor may be added to the present system. The sensor may be a flame rod, optical sensor, and so on, that can monitor the combustion process and be used to offset the fuel air ratio.



FIG. 2 is a diagram of a burner control system 20 having a burner fuel and air mixture where the air pressure across the sensor is adjustable. System 20 may have some components similar to those of system 10 shown in FIG. 1. In system 20, port 21 of sensor 22 may be connected directly to fuel channel 14, since bypass channel 18 of system 10 is absent. Port 19 of sensor 22 may be connected to a bypass channel 41 that has a one end coupled to air channel 11 and another end coupled to combustion chamber 13. A restrictive orifice, R3, 42 may be situated in bypass channel 41 between the end of the bypass channel 41 coupled to air channel 11 and port 19 of sensor 22. A second resistive orifice, R4, 43 may be situated in bypass channel 41 between the coupling port 19 of sensor 22 and the end of bypass channel 41 that is coupled to combustion chamber 13. One or both orifices 42 and 43 may be variable, for instance, in size, shape and/or other property. Pressures 25 and 26 at ports 19 and 21, respectively, may be equalized initially by adjusting a passage size of one or both orifices 42 and 43, and then possibly be set to a predefined differential value of pressures 25 and 26 indicated by a pressure sensor 22, or a flow rate between ports 19 and 21 of a flow sensor 22. A variable passage may equal a bypass channel plus one or more restrictors. In operation further on in time, pressures 25 and 26 may be equalized or set to the predefined value by control of air flow in channel 11 by control of fan or air mover 12 with a signal 34 from controller 31 as guided by signal 32 indicating the differential pressure of pressures 25 and 26 or flow rate across sensor 22. Air flow in channel 11 may also be affected by damper or louver 36 with a signal 35 from controller 31 as guided by signal 32 from sensor 22. The differential of pressures 25 and 26, or flow rate between ports 19 and 21 of sensor 22, may also be affected by fuel flow in channel 14 as controlled by valve 15 with a signal 33 from controller 31 as guided by signal 32 from sensor 22. Control of the differential pressure or the flow rate may be effected by valve 15 control, air mover 12 control or damper/louver 36 control, or any combination of these controls. A basic system may utilize just the valve 15 control. Sensor 22 may detect or measure values or magnitudes of other parameters relative to channels 11 and 14.



FIG. 3 is a diagram of a burner system 30 having a burner fuel and air mixture where the air and fuel pressures or flow rate across sensor 22 may be adjustable. System 30 may have some components similar to those of systems 10 and 20 shown in FIGS. 1 and 2, respectively. Bypass channel 41 with restrictive orifices 42 and 43 may be coupled at one end to air channel 11 and coupled at the other end to combustion chamber 13. Port 19 of sensor 22 may be coupled to bypass channel 41 between orifices 42 and 43. Port 21 of sensor 22 may be coupled to bypass channel 18 between orifices 23 and 24. Bypass channel 18 with orifices 23 and 24 may be coupled at one end to fuel channel 14 and coupled at the other end to bypass channel 41 between orifice 43 and the end of channel 41 connected to combustion chamber 13. Instead of to channel 41, bypass channel 18 may have the other end coupled directly to chamber 13. At least one or more of orifices 23, 24, 42 and 43 may have an adjustable passage size, shape or other property. By adjusting the orifices in the bypass channels the gas flow may be adjusted in order to meet a desired lambda (excess air) setting of the application, and thus adjust the amplification factor between the air and gas pressures in the air channel 11 and fuel channel 14, or flow rate between channels 11 and 14 across sensor 22, respectively.


In operation further on in time, pressures 25 and 26 may be equalized or made to meet a desired differential pressure by control of air flow in channel 11 by control of fan or air mover 12 with a signal 34 from controller 31 as guided by signal 32 indicating the differential pressure of pressures 25 and 26 across sensor 22. Instead of the differential value of pressures 25 and 26, another parameter such as flow rate, may be measured across sensor 22. Air flow in channel 11 may also be affected by damper or louver 36 with a signal 35 from controller 31 as guided by signal 32 from sensor 22. The differential of pressures 25 and 26 or flow rate as indicated by sensor 22 may also be affected by fuel flow in channel 14 as controlled by valve 15 with a signal 33 from controller 31 as guided by signal 32 from sensor 22. Control of the differential pressure or flow rate may be effected by valve 15 control, air mover 12 control or damper/louver 36 control, or any combination of these controls. A measurement of gauge pressures at both ends of or across sensor 22, or flow rate may be measured through sensor 22 that is to provide a signal 32 to controller 31 and in turn the controller to provide the respective control signals for regulating air and fuel flow through the respective channels 11 and 14.


To recap, a burner control system for heating, ventilating and air conditioning (HVAC) may incorporate an air channel having an output coupled to a chamber, a fuel channel having an output coupled to the chamber, an air mover coupled to the air channel, a fuel valve coupled to an input of the fuel channel, a first bypass channel having a first end coupled to the air channel and having a second end coupled to the chamber, a second bypass channel having a first end coupled to the fuel channel and a second end coupled to the first bypass channel or the chamber, a sensor having a first port connected to the first bypass channel and having a second port connected to the second bypass channel, and a controller connected to the sensor. The sensor may detect a parameter between the first port of the sensor and the second port of the sensor. The sensor may provide a signal, indicating a magnitude of the parameter, to the controller. The controller may send a signal to a control mechanism to adjust an amount of fuel to the fuel channel and/or to adjust a quantity of air to the air channel, so as to cause the parameter to approach a predetermined magnitude for achieving a certain fuel air ratio of a fuel air mixture to the chamber. The parameter may be selected from a group consisting of a flow rate, differential pressure and gauge pressures.


There may also be a sensor, situated in the chamber and connected to the controller, for detecting a quality of a flame resulting from the fuel air mixture in the chamber. The quality of the flame may be used to achieve or adjust a ratio of the fuel air mixture.


The system may further incorporate a first restrictor orifice situated in the second bypass channel between the first end of the second bypass channel and the second port of the sensor, and a second restrictor orifice situated in the second bypass channel between the second port of the sensor and the second end of the second bypass channel.


The system may also further incorporate a third restrictor orifice situated in the first bypass channel between the first end of the first bypass channel and the first port of the sensor, and a fourth restrictor orifice situated in the first bypass channel between the first port of the sensor and second end of the second bypass channel coupled to the first bypass channel or the chamber.


One or more restrictor orifices may have a variable orifice size. The variable orifice size may be varied to make the parameter approach the predetermined magnitude.


The control mechanism may be the fuel valve that adjusts the amount of fuel to the fuel channel so as to cause the parameter to approach the predetermined magnitude. The control mechanism may be an air mover that adjusts the quantity of air to the air channel so as to cause the parameter to approach the predetermined magnitude.


The system may further incorporate a variable damper/louver situated in the air channel. The control mechanism may be the variable damper/louver that adjusts the quantity of air to the air channel so as to cause the parameter to approach the predetermined magnitude.


The sensor may be an item consisting of one or more sensors and is selected from a group consisting of one or more pressure sensors, differential pressure sensors, and flow sensors.


The system may further incorporate a combustion sensor situated at an exhaust port of the chamber. The combustion sensor may provide a signal, indicative of a concentration of one or more combustion byproducts, to the controller. The controller may calculate a predetermined magnitude of the parameter based on the concentration and desired concentration of the one or more combustion byproducts. The controller may send a signal to the control mechanism to adjust the amount of fuel to the fuel channel and/or to adjust the quantity of air to the air channel so as to drive the parameter to a new predetermined magnitude.


