The present invention generally relates to combustion control apparatus for fuel-fired heating appliances and, in representatively illustrated embodiments thereof, more particularly provides apparatus for detecting a burner flashback condition in a fuel-fired appliance, representatively a water heater, and responsively shutting down combustion in the appliance.
Integration of fuel/air premixing type burners into fuel-fired water heaters has presented the potential for such burners operating at certain times and under certain conditions in a “flashback” burning mode in which the burner flame burns within the burner body instead of externally emanating therefrom as intended. It is possible for this flashback burning mode to continue for extended periods of time during which the burner can emit undesirably high levels of carbon monoxide and/or compromise the flammable ignition resistance system of the water heater.
Because of this potential for a flame flashback burning condition in a fuel burner incorporated in a fuel-fired heating appliance such as a water heater, it would be desirable to provide the appliance with a protective system operative to detect a burner flame flashback condition and responsively shut down the appliance.
In carrying out principles of the present invention, in accordance with representatively illustrated embodiments thereof, fuel-fired heating apparatus is provided which is representatively a gas-fired water heater, but may alternatively be another type of fuel-fired heating apparatus such as, by way of non-limiting example, a fuel-fired boiler or furnace.
In an exemplary embodiment thereof, the water heater comprises a tank adapted to hold a quantity of water to be heated, and a combustion chamber underlying the tank. A flue communicates with the combustion chamber and extends upwardly therefrom through the interior of the tank. The water heater further comprises a normally closed fuel supply valve, and main and pilot burners disposed in the combustion chamber, the main burner preferably being a fuel/air premixing type main burner having a body and being operative to burn a fuel/air mixture to form a flame emanating from the main burner. Alternatively, the main burner may be of a non-fuel/air premixing type. Main and pilot fuel supply lines are respectively connected between the main and pilot burners and the fuel supply valve.
According to a key aspect of the present invention, the water heater has incorporated therein a specially designed protective system which is operative to detect a flame flashback condition in the main burner and responsively shutdown operation of the water heater.
In one exemplary embodiment thereof, the protective system is operative to sense a temperature indicative of a flame flashback condition at the main burner and responsively shut down operation of the water heater. Illustratively, in this protective system embodiment a portion of the pilot fuel supply line is positioned to receive heat from the body of the main burner, and is melted by such heat when the body of the main burner reaches a temperature indicative of a flame flashback condition therein. Such melting of a portion of the pilot fuel supply line causes fuel flowing therethrough to the pilot burner to be discharged into the combustion chamber without being delivered to the pilot burner. This extinguishes the pilot burner flame which normally impinges upon and heats a thermocouple installed in a millivolt circuit thermoelectrically powered to hold the normally closed fuel supply valve in an open position. Extinguishment of the pilot burner flame permits the thermocouple to cool, thereby causing the fuel supply valve to terminate fuel flow to the main and pilot burners and thus shutting down water heater operation.
In another exemplary embodiment thereof, the protective system is operative to sense a pressure indicative of a flame flashback condition of the main burner and responsively shut down operation of the water heater. Illustratively, in this protective system embodiment a normally closed pressure switch is installed in the millivolt electrical circuit and has an inlet coupled to one end of a pressure-receiving conduit, the other end of which is positioned to receive the aforementioned pressure indicative of a flame flashback condition of the main burner. Such pressure-receiving end of the conduit may be communicated with the interior of the body of the main burner, the combustion chamber exteriorly of the main burner, or the flue. When a main burner flame flashback condition occurs, an increased pressure indicative of such flame flashback is transmitted through the pressure-receiving conduit to the normally closed pressure switch to open it, thereby opening the millivolt electrical circuit. The opening of the millivolt circuit, in turn, causes the open fuel supply valve to close, thereby shutting down operation of the water heater. Other types of pressure detection devices and locations thereof may alternatively be utilized, if desired, without departing from principles of the present invention.
Schematically depicted in partially cross-sectional form in
Water heater 10 is supportable on a horizontal surface, such as a floor 12, and has an insulated tank 14 that overlies a combustion chamber 16 and is adapted to hold a quantity of pressurized water 18 to be heated. A flue 20 communicates at its lower end with the combustion chamber 16 and extends upwardly therefrom through the interior of the tank 14. Disposed within the combustion chamber 16, generally beneath the open lower end of the flue 20, are a main fuel burner 22 and an associated pilot fuel burner 24 operative in a conventional manner to ignite the main burner 22.
During firing of the water heater 10, a flame 26 emanates from the main burner 22, creating hot combustion products 28 that flow upwardly through the flue 20 and transfer combustion heat therethrough to the stored water 18. The interior of the tank 14 is typically communicated, via a hot water supply pipe 30, with various plumbing fixtures such as sinks, tubs, showers, dishwashers and the like which, on an on-demand basis, receive pressurized hot water from the interior of the tank 14. Hot water outflow from the tank 14 is automatically replaced therein with an inflow of pressurized cold water, from a source thereof, via a cold water inlet pipe 32.
Referring now to
A normally closed thermostatic fuel valve 44 is supplied at an inlet thereof with fuel (representatively a fuel gas) from a source thereof by a fuel supply line 46, and is respectively coupled at an outlet portion thereof to the main and pilot fuel burners 22,24 by fuel supply lines or conduits 48,50. Fuel supply line 48, at its discharge end, is operatively coupled to a fuel discharge orifice 52 mounted on a wall portion of the premix plenum 36.
