The invention relates to a burner ring for gas burners that has a distribution chamber having gas outlets to the burner ring's outer circumference, and further has a transfer ignition groove that is outwardly open on one side and extends between an inner circumference of the burner ring and the burner ring's outer circumference, a gas conducting channel into which the transfer ignition groove opens at least partially, and at least one gas supply opening between the distribution chamber and gas conducting channel. The invention relates further to a gas burner having a burner ring of such type, with the burner ring surrounding an inner region of the gas burner and the gas outlets producing the main flame on the outer circumference. In particular an ignition plug and a thermoelement can be located in the inner region.
Burner rings having simple transfer ignition grooves are known from, for instance, WO 02/25170, DE 200 16 506 U1, and DE 200 19 731 U1. A generic burner ring and gas burner are known from, for example, DE 41 25 308 A1.
A gas flame produced on one side of the burner ring, particularly in the inner region, is transported to the other side of the burner ring by way of the transfer ignition groove so that both gas or, as the case may be, burning rings can be ignited with just one ignition plug.
It is disadvantageous in the case of the arrangement according to DE 41 25 308 A1 that a flame fringe running along the transfer ignition groove is formed unevenly during operation.
The object of the invention is hence to provide a possibility for realizing a more even flame fringe along the transfer ignition groove between the inner and outer ring.
Said object is achieved by means of a burner ring as claimed in claim 1 and a gas burner as claimed in claim 8. Advantageous embodiments are disclosed singly or in combination particularly in the subclaims.
The burner ring has a distribution chamber having gas outlets to the outer circumference of the burner ring, and further has a transfer ignition groove that is outwardly open on one side and extends between an inner circumference of the burner ring and the burner ring's outer circumference, a gas conducting channel into which the transfer ignition groove opens at least partially, and at least one gas supply opening between the distribution chamber and gas conducting channel. The gas conducting channel and transfer ignition groove are arranged mutually symmetrically and the gas conducting channel is offset in the region of the gas conducting channel at an angle relative to the transfer ignition groove.
Said burner ring is based on the knowledge the oblique impacting of a gas stream ducted into the gas conducting channel on the opposite wall thereof will cause the gas stream to be distributed and exit along the transfer ignition groove relatively evenly, as a result of which the flame fringe will become more even. Conversely, in the prior art according to DE 41 25 308 A1 a substantial portion of the gas stream entering the gas conducting channel is ducted almost directly into the only laterally offset transfer ignition groove, which results in an uneven distribution.
It will be advantageous for the gas conducting channel to be sealed toward the inner circumference as that will reduce the concentration of exhaust gas as well as the possible formation of soot.
The gas conducting channel can alternatively also be open toward the inner circumference, which will result in an increased formation of soot and a greater concentration of exhaust gas compared with a sealed opening. That effect will be lesser the less the inner burner's power is. The gas conducting channel can alternatively also be open or closed on both sides.
For an evenly distributed gas supply it will be advantageous for there to be more than one gas supply opening, particularly for at least two gas supply openings to be arranged mutually offset at an angle. It is, though, alternatively or additionally possible (for example when there are more than two gas supply openings) for at least two gas supply openings to be arranged symmetrically offset at an angle relative to the transfer ignition groove.
It will be advantageous from the manufacturing viewpoint for the transfer ignition groove to be located on the top side of the gas conducting channel and for at least one gas supply opening to enter the bottom half of the gas conducting channel.
The object is achieved also by means of a gas burner, particularly a two-ring gas burner, having a burner ring of such type, particularly if the burner ring surrounds an inner region of the gas burner and the gas outlets on the outer circumference produce the main flame.
The gas burner will be embodied particularly advantageously if an ignition plug and a thermoelement project into the inner region and if an inner burner is secured within the inner region, especially coaxially.
The burner ring can in particular be embodied for interoperating with a burner according to DE 41 25 308 A1, WO 02/25170, DE 200 16 506 U1, or DE 200 19 731 U1 and for replacing the burner ring disclosed therein. The burner ring can for that purpose have, for example, guide grooves etc.
The burner ring is described schematically in more detail in the exemplary embodiment that follows. Elements that are the same are therein identified throughout by the same reference numerals. Said exemplary embodiment is not intended to limit the invention.
In the embodiment variant shown there is a second gas supply opening or, as the case may be, drilled hole (not shown) that is arranged offset at an angle relative to the first gas supply opening shown, in particular at a location mirroring the groove plane, so that the same absolute angle will be assumed relative to the groove 2, as shown in more detail in
The transfer ignition groove 2 is in the embodiment variant shown located on a top side of the gas conducting channel 6 and the gas supply openings 8 enter a bottom half of the gas conducting channel 6.
For clarification with the aid of a sketched cross-section through a burner ring,
In
In
What is shown is not, of course, limited to the embodiment variant described. Thus there can be just one or else more than two gas supply openings 8, with the possibility also of their not being mutually offset at an angle when there are two or more gas supply openings 8. The groove 2 can, for example, also run obliquely to the exterior. The gas conducting channel 6 and gas supply openings 8 can also have forms other than that of a drilled hole.
Number | Date | Country | Kind |
---|---|---|---|
10 2006 053 426.3 | Nov 2006 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2007/062213 | 11/12/2007 | WO | 00 | 5/12/2009 |