The system may further incorporate a temperature sensor situated in a fuel channel and/or air channel. The temperature sensor may provide a signal, indicative of a temperature of fuel and/or air, to the controller. The controller may calculate a predetermined magnitude of the parameter based on the temperature of the fuel and/or air. The controller may send a signal to the control mechanism to adjust the amount of fuel to the fuel channel and/or to adjust the quantity of air to the air channel so as to drive the parameter to a new predetermined magnitude.


Another burner control system may incorporate a chamber, an air channel having an output coupled to the chamber, a fuel channel having an output coupled to the chamber, an air mover coupled to the air channel, a fuel valve coupled to an input of the fuel channel, a bypass channel having a first end coupled to the fuel channel and having a second end coupled to the chamber, a sensor having a first port coupled to the air channel and having a second port coupled to the bypass channel, and a controller connected to the sensor and to the valve or the air mover.


A difference between a first parameter at the first port of the sensor and a second parameter at the second port of the sensor may be detected by the sensor.


The system may further incorporate one or more restrictors situated in the bypass channel. At least one restrictor of the one or more restrictors may have a variable flow restriction. A variable passage may incorporate a bypass channel and one or more restrictions. The variable passage may be tuned so that a difference of magnitudes of the first parameter and the second parameter approaches a magnitude to obtain a predetermined fuel air mixture during operation of the burner system.


If the difference of magnitudes of the first and second parameters is greater or less than a predetermined magnitude by a given delta of magnitude, a signal from the sensor to the controller may indicate the difference of the first and second parameters, and the controller may provide a signal to the valve to close or open the valve to decrease or increase fuel flow in the fuel channel or to the air mover to decrease or increase air flow and change the difference between the first and second parameters to approach the predetermined magnitude.


A predetermined magnitude of the difference between the first and second parameters may be needed to obtain a correct fuel air mixture, if the first parameter needs to be greater than the second parameter to approach the predetermined magnitude of the difference between the first and second parameters, then the controller may provide a signal to adjust the valve to change an amount of fuel entering the fuel channel or to adjust the air mover to change an amount of air entering the air channel which decreases the second parameter or increases the first parameter. If the second parameter needs to be greater than the first parameter to approach the predetermined magnitude of the difference between the first and second parameters, then the controller may provide a signal to the valve to change an amount of fuel entering the fuel channel or to adjust the air mover to change an amount of air entering the air channel which increases the second parameter or decreases the first parameter.


The following may be stated as an alternative to the previous paragraph. If the difference between the first and the second parameter needs to be increased to approach the predetermined magnitude of the difference between the first and second parameters, then the controller may provide a signal to adjust the valve to decrease an amount of fuel entering the fuel channel and/or to adjust the air mover to increase an amount of air entering the air channel which decreases the second parameter and/or increases the first parameter, respectively. If the difference between the first and the second parameter needs to be decreased to approach the predetermined magnitude of the difference between the first and second parameters, then the controller may provide a signal to adjust the valve to increase an amount of fuel entering the fuel channel and/or to adjust the air mover to decrease an amount of air entering the air channel which increases the second parameter and/or decreases the first parameter, respectively.


Still another burner system may incorporate an air channel having an output coupled to a combustion chamber, a fuel channel having an output coupled to the chamber, an air flow control mechanism coupled to the air channel, a fuel valve coupled to an input of the fuel channel, a bypass channel having a first end coupled to the air channel and having a second end coupled to the chamber, and a sensor having a first port coupled to the bypass channel and a second port coupled to the fuel channel.


The system may further incorporate a controller having an input connected to an output of the sensor. A difference between a first parameter at the first port of the sensor and a second parameter at the second port of the sensor may be detected by the sensor and indicated by the sensor on a signal to the controller. The system may still further incorporate one or more restrictors situated in the bypass channel. At least one restrictor of the one or more restrictors may have a variable flow restriction.


A predetermined magnitude of the difference between the first and second parameters may be needed to obtain a correct fuel air mixture. If the second parameter needs to be more than the first parameter to approach the predetermined magnitude of the difference between the first and second parameters, then the controller may provide a signal to the air flow control mechanism to adjust an amount of air going through the air channel or to the valve to adjust an amount of fuel going through the fuel channel which decreases the first parameter or increases the second parameter. If the first parameter needs to be greater than the second parameter to approach the predetermined magnitude of the difference between the first and second parameters, then the controller may provide a signal to the air flow control mechanism to adjust the amount of air going through the air channel or to the valve to adjust the amount of fuel going through the fuel channel which increases the first parameter or decreases the second parameter.


The system may further incorporate a second sensor connected to the controller and situated in the chamber. The second sensor may detect a quality of a flame in the chamber. The quality of the flame may be conveyed via a signal to the controller for calculating a fuel air mixture for optimizing the quality of the flame in the chamber. The fuel air mixture may be attained by signals from the controller to the air flow control mechanism and/or to the fuel valve. Optimizing the quality of the flame may incorporate reducing or increasing the byproducts in an exhaust of the chamber, increasing or decreasing an amount of heat per unit of fuel used, and/or achieving other beneficial results relative to energy, environment, efficiency, and/or the like.


In the present specification, some of the matter may be of a hypothetical or prophetic nature although stated in another manner or tense.


Although the present system and/or approach has been described with respect to at least one illustrative example, many variations and modifications will become apparent to those skilled in the art upon reading the specification. It is therefore the intention that the appended claims be interpreted as broadly as possible in view of the related art to include all such variations and modifications.

