The present invention refers to a burner for a gas cooktop.
Various types of burners of various sizes are known for household and professional applications.
A common feature of practically all burners is that they have a main burner body provided with holes for the flames to exit.
An example of a burner made by the applicant is described in French patent application FR2841326.
That patent application describes a burner with a main burner body having a substantially cylindrical side wall provided with a plurality of holes for the flames to exit. In order to provide a better oxygen supply to the flames, the burner has holes at different angles which alternate along the circumference of the burner. Therefore, starting with a certain position on the side wall of the main body and moving in the clockwise or counterclockwise direction, the first hole will have an angle h with respect to the horizontal plane, the second hole will have an angle k which is different from h, the third hole once again h, the fourth hole once again k, and so on until the circumference is completed, as shown in FIGS. 6 and 7 of that patent application.
Thanks to the better oxygen supply to the flames, this solution also makes it possible to enlarge the size of the holes or to increase the number thereof in order to increase the corresponding power of the flames. In the solution having a larger number of holes, in place of each hole there are two holes of the same diameter and angle, one placed on top of the other, capable of forming a single flame at that angle, as shown in
However, the applicant has found that this solution is not entirely satisfactory because the flames at a lower angle, that is, the “more horizontal” flames, are also further from the pot (or other object being heated) placed on the burner, such that their ability to heat the pot is weaker compared to that of the other flames.
This problem is solved by the present invention, in which the size of the holes at a lesser angle is increased with the aim of increasing the power of the corresponding flames and giving them a greater ability to heat the pot, comparable, for instance, to that of the flames having a greater angle.
In making that improvement, however, the applicant noticed that, with this increase in the size of the holes, the risk of backfire phenomena also increases. The applicant has found that, in order to reduce this risk, the number of holes simply needs to be increased while reducing the size thereof, so as to still have the desired gas flow. For example, instead of having two holes of a certain diameter aligned vertically, three holes of a lesser diameter, still aligned vertically, can be made.
The applicant has furthermore noticed that greater oxygenation of the flames can be achieved by making the vertically aligned holes—i.e. those which contribute to the formation of the same flame—slightly divergent with respect to each other. Clearly, the difference in angle between the vertically aligned holes will be much smaller than the difference in angle between these holes and the next or preceding set of holes in the lateral direction along the side wall of the ring.
Consequently, the present invention refers to a gas cooktop burner comprising a main body equipped with a first plurality of holes capable of producing first flames having a first angle with respect to the horizontal plane of reference, and a second plurality of holes capable of producing second flames having a second angle with respect to said horizontal plane which is less than the first angle, said first and second pluralities of holes consisting of corresponding groups of holes, each of which being associated with the same flame and each of which consisting of at least one hole, wherein the total cross-sectional area of each group of holes in the second plurality of holes is greater than the total cross-sectional area of each group of holes in the first plurality of holes, such that the second flames have a greater power than the first flames.
Preferably, the main body has a substantially cylindrical or frustoconical side wall through which said first and second pluralities of holes pass. In addition, the main body preferably has a substantially horizontal or slightly conical upper wall.
The aforementioned first angle of the first plurality of holes is preferably between 30° and 40°. The aforementioned second angle of the second plurality of holes is preferably between 10° and 20°.
Preferably, each aforementioned group of holes includes a number of holes of between one and five. More preferably, this number is equal to two or three. In a preferred embodiment, each group of holes in the first plurality of holes includes two holes, and each group of holes in the second plurality of holes includes three holes.
Preferably, each group of holes consists of vertically aligned holes.
The holes in the first plurality of holes have a preferred diameter of between 2.1 mm and 3.1 mm. The holes in the second plurality of holes have a preferred diameter of between 2.8 mm and 3.8 mm.
Each group of holes can advantageously include at least two mutually divergent holes so as to achieve better oxygenation of the flame. In particular, according to a preferred embodiment, each group of holes in the first plurality of holes includes two mutually divergent holes, and each group of holes in the second plurality of holes includes three mutually divergent holes.
Adjacent divergent holes preferably form an angle with respect to each other of between 3° and 7°.
According to one possible embodiment, each group of holes may include one or more holes having a cross section which is upwardly elongated.
The present invention will now be described in reference to the enclosed figures, which show preferred but non-limiting embodiments of the invention. In particular:
In reference to
The main body 2 is provided with holes 5 and 6 which pass through side wall 3 and form flames of differing angles with respect to horizontal plane P, which will be used from time to time as a reference for the angles of the holes and flames.
