The invention relates to a burner comprising a central channel and at least one coaxial channel surrounding it for the supply of separate flows of co-reactive gaseous or gas-carried media. The burner is particularly suitable for use in the partial combustion of carbonaceous fuels, such as finely divided solid fuel carried by a gas carrier, e.g., pulverized coal carried by a gas carrier such as nitrogen gas and/or carbon dioxide, using an oxygen-containing gas, e.g., for producing pressurized synthesis gas, fuel gas or reducing gas.
Partial combustion, also known as gasification, of a solid carbonaceous fuel is obtained by the reaction of the fuel with oxygen. The fuel mainly contains carbon and hydrogen as combustible components. The gas-carried finely divided carbonaceous fuel and the oxygen-containing gas are passed via the separate channels in the burner into a reactor at relatively high velocity. In the reactor a flame is maintained in which the fuel reacts with the oxygen in the oxygen-containing gas at temperatures above 1300° C. to form mainly carbon monoxide and hydrogen.
The term “oxygen-containing gas” as used herein is intended to refer to gas containing free oxygen, O2, and to include air, oxygen-enriched air, i.e., more than 21 mole % oxygen, and also substantially pure oxygen, i.e., more than about 95 mole % oxygen, with the remainder comprising gases normally found in air such as nitrogen, and/or rare gases.
The term “solid carbonaceous fuel” as used herein is intended to include various gas carried combustible materials and mixtures thereof from the group of coal, coke from coal, coal liquefaction residues, petroleum coke, soot, biomass, and particulate solids derived from oil shale, tar sands and pitch. The coal may be of any type, including lignite, sub-bituminous, bituminous and anthracite. The solid carbonaceous fuels are preferably ground to a particle size so that at least about 90% by weight of the material is less than 90 microns and moisture content is less than about five percent weight.
U.S. Pat. No. 4,887,962 discloses a burner for such a partial combustion process. The burner comprises a central channel with an outlet for supplying the fuel to the combustion zone, and a coaxial annular channel with an outlet surrounding the central channel outlet to supply an oxygen containing gas intersecting and mixing with the flow of solid fuel from the outlet of the central channel. The burner further comprises a front face disposed at the discharge end of the burner. The front face has a central aperture through which the fuel and the oxygen containing gas flow to the combustion zone. Approaching the outlet, the diameter of the annular channel supplying the oxygen containing gas decreases resulting in an angle with respect to the longitudinal axis. The thus obtained inclining annular slit should be stably dimensioned in order to obtain a constant and evenly distributed flow of oxygen-containing gas. Due to the inclination of the annular slit in the flow direction, the issuing gas flow will intersect and mix with the flow of co-reactive combustible material issuing from the central channel into the downstream combustion zone.
Since the combustion temperatures may reach 1300° C. or more, a primary concern of such burners is to prevent damage to the burner front, also referred to as the burner face, caused by the high heat flux during the gasification process. To protect the burner front from overheating, U.S. Pat. No. 4,887,962 proposes to use a hollow wall member with internal cooling passages through which fluid coolant is circulated at a rapid rate along a spiral flow path to assure even cooling of the burner front face so as to minimize thermal stresses which could cause deterioration and even failure of the burner during prolonged operation, particularly by fatigue stresses, which may ultimately result in leaks of coolant. In U.S. Pat. No. 4,887,962 a large number of spiral turns is required to cool the complete burner front, resulting in considerable pressure drop.
It is an object of the present invention to increase the effectiveness of the coolant flow, particularly where the thermal stresses are highest.
The object of the invention is achieved by providing a burner comprising a central channel and at least one coaxial channel surrounding the central channel, the channels leading from an upstream supply side to a downstream discharge end, the central channel and the coaxial channel being defined by concentric inner and outer walls having free downstream outer ends profiled to define an annular slit forming a discharge end of the coaxial channel and converging towards an adjacent discharge end of the central channel, the burner being encased by a cooling jacket and comprising a front face with double walls being spaced by one or more baffles defining a coolant flow path operatively connected to the cooling jacket which has a transitional section narrowing down to the smaller outer diameter of the front face. The transitional section can for example wholly or partly be tapered, semi-spherical or stepped or can have any other suitable shape narrowing down in flow direction to a smaller diameter. As a result, the cooling effect is focussed on the tip of the channels where the fuel and oxygen flows intersect and mix and where the thermal stresses are highest. The pressure drop in the flow path within the front face is effectively reduced.
The transitional section of the cooling jacket can be directly connected to its upstream part. Alternatively, the transitional section of the cooling jacket with the downstream burner parts surrounded by it and the upstream part of the cooling jacket with the burner parts surrounded by it are mounted on opposite sides of a connection block having openings to allow flow-through from the upstream part of the channels and coolant flow paths to their downstream parts. The advantage of such a connection block is that a more stable and constant outflow of gas through the annular slit results.