Claims
  • 1. A burner control system for heating, ventilating and air condition (HVAC) comprising: a combustion chamber;an air channel having an output coupled to the combustion chamber;a fuel channel having an output coupled to the combustion chamber;a bypass channel having a first end connected to one or more of the air channel and the fuel channel and a second end coupled to the combustion chamber;an air mover coupled to the air channel;a fuel valve coupled to an input of the fuel channel;a first sensor configured to sense a measure in the air channel;a second sensor configured to sense a measure in the fuel channel;a third sensor configured to sense a measure in the combustion chamber;a forth sensor having a port connected to the bypass channel;a controller connected to the first sensor, the second sensor, the third sensor, and the fourth sensor;wherein the controller receives a signal from each of the first sensor, the second sensor, the third sensor, and the fourth sensor indicating a magnitude of a parameter sensed by the respective sensor; andwherein the controller sends a signal to a control mechanism to adjust an amount of fuel provided to the fuel channel and/or to adjust an amount of air provided to the air channel based, at least in part, on the signal from the fourth sensor, so as to cause the parameter to approach a predetermined magnitude for achieving a certain fuel to air ratio of a fuel air mixture in the combustion chamber.
  • 2. The system of claim 1, wherein the air channel has an airflow restriction at an end of the air channel adjacent the combustion chamber and the first sensor is positioned upstream of the airflow restriction.
  • 3. The system of claim 2, wherein the airflow restriction is a baffle plate.
  • 4. The system of claim 1, wherein the fuel channel is connected to an orifice and the second sensor is positioned upstream of the orifice.
  • 5. The system of claim 1, wherein the third sensor is positioned in the combustion chamber downstream of an orifice connected to the fuel channel and downstream of an airflow restriction at an end of the air channel adjacent the combustion chamber.
  • 6. The system of claim 1, wherein the controller controls a ratio of the amount of fuel provided to the fuel channel to the amount of air provided to the air channel.
  • 7. The system of claim 6, wherein the controller compensates for densities of fuel and/or air when controlling the ratio.
  • 8. The system of claim 7, wherein the controller compensates for densities of fuel and/or air when controlling the ratio based, at least in part, on signals from one or more of the first sensor, the second sensor, and the third sensor.
  • 9. The system of claim 1, wherein each of the first sensor, the second sensor, and the third sensor is configured to sense one or more of a temperature and a pressure.
  • 10. The system of claim 1, wherein the control mechanism is one or more of the fuel valve used to adjust an amount of fuel provided to the fuel channel and the air mover used to adjust an amount of air to the air channel.
  • 11. The system of claim 1, further comprising; an air damper/louver situated in the air channel; andwherein the control mechanism is the air damper/louver.
  • 12. A burner control system comprising: a chamber;an air channel having an output coupled to the chamber;a fuel channel having an output coupled to the chamber;a bypass channel having a first end coupled to the fuel channel and having a second end coupled to the chamber;an air mover coupled to the air channel;a fuel valve coupled to an input of the fuel channel;a first sensor configured to sense a measure in the air channel upstream of an end of the air channel adjacent the chamber and downstream of the air mover;a second sensor configured to sense a measure in the fuel channel upstream of an end of the fuel channel adjacent the chamber and downstream of the fuel valve;a third sensor having a first port coupled to the air channel and having a second port coupled to the bypass channel; anda controller connected to the first sensor, the second sensor, the third sensor, and one or more of the air mover and the fuel valve.
  • 13. The system of claim 12, further comprising a third sensor configured to sense a measure in the chamber downstream of the output of the air channel coupled to the chamber and downstream of the output of the fuel channel coupled to the chamber, wherein the third sensor is connected to the controller.
  • 14. The system of claim 12, wherein each of the first sensor and the second sensor is configured to sense one or more of temperature and pressure.
  • 15. The system of claim 12, wherein the controller controls a ratio of an amount of fuel provided to the fuel channel to an amount of air provided to the air channel and compensates for densities of fuel in the fuel channel and/or air in the air channel when controlling the ratio.
  • 16. The system of claim 15, wherein the controller compensates for densities of fuel and/or air when controlling the ratio based, at least in part, on signals from one or more of the first sensor and the second sensor.
  • 17. A method of controlling an air to fuel ratio provided to a combustion chamber, the method comprising: sensing a measure in an air flow channel with a first sensor, wherein the measure is sensed at a position downstream of an air flow mover coupled to the air flow channel and upstream of an output of the air flow channel into a combustion chamber;sensing a measure in a fuel channel with a second sensor, wherein the measure is sensed at a position downstream of a fuel valve coupled to the fuel channel and upstream of an output of the fuel channel into the combustion chamber;sensing a measure in a bypass channel with a third sensor between a first port coupled to the air channel and a second port coupled to the bypass channel, wherein the bypass channel has a first end coupled to the fuel channel, and having a second end coupled to the chamber; andadjusting with a controller connected to the first sensor, the second sensor and the third sensor one or more of the air flow mover to adjust an amount of air provided to the combustion chamber and the fuel valve to adjust an amount of fuel provided to the combustion chamber.
  • 18. The method of claim 17, further comprising: compensating for densities of one or more of air provided to the combustion chamber and fuel provided to the combustion chamber when adjusting the air flow mover or fuel valve; andwherein compensating for densities is based, at least in part, on the measure sensed in the air flow channel or on the measure sensed in the fuel channel.
Parent Case Info

This present application is a continuation of U.S. patent application Ser. No. 13/621,175, filed Sep. 15, 2012. U.S. patent application Ser. No. 13/621,175, filed Sep. 15, 2012, is hereby incorporated by reference.