In particular, main body 2 is provided with a first plurality of holes 5 at a first angle h and capable of forming flames at this angle, and a second plurality of holes 6 at a second angle k, which is less than the first angle, and capable of forming flames at this angle. Preferably, the first angle h is between 30° and 40°, whereas the second angle k is between 10° and 20°.
Both the first plurality of holes 5 and the second plurality of holes 6 are provided with corresponding groups of holes, each of which can produce a corresponding flame through the combination of several flamelets.
Each group of holes is made of holes having substantially the same angle, although it is possible, as described hereinbelow, for the holes in a given group to diverge slightly with respect to each other.
Along side wall 3 there will consequently be alternating groups of holes (preferably with the corresponding axes aligned in a vertical plane) substantially having the first angle h, and groups of holes (preferably with corresponding axes aligned in a vertical plane) substantially having the second angle k. This alternation may be interrupted at specific points on side wall 3 at which, for example, groups of holes may be missing.
In the embodiment of
In particular, the groups of holes of the first plurality 5 include one upper hole 5a and one lower hole 5b, which produce corresponding flamelets that combine to create a single flame at angle h (the flame with a larger angle), whereas the groups of holes in the second plurality 6 include one upper hole 6a and one lower hole 6b, which produce corresponding flamelets that combine to create a single flame at angle k (a flame with a smaller angle).
Preferably, in the embodiment of
According to the present invention, the total cross-sectional area of each group of holes 6 in the second plurality is greater than the total cross-sectional area of each group of holes 5 in the first plurality. Consequently, the total area obtained by the sum of the cross-sectional areas of hole 6a and hole 6b is greater than the total area obtained by the sum of the cross-sectional areas of hole 5a and hole 5b.
In general, the rule of the present invention is that the overall area of the holes which combine to produce a flame having a smaller angle must be greater than the overall area of the holes which combine to produce a flame having a greater angle.
In this way, there will be a greater gas flow through the holes producing the flame with a smaller angle, and therefore the flame with a smaller angle will have a greater power than the flame having a larger angle. The flame with a smaller angle can therefore compensate for the smaller ability to heat up the object being heated (a pot or other item), due to the smaller angle thereof, with the greater power thereof.
Burner 1′ in
In addition, these three holes are smaller than the corresponding two holes in the embodiment of
This difference makes it possible to reduce the risk of backfire which could occur in the embodiment of
In detail, as shown in
However, groups of holes 5 still consist of two holes as in the first embodiment.
In addition, as shown in
As a result, as shown in
Similarly, as shown in
Preferably, both angle α and angle β are between 3° and 7°. For example, both of these angles may be equal to 5°.
It is furthermore clear that numerous modifications or variants may be made to the embodiments described above without exceeding the scope of protection of the present invention.
For example, the number of holes in each group—that is, the number of holes which form a single flame—may also be equal to one. This is the case of the burner structure shown in
In practice, in a burner according to the present invention, each group of holes preferably includes a number of holes of between one and five, and more preferably between two and three. In the more preferred embodiment described above, each group of holes in the first plurality includes two holes, and each group of holes in the second plurality includes three holes.
According to another variant not shown, instead of having within each group of holes several vertically aligned holes with a circular cross section, it is possible to have a smaller number of holes with an upwardly elongated cross section, such as an ellipse. In practice, this is as if two or more vertically aligned holes were joined together. Consequently, instead of the two vertically aligned holes 6a and 6b having a circular cross section in
In addition, it is clear that in the embodiments illustrated in
Concerning the divergence of the holes belonging to a single group (that is, the holes combining to form the same flame), it is obvious that, in the case of groups consisting of more than two holes, not all the holes necessarily have to be mutually divergent, and it could be sufficient to make at least two holes mutually divergent in order to achieve the aforementioned effect of greater flame oxygenation. For instance, in the example of
Number | Date | Country | Kind |
---|---|---|---|
12184702 | Sep 2012 | EP | regional |
Number | Date | Country |
---|---|---|
0552135 | Jul 1993 | EP |
2841326 | Dec 2003 | FR |
2915267 | Oct 2008 | FR |
Entry |
---|
European Search Report for EP 12184702.4, dated Jan. 17, 2013. |
Number | Date | Country | |
---|---|---|---|
20140076303 A1 | Mar 2014 | US |