During firing of the water heater 10, fuel 54 is discharged through the orifice 52 into the interior of the premix plenum 36 which simultaneously receives combustion air 56, representatively through its bottom side, from outside the water heater 10. Combustion air 56 may be ducted to the premix plenum 36 from outside the combustion chamber 16, or may be suitably introduced into the combustion chamber 16 and permitted to flow, unducted, into a suitable air inlet opening in the premix plenum 36. Fuel 54 and air 56 entering the premix plenum 36 flow therefrom into the mixing tube 38 where they are mixed to form a fuel/air mixture which enters the main burner body portion 34 and then upwardly exits therefrom, for initial ignition by a pilot flame 58 issuing from the pilot burner 24, to form the main burner flame 26.
Under certain conditions, a flame flashback condition may occur at the main burner 22. If this occurs, the flame 26 undesirably burns within the interior of the hollow body of the main burner 22 instead of burning externally thereto as designed for. According to a key feature of the present invention, a specially designed protective system is built into the water heater 10 and is operative, as will now be described, to detect this undesirable flame flashback burning condition at the main burner 22 and responsively terminate operation of the water heater 10.
With reference now to
Representatively, the rod 70 is spring-biased downwardly, as indicated by the arrow 72 in
During normal firing of the main burner 22, the maximum temperature of its hollow body 34,36,38 is on the order of about 600 degrees Fahrenheit. However, when a flame flashback condition occurs at the main burner 22, its body temperature increases to approximately 1250 degrees Fahrenheit or above. The present invention uniquely takes unique advantage of this significant burner body temperature rise during a flame flashback burning condition at the main burner 22 by forming at least the portion of the pilot fuel supply line 50 which is in direct contact with the body of the main burner 22 of a material which melts at an elevated temperature of the burner body which is indicative of a flame flashback condition at the main burner 22. Illustratively, such portion of the pilot burner fuel supply line 50 is formed from an aluminum material having a melting point of approximately 1200 to 1250 degrees Fahrenheit.
Referring now to
An alternate embodiment 10a of the previously described water heater 10 is schematically illustrated in
Water heater 10a is substantially identical to the previously described water heater 10 with the exception that its flame flashback protective system is not activated by burner body heat, but is instead operative to sense a pressure indicative of a flame flashback burning condition at the main burner 22a, and responsively shut down operation of the water heater 10a.
This pressure-based flame flashback protection is representatively achieved in the water heater 10a by providing a normally closed electrical pressure switch 78 (see
As can be seen in
While the inlet end of the pressure sensing line 80 is illustratively communicated with the interior of the premix plenum portion 36a of the main burner 22a, the inlet end of the line 80 may alternatively be positioned in various other locations in the water heater 10a to detect a pressure indicative of a flame flashback burning condition at the main fuel burner 22a. For example, the inlet of the pressure sensing line 80 may be communicated with the interior of the burner mixer tube 38a (
A variety of modifications could be made to the exemplary fuel-fired heating appliances 10, 10a described above without departing from principles of the present invention. For example, as previously mentioned herein, they could be fuel-fired heating appliances or apparatus other than water heaters—for example, boilers or furnaces. Additionally, in the water heater embodiment 10, the entire pilot fuel supply line 50 could be of a material which is meltable at a temperature indicative of the sensed flame flashback burning condition in the main burner 22 instead of forming only the portion of the fuel supply line 50 positioned against the body of the burner 22 from such material.
Alternatively, a suitable meltable material insert could be placed in an appropriate side wall portion of the fuel supply line 50, or a heat-movable opening member could be operatively incorporated in a side wall opening of the line 50. Various other mechanisms could also be employed to create an opening in the overall pilot fuel supply line structure, to permit fuel being supplied therethrough to the pilot burner 24 to escape from such fuel line structure before reaching the pilot burner, in response to exposure of at least a portion of the pilot fuel supply line structure to a temperature indicative of a flame flashback burning condition in the main fuel burner 22. Moreover, while the main burners 22,22a respectively incorporated in the water heaters 10,10a are illustratively premixing type fuel burners, it will be readily appreciated by those of skill in this particular art that principles of the present invention may also be utilized to advantage in conjunction with non-premixing type fuel burners as well.
In the alternate pressure detection embodiment 10a of the water heater 10, the normally closed pressure switch 78 is representatively connected in the millivolt circuit 60a as previously described herein. However, as will be readily appreciated by those of skill in this particular art, other types of pressure detection devices and/or other locations therefor may, if desired, be alternatively utilized to detect a pressure indicative a burner flame flashback condition without departing from principles of the present invention.
The foregoing detailed description is to be clearly understood as being given by way of illustration and example only, the spirit and scope of the present invention being limited solely by the appended claims.
This application is a division of copending U.S. application Ser. No. 11/734,648 filed Apr. 12, 2007 and entitled “Burner Flashback Detection and System Shutdown Apparatus”. The entire disclosure of this prior application is hereby incorporated herein in its entirety by this reference.
Number | Date | Country | |
---|---|---|---|
Parent | 11734648 | Apr 2007 | US |
Child | 12758174 | US |