US Referenced Citations (468)
Number Name Date Kind
156769 Cameron Nov 1874 A
424581 Sickels Apr 1890 A
1033204 Skinner Jul 1912 A
1147840 Bowser Jul 1915 A
1156977 Cloos Oct 1915 A
1165315 Cameron Dec 1915 A
1206532 Gray Nov 1916 A
1847385 Dengler Mar 1932 A
2093122 Andrews Sep 1937 A
2196798 Horstmann Apr 1940 A
2403692 Tibbetts Jul 1946 A
2440329 Doble Apr 1948 A
2497549 Heller Feb 1950 A
2561793 Furczyk Jul 1951 A
2791238 Bryant May 1957 A
2975307 Schroeder et al. Mar 1961 A
3164364 McColl Jan 1965 A
3202170 Holbrook Aug 1965 A
3304406 King Feb 1967 A
3346008 Scaramucci Oct 1967 A
3381623 Elliott May 1968 A
3393965 Vaughan Jul 1968 A
3414010 Sparrow Dec 1968 A
3493005 Kakegawa Feb 1970 A
3641373 Elkuch Feb 1972 A
3646969 Stampfli Mar 1972 A
3744754 Demi Jul 1973 A
3768955 McLaughlin Oct 1973 A
3769531 Elkuch Oct 1973 A
3803424 Smiley et al. Apr 1974 A
3884266 Kondo May 1975 A
3947644 Uchikawa Mar 1976 A
3960364 Hargrave Jun 1976 A
3973576 Dietiker Aug 1976 A
3973976 Boyd Aug 1976 A
3993939 Slavin et al. Nov 1976 A
4114652 Oberle Sep 1978 A
4115036 Paterson Sep 1978 A
4140936 Bullock Feb 1979 A
4188013 Battersby et al. Feb 1980 A
4188972 Van Der Zee Feb 1980 A
4197737 Pittman Apr 1980 A
4242080 Tabei Dec 1980 A
4277832 Wong Jul 1981 A
4360955 Block Nov 1982 A
4402340 Lockwood, Jr. Sep 1983 A
4406131 Weasel, Jr. Sep 1983 A
4418886 Holzer Dec 1983 A
4442853 Gort Apr 1984 A
4450868 Duval et al. May 1984 A
4453169 Martner Jun 1984 A
4478076 Bohrer Oct 1984 A
4478077 Bohrer et al. Oct 1984 A
4481776 Araki et al. Nov 1984 A
4493303 Thompson et al. Jan 1985 A
4498850 Perlov et al. Feb 1985 A
4501144 Higashi et al. Feb 1985 A
4539575 Nilsson Sep 1985 A
4543974 Dietiker et al. Oct 1985 A
4576050 Lambert Mar 1986 A
4581624 O'Connor Apr 1986 A
4581707 Millar Apr 1986 A
4585209 Aine et al. Apr 1986 A
4619438 Coffee Oct 1986 A
4622699 Spriggs Nov 1986 A
4622999 Ray Nov 1986 A
4628499 Hammett Dec 1986 A
4645450 West Feb 1987 A
4651564 Johnson et al. Mar 1987 A
4654546 Kirjavainen Mar 1987 A
4698015 Brunel Oct 1987 A
4722360 Odajima et al. Feb 1988 A
4756508 Giachino et al. Jul 1988 A
4815699 Mueller Mar 1989 A
4821999 Ohtaka Apr 1989 A
4829826 Valentin et al. May 1989 A
4835717 Michel et al. May 1989 A
4836247 Chuang Jun 1989 A
4898200 Odajima et al. Feb 1990 A
4911616 Laumann, Jr. Mar 1990 A
4915613 Landis Apr 1990 A
4938742 Smits Jul 1990 A
4939405 Okuyama et al. Jul 1990 A
5022435 Jaw-Shiunn Jun 1991 A
5057822 Hoffman Oct 1991 A
5065978 Albarda et al. Nov 1991 A
5069419 Jerman Dec 1991 A
5070252 Castenschiold et al. Dec 1991 A
5078581 Blum et al. Jan 1992 A
5082242 Bonne et al. Jan 1992 A
5082246 Stanley et al. Jan 1992 A
5085562 Van Lintel Feb 1992 A
5096388 Weinberg Mar 1992 A
5129794 Beatty Jul 1992 A
5146941 Statler Sep 1992 A
5148074 Fujita et al. Sep 1992 A
5171132 Miyazaki et al. Dec 1992 A
5176358 Bonne et al. Jan 1993 A
5180288 Richter et al. Jan 1993 A
5180623 Ohnstein Jan 1993 A
5186054 Sekimura Feb 1993 A
5190068 Philbin Mar 1993 A
5192197 Culp Mar 1993 A
5193993 Dietiker Mar 1993 A
5199456 Love et al. Apr 1993 A
5199462 Baker Apr 1993 A
5203688 Dietiker Apr 1993 A
5205323 Baker Apr 1993 A
5206557 Bobbio Apr 1993 A
5215112 Davison Jun 1993 A
5215115 Dietiker Jun 1993 A
5219278 Van Lintel Jun 1993 A
5224843 Van Lintel Jul 1993 A
5244527 Aoyagi Sep 1993 A
5244537 Ohnstein Sep 1993 A
5263514 Reeves Nov 1993 A
5294089 LaMarca Mar 1994 A
5322258 Bosch et al. Jun 1994 A
5323999 Bonne et al. Jun 1994 A
5325880 Johnson et al. Jul 1994 A
5336062 Richter Aug 1994 A
5368571 Horres, Jr. Nov 1994 A
5388607 Ramaker et al. Feb 1995 A
5441597 Bonne et al. Aug 1995 A
5449142 Banick Sep 1995 A
5452878 Gravesen et al. Sep 1995 A
5460196 Yonnet Oct 1995 A
5477877 Schulze et al. Dec 1995 A
5499909 Yamada et al. Mar 1996 A
5513611 Ricouard et al. May 1996 A
5520533 Vrolijk May 1996 A
5526172 Kanack Jun 1996 A
5529465 Zengerle et al. Jun 1996 A
5536963 Polla Jul 1996 A
5538220 LaMarca Jul 1996 A
5541465 Higuchi et al. Jul 1996 A
5552654 Konno et al. Sep 1996 A
5565832 Haller et al. Oct 1996 A
5571401 Lewis et al. Nov 1996 A
5580444 Burrows Dec 1996 A
5590235 Rappenecker et al. Dec 1996 A
5621164 Woodbury et al. Apr 1997 A
5642015 Whitehead et al. Jun 1997 A
5676342 Otto et al. Oct 1997 A
5683159 Johnson Nov 1997 A
5685707 Ramsdell et al. Nov 1997 A
5696662 Bauhahn Dec 1997 A
5725363 Bustgens et al. Mar 1998 A
5735503 Hietkamp Apr 1998 A
5741978 Gudmundsson Apr 1998 A
5748432 Przywozny et al. May 1998 A
5755259 Schulze et al. May 1998 A
5759014 Van Lintel Jun 1998 A
5759015 Van Lintel et al. Jun 1998 A
5769043 Nitkiewicz Jun 1998 A
5774372 Berwanger Jun 1998 A
5790420 Lang Aug 1998 A
5792957 Luder et al. Aug 1998 A
5797358 Brandt et al. Aug 1998 A
5808205 Romo Sep 1998 A
5822170 Cabuz et al. Oct 1998 A
5827950 Woodbury et al. Oct 1998 A
5836750 Cabuz Nov 1998 A
5839467 Saaski et al. Nov 1998 A
5847523 Rappenecker et al. Dec 1998 A
5863708 Zanzucchi et al. Jan 1999 A
5887847 Holborow Mar 1999 A
5893389 Cunningham Apr 1999 A
5901939 Cabuz et al. May 1999 A
5911872 Lewis et al. Jun 1999 A
5918852 Otto Jul 1999 A
5933573 Lukenich et al. Aug 1999 A
5944257 Dietiker et al. Aug 1999 A
5954079 Barth et al. Sep 1999 A
5954089 Seymour Sep 1999 A
5957158 Volz et al. Sep 1999 A
5959448 Baranski et al. Sep 1999 A
5967124 Cook et al. Oct 1999 A
5971355 Biegelsen et al. Oct 1999 A
5982274 Stetler et al. Nov 1999 A
5986573 Franklin et al. Nov 1999 A
6003552 Shank et al. Dec 1999 A
6021652 Walker Feb 2000 A
6050281 Adams et al. Apr 2000 A
6057771 Lakra May 2000 A
6077068 Okumura Jun 2000 A
6106245 Cabuz Aug 2000 A
6109889 Zengerle et al. Aug 2000 A
6116863 Ahn et al. Sep 2000 A
6122973 Nomura et al. Sep 2000 A
6151967 McIntosh et al. Nov 2000 A
6152168 Ohmi et al. Nov 2000 A
6155531 Holborow et al. Dec 2000 A
6167761 Hanzawa et al. Jan 2001 B1
6176247 Winchcomb et al. Jan 2001 B1
6179000 Zdobinski et al. Jan 2001 B1
6179586 Herb et al. Jan 2001 B1
6182941 Scheurenbrand et al. Feb 2001 B1
6184607 Cabuz et al. Feb 2001 B1
6189568 Bergum et al. Feb 2001 B1
6215221 Cabuz et al. Apr 2001 B1
6240944 Ohnstein et al. Jun 2001 B1
6242909 Dorsey et al. Jun 2001 B1
6247919 Welz, Jr. et al. Jun 2001 B1
6255609 Samuelson et al. Jul 2001 B1
6263908 Love et al. Jul 2001 B1
6288472 Cabuz et al. Sep 2001 B1
6297640 Hayes Oct 2001 B1
6321781 Kurth Nov 2001 B1
6360773 Rhodes Mar 2002 B1
6373682 Goodwin-Johansson Apr 2002 B1
6386234 Sontag May 2002 B2
6390027 Lyons et al. May 2002 B1
6397798 Fiaccabrino Jun 2002 B1
6401753 Neu Jun 2002 B2
6418793 Pechoux et al. Jul 2002 B1
6445053 Cho Sep 2002 B1
6450200 Ollivier Sep 2002 B1
6460567 Hansen, III et al. Oct 2002 B1
6463546 Jeske et al. Oct 2002 B1
6496348 McIntosh Dec 2002 B2
6496786 Dieterle et al. Dec 2002 B1
6505838 Cavaliere Jan 2003 B1
6508528 Fujii et al. Jan 2003 B2
6520753 Grosjean et al. Feb 2003 B1
6533574 Pechoux Mar 2003 B1
6536287 Beekhuizen et al. Mar 2003 B2
6537060 Vegter Mar 2003 B2
6547554 Koegl Apr 2003 B2
6550495 Schulze Apr 2003 B1
6553979 Albright Apr 2003 B2
6561791 Vrolijk et al. May 2003 B1
6563233 Hinks May 2003 B1
6564824 Lowery et al. May 2003 B2
6571817 Bohan, Jr. Jun 2003 B1
6572077 Worner Jun 2003 B1
6579087 Vrolijk Jun 2003 B1
6584852 Suzuki et al. Jul 2003 B2
6590267 Goodwin-Johansson et al. Jul 2003 B1
6606911 Akiyama et al. Aug 2003 B2
6619388 Dietz et al. Sep 2003 B2
6619612 Freisinger et al. Sep 2003 B2
6623012 Perry et al. Sep 2003 B1
6640642 Onose et al. Nov 2003 B1
6644351 LaMarca et al. Nov 2003 B2
6650211 Pimouguet Nov 2003 B2
6651506 Lee et al. Nov 2003 B2
6651636 Albright Nov 2003 B1
6651954 Porcher et al. Nov 2003 B1
6655409 Steenburgh et al. Dec 2003 B1
6655652 Meinhof Dec 2003 B2
6658928 Pollack et al. Dec 2003 B1
6676580 Tsai et al. Jan 2004 B2
6704186 Ishikura Mar 2004 B2
6725167 Grumstrup et al. Apr 2004 B2
6728600 Contaldo et al. Apr 2004 B1
6729601 Freisinger et al. May 2004 B2
6742541 Pimouguet Jun 2004 B2
6768406 Fiaccabrino Jul 2004 B1
6796326 Bayer Sep 2004 B2
6813954 Gokhfeld Nov 2004 B2
6814102 Hess et al. Nov 2004 B2
6814339 Berger et al. Nov 2004 B2
6819208 Peghaire et al. Nov 2004 B1
6820650 Solet et al. Nov 2004 B2
6825632 Hahn et al. Nov 2004 B2
6826947 Solet et al. Dec 2004 B2
6851298 Miura et al. Feb 2005 B2
6874367 Jakobsen Apr 2005 B2
6877380 Lewis Apr 2005 B2
6877383 Horie et al. Apr 2005 B2
6880548 Schultz et al. Apr 2005 B2
6880567 Klaver et al. Apr 2005 B2
6885184 Gofman Apr 2005 B1
6888354 Gofman May 2005 B1
6889705 Newman et al. May 2005 B2
6892756 Schulze May 2005 B2
6906484 Berroth et al. Jun 2005 B1
6923069 Stewart Aug 2005 B1
6956340 Schondelmaier et al. Oct 2005 B2
6956343 Berroth et al. Oct 2005 B2
6968851 Ramirez et al. Nov 2005 B2
6981426 Wang et al. Jan 2006 B2
6983759 Maichel et al. Jan 2006 B2
6984122 Sullivan Jan 2006 B2
6994308 Wang et al. Feb 2006 B1
6997684 Hahn et al. Feb 2006 B2
7000635 Erbe et al. Feb 2006 B2
7004034 Chen Feb 2006 B2
7039502 Berwanger et al. May 2006 B2
7066203 Baarda Jun 2006 B2
7082835 Cook et al. Aug 2006 B2
7089086 Schoonover Aug 2006 B2
7089959 Cai Aug 2006 B2
7093611 Murray et al. Aug 2006 B2
7101172 Jaeschke Sep 2006 B2
7107820 Nunnally et al. Sep 2006 B2
7119504 Dornhof Oct 2006 B2
7121525 Gelez Oct 2006 B2
7174771 Cooper Feb 2007 B2
7216547 Stewart et al. May 2007 B1
7223094 Goebel May 2007 B2
7225056 Bolduan et al. May 2007 B2
7249610 Moses Jul 2007 B2
7290502 Kidd et al. Nov 2007 B2
7302863 Kielb et al. Dec 2007 B2
7319300 Hahn Jan 2008 B2
7328719 Madden Feb 2008 B2
7347221 Berger et al. Mar 2008 B2
7360751 Herrfurth Apr 2008 B2
7390172 Winkler Jun 2008 B2
7402925 Best et al. Jul 2008 B2
7405609 Krotsch Jul 2008 B2
7422028 Nugent et al. Sep 2008 B2
7451600 Patel et al. Nov 2008 B2
7451644 Karte Nov 2008 B2
7453696 Tungl et al. Nov 2008 B2
7461828 Kidprasert Dec 2008 B2
7493822 Stewart et al. Feb 2009 B2
7503221 Wade Mar 2009 B2
7504961 Flanders Mar 2009 B2
7520487 Mattes Apr 2009 B2
7537019 Ting et al. May 2009 B2
7543604 Benda Jun 2009 B2
7553151 O'Mara et al. Jun 2009 B2
7556238 Seberger Jul 2009 B2
7574896 Cooper Aug 2009 B1
7586228 Best Sep 2009 B2
7586276 Dornhoff Sep 2009 B2
7624755 Benda et al. Dec 2009 B2
7627455 Lenz et al. Dec 2009 B2
7644731 Benda et al. Jan 2010 B2
7647940 Minervini et al. Jan 2010 B2
7669461 Kates Mar 2010 B2
7688011 Berroth et al. Mar 2010 B2
7715168 Gofman et al. May 2010 B2
7735509 Galloway et al. Jun 2010 B2
7740024 Brodeur et al. Jun 2010 B2
7759884 Dufner et al. Jul 2010 B2
7811069 Fleig Oct 2010 B2
7812488 Cosco et al. Oct 2010 B2
7816813 Yagudayev et al. Oct 2010 B2
7841541 Ardelt et al. Nov 2010 B2
7869971 Varga Jan 2011 B2
7880421 Karwath Feb 2011 B2
7880427 Foll et al. Feb 2011 B2
7890216 Boger et al. Feb 2011 B2
7890276 Killion et al. Feb 2011 B2
7891972 Blank et al. Feb 2011 B2
7898372 Melchionne, Jr. Mar 2011 B2
7902776 Karwath Mar 2011 B2
7905251 Flanders Mar 2011 B2
7922481 Geiger et al. Apr 2011 B2
7940189 Brown May 2011 B2
8020585 Shock et al. Sep 2011 B2
8036837 Wilke Oct 2011 B2
8066255 Wang Nov 2011 B2
8109289 Trnka et al. Feb 2012 B2
8126631 Scalia, Jr. Feb 2012 B2
8201572 Segal Jun 2012 B2
8205484 Sasaki Jun 2012 B2
8225814 Igarashi Jul 2012 B2
8240636 Smith Aug 2012 B2
8265794 Minervini et al. Sep 2012 B2
8271141 Cummings et al. Sep 2012 B2
8303297 Tompkins Nov 2012 B2
8307845 Kouchi et al. Nov 2012 B2
8381760 Santinanavat et al. Feb 2013 B2
8387441 Falta et al. Mar 2013 B2
8424563 Haller et al. Apr 2013 B2
8639464 Artiuch et al. Jan 2014 B2
8677913 Kastingschafer et al. Mar 2014 B2
9234661 Young Jan 2016 B2
20020029808 Friend et al. Mar 2002 A1
20020157713 Pimouguet Oct 2002 A1
20020175791 LaMarca et al. Nov 2002 A1
20030011136 Ramirez et al. Jan 2003 A1
20030013054 Fredricks Jan 2003 A1
20030117098 Berroth et al. Jun 2003 A1
20030150499 Solet et al. Aug 2003 A1
20030167851 Parker Sep 2003 A1
20030201414 Freisinger et al. Oct 2003 A1
20040035211 Pinto et al. Feb 2004 A1
20040129909 Wiese Jul 2004 A1
20040214118 Sullivan Oct 2004 A1
20040263103 Weisser et al. Dec 2004 A1
20050058961 Moses Mar 2005 A1
20050166979 Berger et al. Aug 2005 A1
20050199286 Appleford et al. Sep 2005 A1
20050255418 Goebel Nov 2005 A1
20050279956 Berger et al. Dec 2005 A1
20060202572 Tungl et al. Sep 2006 A1
20060226299 Tungl et al. Oct 2006 A1
20060228237 Winkler Oct 2006 A1
20060240370 Neville Oct 2006 A1
20060243334 Brochhaus et al. Nov 2006 A1
20060260701 Mattes Nov 2006 A1
20060272712 Sontag Dec 2006 A1
20060278281 Gynz-Rekowski et al. Dec 2006 A1
20070024225 Hahn et al. Feb 2007 A1
20070068511 Bachinsky et al. Mar 2007 A1
20070089789 Mudd et al. Apr 2007 A1
20070095144 Oboodi et al. May 2007 A1
20070164243 Volz Jul 2007 A1
20070189739 Dufner et al. Aug 2007 A1
20070241705 Karwath Oct 2007 A1
20070256478 Guadagnola et al. Nov 2007 A1
20070257628 Gofman et al. Nov 2007 A1
20070261618 Kastingschafer Nov 2007 A1
20080035456 Melchionn, Jr. Feb 2008 A1
20080099082 Moenkhaus May 2008 A1
20080156077 Flanders et al. Jul 2008 A1
20080157707 Jeske et al. Jul 2008 A1
20080297084 Berroth et al. Dec 2008 A1
20080315807 Loffler et al. Dec 2008 A1
20080318098 Matsunaga Dec 2008 A1
20080318172 Geiger et al. Dec 2008 A1
20090068503 Yamazaki et al. Mar 2009 A1
20090111065 Tompkins Apr 2009 A1
20090120338 Adendorff May 2009 A1
20090126798 Mather May 2009 A1
20090142717 Lavelle Jun 2009 A1
20090146091 Ams et al. Jun 2009 A1
20090148798 Geiger et al. Jun 2009 A1
20090197212 Masen Aug 2009 A1
20090240445 Umekage et al. Sep 2009 A1
20090280989 Astra et al. Nov 2009 A1
20090288399 Fayard Nov 2009 A1
20090303076 Setiadi et al. Dec 2009 A1
20100018324 Kilian et al. Jan 2010 A1
20100043896 Shock et al. Feb 2010 A1
20100064818 Shubert Mar 2010 A1
20100074777 Laufer et al. Mar 2010 A1
20100102259 Forster Apr 2010 A1
20100112500 Maiello et al. May 2010 A1
20100146939 Sim Jun 2010 A1
20100180688 Khemet et al. Jul 2010 A1
20100180882 Oberhomburg et al. Jul 2010 A1
20100193045 Xu Aug 2010 A1
20100254826 Streng et al. Oct 2010 A1
20100269931 Seebauer Oct 2010 A1
20100282988 Kasprzyk et al. Nov 2010 A1
20100315027 Wystup et al. Dec 2010 A1
20110025237 Wystup et al. Feb 2011 A1
20110033808 Geiger et al. Feb 2011 A1
20110039217 Happe Feb 2011 A1
20110041483 Kapparos Feb 2011 A1
20110046903 Franklin Feb 2011 A1
20110080072 Strobel et al. Apr 2011 A1
20110137579 Seebauer Jun 2011 A1
20110240157 Jones et al. Oct 2011 A1
20110266473 Santinanavat et al. Nov 2011 A1
20110270544 Kucera et al. Nov 2011 A1
20110284777 Pitchford et al. Nov 2011 A1
20120107753 Kemp May 2012 A1
20120251960 Newby Oct 2012 A1
20130152673 Young et al. Jun 2013 A1
20130153036 Young et al. Jun 2013 A1
20130153041 Kucera Jun 2013 A1
20130153042 Young et al. Jun 2013 A1
20130153062 Young et al. Jun 2013 A1
20130153798 Kucera et al. Jun 2013 A1
20130154841 Kucera et al. Jun 2013 A1
20140080075 Young et al. Mar 2014 A1
20140096850 Filkovski et al. Apr 2014 A1
20150045971 Endel et al. Feb 2015 A1
20150107675 Kucera Apr 2015 A1
20160123584 Young May 2016 A1
Foreign Referenced Citations (190)
Number Date Country
DE 3818363 Apr 1989 CH
3638604 May 1988 DE
EP 0563787 Nov 1996 DE
19617852 Oct 1997 DE
19824521 Dec 1999 DE
102005033611 Oct 2006 DE
0068517 Jan 1986 EP
0275439 Jul 1988 EP
0282758 Sep 1988 EP
0356690 May 1993 EP
0563787 Oct 1993 EP
0617234 Sep 1994 EP
0522479 May 1996 EP
0744821 Nov 1996 EP
0645562 Dec 1996 EP
0678178 Dec 1996 EP
0664422 Apr 1997 EP
0665396 Jan 1998 EP
0822376 Feb 1998 EP
0817931 Dec 1998 EP
0652501 Mar 1999 EP
0907052 Apr 1999 EP
0817934 May 1999 EP
0896192 Oct 1999 EP
0952357 Oct 1999 EP
0757200 Apr 2000 EP
1031792 Aug 2000 EP
1069357 Jan 2001 EP
0896191 Feb 2001 EP
1084358 Mar 2001 EP
0881435 Sep 2001 EP
1186779 Mar 2002 EP
0976957 Apr 2002 EP
1157205 Sep 2002 EP
1121511 Apr 2003 EP
0992658 May 2003 EP
1323966 Jul 2003 EP
1078187 Aug 2003 EP
1084357 Aug 2003 EP
1382907 Jan 2004 EP
1403885 Mar 2004 EP
1413045 Apr 2004 EP
1424708 Jun 2004 EP
1176317 Aug 2004 EP
1269054 Aug 2004 EP
1484509 Dec 2004 EP
1073192 Jan 2005 EP
1191676 Jan 2005 EP
1275039 Jan 2005 EP
1499008 Jan 2005 EP
1446607 Mar 2005 EP
1510756 Mar 2005 EP
1299665 Apr 2005 EP
1324496 Jun 2005 EP
1535388 Jun 2005 EP
1584870 Oct 2005 EP
1243857 Dec 2005 EP
1282798 Dec 2005 EP
0843287 Feb 2006 EP
1346463 Mar 2006 EP
1659462 May 2006 EP
1703140 Sep 2006 EP
1703146 Sep 2006 EP
1183772 Oct 2006 EP
1303718 Oct 2006 EP
1314240 Oct 2006 EP
1256763 Nov 2006 EP
1727268 Nov 2006 EP
1559936 Dec 2006 EP
1748534 Jan 2007 EP
1748545 Jan 2007 EP
1327808 Feb 2007 EP
1329659 Feb 2007 EP
1291532 Jun 2007 EP
1610046 Jun 2007 EP
1592905 Jul 2007 EP
1610045 Jul 2007 EP
1727261 Oct 2007 EP
1860328 Nov 2007 EP
1882882 Jan 2008 EP
1626321 Feb 2008 EP
1848907 Apr 2008 EP
1936778 Jun 2008 EP
1536169 Nov 2008 EP
1298679 Dec 2008 EP
1714040 Dec 2008 EP
2014979 Jan 2009 EP
1669648 Feb 2009 EP
2048439 Apr 2009 EP
2107248 Jul 2009 EP
2093545 Aug 2009 EP
1715229 Oct 2009 EP
2116857 Nov 2009 EP
2119946 Nov 2009 EP
1370787 Mar 2010 EP
1413044 Mar 2010 EP
2164164 Mar 2010 EP
2177796 Apr 2010 EP
2178201 Apr 2010 EP
1970610 May 2010 EP
2197101 Jun 2010 EP
2068056 Aug 2010 EP
2212984 Aug 2010 EP
1712800 Oct 2010 EP
2118493 Oct 2010 EP
2242344 Oct 2010 EP
1715582 Nov 2010 EP
1675757 Dec 2010 EP
2267883 Dec 2010 EP
1703139 Jan 2011 EP
2286976 Feb 2011 EP
1596495 Apr 2011 EP
2306622 Apr 2011 EP
2010500 Jun 2011 EP
2113696 Jul 2011 EP
2609154 Jul 1988 FR
2099158 Dec 1982 GB
2327750 Feb 1999 GB
02-086258 Mar 1990 JP
05-219760 Aug 1993 JP
EP 0744821 Nov 1996 JP
9061284 Mar 1997 JP
9184600 Jul 1997 JP
2004125809 Apr 2004 JP
2004309159 Nov 2004 JP
2008135922 Jun 2008 JP
2008286478 Nov 2008 JP
EP 0062854 Oct 1982 NL
744877 Jun 1980 SU
WO 8705375 Sep 1987 WO
WO 9627095 Sep 1996 WO
WO 9729538 Aug 1997 WO
9801709 Jan 1998 WO
WO 9924758 May 1999 WO
WO 9960292 Nov 1999 WO
WO 9964769 Dec 1999 WO
WO 9964770 Dec 1999 WO
WO 0028215 May 2000 WO
WO 0106179 Jan 2001 WO
WO 0133078 May 2001 WO
WO 0161226 Aug 2001 WO
WO 0173297 Oct 2001 WO
WO 0190617 Nov 2001 WO
WO 0204852 Jan 2002 WO
WO 02077502 Oct 2002 WO
WO 02084156 Oct 2002 WO
WO 02086365 Oct 2002 WO
WO 02086918 Oct 2002 WO
WO 02097840 Dec 2002 WO
WO 2004059830 Jul 2004 WO
WO 2004070245 Aug 2004 WO
WO 2005042313 Mar 2005 WO
WO 2005076455 Aug 2005 WO
WO 2005076456 Aug 2005 WO
WO 2005085652 Sep 2005 WO
WO 2005094150 Oct 2005 WO
WO 2006000366 Jan 2006 WO
WO 2006000367 Jan 2006 WO
WO 2006053816 Mar 2006 WO
WO 2006039956 Apr 2006 WO
WO 2006042635 Apr 2006 WO
WO 2006077069 Jul 2006 WO
WO 2006088367 Aug 2006 WO
2007018876 Feb 2007 WO
WO 2007012419 Feb 2007 WO
WO 2007093312 Aug 2007 WO
WO 2007140927 Dec 2007 WO
WO 2008061575 Mar 2008 WO
WO 2008039061 Apr 2008 WO
WO 2008119404 Oct 2008 WO
WO 2008141911 Nov 2008 WO
WO 2008148401 Dec 2008 WO
WO 2009000481 Dec 2008 WO
WO 2009049694 Apr 2009 WO
WO 2009065815 May 2009 WO
WO 2009073510 Jun 2009 WO
WO 2009089857 Jul 2009 WO
WO 2009126020 Oct 2009 WO
WO 2010018192 Feb 2010 WO
WO 2010052137 May 2010 WO
WO 2010056111 May 2010 WO
WO 2010083877 Jul 2010 WO
WO 2011010274 Jan 2011 WO
WO 2011045776 Apr 2011 WO
WO 2011047895 Apr 2011 WO
WO 2011051002 May 2011 WO
WO 2011069805 Jun 2011 WO
WO 2011072888 Jun 2011 WO
WO 2011092011 Aug 2011 WO
WO 2011095928 Aug 2011 WO
Non-Patent Literature Citations (76)
Entry
Universal Metering, “SmartValve Wireless Shut-Off Valve,” Universal Metering Ltd., 4 pages, prior to Mar. 12, 2013.
Wilkerson, “Understanding Valve Actuatior Diagnostics,” Control Engineering, vol. 56, No. 11, 4 pages, Nov. 2009.
“Flexible, Compact and with a High Performance—the New Valvario, G. Kromschroder AG Launches it's New, Improved Series of Gas Fittings,” Press Release, 2 pages, 2003.
“Large-Scale Linearization Circuit for Electrostatic Motors” IBM Technical Disclosure Bulletin, U.S. IBM Corporation, Bulletin, U.S. IBM Corporation, vol. 37, No. 10, pp. 563-564, Oct. 1, 1994.
ASCO RedHat, “2-Way Normally Closed General Purpose & Watertight Enclosure Gas Shutoff Valves ¾″ to 3″ NPT, 2/2 Series 8214 (200),” 8 pages, prior to Dec. 15, 2011.
ASCO RedHat, “2-Way Normally Closed General Purpose & Watertight Enclosure Gas Shutoff Valves ¾″ to 3″ NPT, 2/2 Series 8214 (200) AH(E) V710(B),” 6 pages, prior to Dec. 15, 2011.
ASCO Valve, Inc., “8290 Series Angle Body Piston Valves, Introducing the All New 8290 Assembly Configurator,” 12 pages, prior to Dec. 15, 2011.
ASCO, “2-Way Normally Closed V710(B) Valve Body Pipe Sizes ¾″ to 3″ NPT, Series V710(B),” 4 pages, prior to Dec. 15, 2011.
ASCO, “On/Off General Purpose & Watertight Hydramotor Actuator for Use with V710 Gas Valve Body, Series AH2E,” 2 pages, prior to Dec. 15, 2011.
Athavale et al., “Coupled Electrostatics-Structures-Fluidic Simulations of A Bead Mesopump,” Proceedings of the International Mechanical Engineers Congress & Exhibition, pp. 1-7, Oct. 1999.
Bertz et al., “Silicon Grooves With Sidewall Angles Down to 1° made By Dry Etching”, pp. 331-339, prior to Dec. 29, 2004.
Bonne et al. “Actuation-Based Fuel Gas Microsensors”, IGT Symposium on “Natural Gas Quality, Energy Measurement, Metering and Utilization Practices”, 17 pages, Mar. 2001.
Branebjerg, “A New Electrostatic Actuator Providing Improved Stroke Length and Force.” IEEE, pp. 6-11, Feb. 4-7, 1992.
Bustgens et al., “Micropump Manufactured by Thermoplastic Molding” IEEE, pp. 18-21, 1994.
Cabuz et al., “Factors Enhancing the Reliability of Touch-Mode Electrostatic Actuators,” Sensors and Actuators 79, pp. 245-250, 2000.
Cabuz et al., “Mesoscopic Sampler Based on 3D Array of Electrostatically Activated Diaphragms,” Proceedings of the 10th Int. Conf. On Solid-State Sensors and Actuators, Transducers 1999.
Cabuz et al., “The Dual Diaphragm Pump,” 4 pages prior to Dec. 29, 2004.
Cabuz, “Dielectric Related Effects in Micromachined Electrostatic Actuators,” IEEE, 1999 Conference on Electrical Insulation and Dielectric Phenomena, pp. 327-332, 1999.
Cabuz, “Electrical Phenomena at the Interface of Rolling-Contact, Electrostatic Actuators,” 16 pages, prior to Dec. 29, 2004.
Cabuz, et al., “High Reliability Touch-Mode Electrostatic Actuators”, Technical Digest of the Solid State Sensor and Actuator Workshop, Hilton Head, S.C., pp. 296-299, Jun. 8-11, 1998.
Cabuz. “Tradeoffs in MEMS Materials,” SPIE, vol. 2881, pp. 160-170, prior to Dec. 29, 2004.
Carlisle, “10 Tips on Valve-Proving Systems,” Karl Dungs Inc., 5 pages, Aug. 1, 2002, printed May 23, 2012.
European Search Report for EP Application No. 12196394.6 dated May 23, 2013.
European Search Report for EP Application No. 12196396.1 dated Jun. 11, 2013.
European Search Report for EP Application No. 12196398.7 dated Jun. 11, 2013.
Examination Report for EP Application No. 12196398.7, dated Apr. 11, 2014.
CSA, “B149.3S1-07 Supplement No. 1 to CAN/CAS-B149.3-05 Code for the Field Approval of Fuel-Related Components on Appliances and Equipment,” 40 pages, Jan. 2007.
Dungs Combustion Controls, “Double Solenoid Valve Combined Pressure Regulator and Safety Valves Servo Pressure Regulator, MBC- . . . -SE DN 65 DN 125,” 8 pages, prior to Dec. 15, 2011.
Dungs Combustion Controls, “Double Solenoid Valve Combined Pressure Regulator and Safety Valves Infinitely Variable. Operating Mode, MBC- . . . -VEF DN65—DN100,” 8 pages, prior to Dec. 15, 2011.
Dungs Combustion Controls, “Double Solenoid Valve Control and Safety Combination Valve Servo Pressure Controller, DMV-SE 507/11—525/11,” 8 pages, prior to Dec. 15, 2011.
Dungs Combustion Controls, “Double Solenoid Valve Regulator and Safety Combination Infinitely Variable Floating Operation, DMV-VEF 507-525,” 8 pages, prior to Dec. 15, 2011.
Dungs Combustion Controls, “Gas/Air Ratio Control MB-VEF, DMV-VEF,” 15 pages, prior to Dec. 15, 2011.
Dungs Combustion Controls, “GasMultiBloc Combined Regulator and Safety Shut-Off Valves Two-Stage Function, MB-ZRD(LE) 415-420 B01,” pp. 1-6, prior to Dec. 15, 2011.
Dungs Combustion Controls, “GasMultiBloc Combined Regulator and Safety Valve Infinitely Variable Air/Gas Ratio Control Mode, MBC-300-VEF, MBC-700-Vef, MBC-1200-VEF,” 8 pages, prior to Dec. 15, 2011.
Dungs Combustion Controls, “GasMultiBloc Combined Servo Pressure Regulator and Safety Shut-Off Valves, MBC-300-SE, MBC-700-SE, MBC-1200-SE, MBC-300-N, MBC-700-N,” 8 pages, prior to Dec. 15, 2011.
Dungs Combustion Controls, “Pressure Regulator FRN Zero Pressure Regulator,” 4 pages, prior to Dec. 15, 2011.
Dungs Combustion Controls, “Pressure Regulator FRS,” 6 pages prior to Dec. 15, 2011.
Dungs Combustion Controls, “Pressure Regulator FRU Circulation Regulator,” 4 pages, prior to Dec. 15, 2011.
Dungs Combustion Controls, “Pressure Switch for Gas, Air, Flue Gases and Combustion Products, GW 500 A4, GW 500 A4/2” 6 pages, prior to Dec. 15, 2011.
Dungs Combustion Controls, “Program,” 4 pages, prior to Dec. 15, 2011.
Dungs Combustion Controls, “Valve Testing System VPS 504 for Multiple Actuators,” 12 pages, prior to Dec. 15, 2011.
Dungs Combustion Controls, “Valve Testing System VPS 508 for Multiple Actuators,” 12 pages, prior to Dec. 15, 2011.
Freund et al., “A Chemically Diverse Conducting Polymer-Based ‘Electronic Nose’”, Proceedings of the National Academy of Sciences of the United States of America, vol. 92, No. 7, pp. 2652-2656, Mar. 28, 1995.
Halg, “On a Nonvolatile Memory Cell Based on Micro-Electro-Mechanics”, IEEE pp. 172-176, 1990.
Honeywell Inc., “Hall Effect Sensing and Application,” 126 pages, prior to Dec. 15, 2011.
Honeywell, “RM7800L1087; RM7840G1022,L1075,L1091; EC7840L1014 Relay Modules with Valve Proving,” Installation Instructions, 32 pages, 2009.
Korte et al., “Smart Valve Positioners and Their Use in Safety Instrumented Systems,” Industrial Valves, pp. 41-47, 2009.
Kromschroder, “Governor with Solenoid Valve VAD Air/Gas Ratio Control with Solenoid Valve VAG,” 8 pages, prior to Dec. 15, 2011.
Kromschroder, “Governor with Solenoid Valve VAD Air/Gas Ratio Control with Solenoid Valve VAG,” 24 pages, prior to Dec. 15, 2011.
Kromschroder, “Solenoid Valves for Gas VAS,” 28, pages, prior to Dec. 15, 2011.
Kromschroder, “Solenoid Valves for Gas VAS,” 8 pages, prior to Dec. 15, 2011.
Kromschroder, “Tightness Control TC,” 8 pages, 2011.
Minami et al., “Fabrication of Distributed Electrostatic Micro Actuator (DEMA),” IEEE Journal of Microelectromechanical Systems, vol. 2, No. 3, pp. 121-127, Sep. 1993.
Ohnstein et al., “Micromachined Silicon Microvalve,” IEEE, pp. 95-98, 1990.
Porex Technologies, brochure, 4 pages, prior to Dec. 29, 2004.
Shikida et al., “Characteristics of an Electrostatically-Driven Gas Valve Under High Pressure Conditions,” IEEE , pp. 235-240, 1994.
Shikida et al., “Electrostatically Driven Gas Valve With High Conductance,” IEEE Journal of Microelectromechanical Systems, vol. 3, No. 2, pp. 76-80, Jun. 1994.
Shikida et al., “Fabrication of An S-Shaped Microactuator,” IEEE Journal of Microelectromechanical Systems, vol. 6, No. 1, pp. 18-24, Mar. 1997.
Siemens Building Technologies, “Double Gas Valves VGD20 . . . , VGD40 . . . ,” 12 pages, Aug. 5, 2002.
Siemens Building Technologies, Inc., “Siemens Technical Instructions Document No. 155-512P25VG . . . ,” 12 pages, Aug. 11, 2005.
Siemens Building Technologies, Inc., “SKP . . . 15U.. Gas Valve Actuator with Safety Shutoff Function,” Document No. 155-751 SKP15 . . . U . . . , 5 pages, Jul. 1, 2005.
Siemens Building Technologies, Inc., “SKP25 . . . U . . . Air/Gas Ratio Controlling Gas Valve Actuator with Safety Shutoff Function,” Technical Instructions Document No. 155-754, SKP25 . . . U, 9 pages, Jul. 1, 2005.
Siemens Building Technologies, Inc., “SKP25 . . . U . . . Pressure Regulating Gas Valve Actuator with Safety Shut-Off Function,” Technical Instructions Document No. 155-752, SKP25 . . . U, 7 pages, Jul. 1, 2005.
Srinivasan et al., “Self-Assembled Fluorocarbon Films for Enhanced Stiction Reduction”, IEEE Transducers, 1997 International Conference on Solid-State Sensors and Actuators, Chicago, pp. 1399-1402, Jun. 16-19, 1997.
Wagner et al., “Bistable Microvalve with Pneumatically Coupled Membranes,” IEEE, pp. 384-388, 1996.
www.combustion911.com/products/valve-proving-controls-tc-410.html, “Kromschroeder Valve Proving Controls TC410,” 7 pages, prior to Dec. 15, 2011, printed May 23, 2012.
Yang et al., “Fluorescent Porous Polymer Films as TNT Chemosensors: Electronic and Structural Effects”, J. Am. Chem. Soc., pp. 11864-11873, 1998.
Yang et al., “Porous Shape Persistent Fluorescent Polymer Films: An Approach to TNT Sensory Materials”, J. Am. Chem. Soc., pp. 5321-5322, 1998.
Allianz Risk Consulting, “Safety Shutoff Valves for Fuel-Fired Heating Equipment,” Tech Talk, vol. 1, 3 pages, Oct. 2012.
Communication of a Notice of Opposition for EP Application Serial No. EP12196398.7, dated Feb. 15, 2016.
Honeywell, “V4730CN8730CN4734C 1:1 Gas/Air Servo Regulated Gas Valves, Product Data,” 16 pages, 2006.
Honeywell, “V4943AN8943A On/Off Diaphragm Gas Valves, Product Data,” 8 pages, Apr. 2009.
Honeywell, “V5055A-F Industrial Gas Valves, Product Data,” 12 pages, Nov. 2012.
https://en.wikipedia.org/wiki/SCADA, “SCADA,” 10 pages, printed Mar. 29, 2016.
Maxon Corporation, “Functional Testing of Maxon Shut-off Valves, Valve Technical Data,” 3 pages, 2008.
Response to Opposition for EP Application Serial No. EP12196398.7, filed Jul. 15, 2016.
Related Publications (1)
Number Date Country
20160123584 A1 May 2016 US
Continuations (1)
Number Date Country
Parent 13621175 Sep 2012 US
Child 14992826 US