Optionally, the cooling jacket comprises at least one compartment with baffles defining a spiral flow path. A spiral flow path can for example be realized in a cost effective way with at least three parallel baffles defining parallel channel sections which are concentric with the burners central channel, each baffle being provided with an interruption between two facing baffle ends, with parallel partitions each linking a baffle end to a facing baffle end of an adjacent baffle. This way, the partitions lead the coolant flow from one channel section to a next one. To hydraulically optimize the coolant flow, the channel sections can, e.g., be dimensioned such that the cross-sectional area of a channel section is smaller than the cross-sectional area of the channel section next in coolant flow direction.
The present burner is well suited to introduce the reactants in any desired manner, i.e., vertically, horizontally or under an angle, into the reaction zone of a partial oxidation gas generator, and is particularly suited for use in solid fuel gasification apparatus having a plurality of burners for the reactants positioned on substantially opposite sides of the combustion zone, whereby the reactants are introduced horizontally and the burner jets impinge on each other to facilitate the partial oxidation process and to minimize erosion of the refractory wall.
The burner will ordinarily be fabricated of high temperature resistant materials, particularly high temperature resistant metals and alloys such as sold under the trademark Inconel® and be fabricated, e.g., by welding, brazing or the like. For high duty operations the channels and outlets for oxygen-containing gas, which are usually made of metal, may be internally coated with an oxidic coating, such as ZrO2, or a ceramic, enabling the application of high flow velocities of the oxygen-containing gas without the risk of metal combustion by the oxygen.
The invention will now be described in more detail, by way of example only, with reference to the accompanying drawings, wherein:
The inner wall 3 has a constant inner diameter and a conically expanded part 8 with enlarged outer diameter declining towards the discharge outlet 4 so as to form an annular bulge with—in this particular embodiment—a triangular cross section. The downstream part of outer wall 5B forms a cylinder with a conical end 9 convergent in flow direction. The part 8 of the downstream inner wall part 3B and the conical end 9 of the downstream outer wall part 5B define an annular slit 10 of even width and wherein part 8 has a diameter decreasing in the direction of the discharge outlet 4. This annular slit 10 forms the discharge outlet 7 of the coaxial channel 6.
The inner and outer wall parts 3A, 3B, 5A, 5B are welded to a connection block 11. The block is provided with apertures 12 in line with the coaxial channel 6, and a central opening 13 in line with the central channel 2 and wherein opening 13 has the same diameter as central channel 2.
The coaxial channel 6 is encased by a cooling jacket 14A at the upstream side of the connection block 11 and a downstream part 14B at the downstream part of the connection block 11. Two coaxial casings 15A, 16A are welded to the upstream side of connection block 11 to form two concentric compartments 17A, 18A of the upstream cooling jacket section 14A.
The downstream part of the cooling jacket 14B comprises an inner jacket wall 15B, forming the upstream extension of upstream inner casing 15A, and an outer jacket wall 16B, forming the downstream extension of casing 16A. The space 18B between the jacket walls 15B and 16B forms the downstream extension of the upstream cooling jacket compartment 18A and is divided by baffles 19 into spiral channels. The space 17B between inner jacket wall 15B and the outer wall part 5B forms the downstream extension of upstream cooling jacket compartment 17A. The connection block 11 is provided with two concentric circular arrays of openings 20 connecting the upstream cooling jacket compartments 17A, 18A with the downstream cooling jacket compartments 17B, 18B respectively.
Downstream the cooling jacket section 14B, a double walled front face 21 is disposed under right angles with the cooling jacket walls 15B, 16B. The front face 21 has an inner edge 22 defining a central opening 23 and adjoining the outer edge of the coaxial channels outer wall 5B.
The front face 21 has an outer diameter which is smaller than the outer diameter of the upstream cooling jacket part 14A. In flow direction the down stream cooling jacket part 14B has a first section 24 with the same outer diameter as upstream cooling jacket casing 14A, and a partly tapered transitional second section 25 narrowing down to the outer diameter of the front face 21.
The double walled front face 21 has a downstream front wall 26 and a back side wall 27 spaced by baffles 28 defining a spiral flow path 29 in open connection with downstream cooling jacket compartment 18B. Near the opening 23 in the front face 21, the flow path 29 between the front and back side wall 26, 27 of the front face 21 is in open connection with the downstream cooling jacket compartment 17B via an opening 30 in the front face back side wall 27.
The upstream inner cooling jacket compartment 17A is connected to a supply of a liquid coolant. The coolant flows from the inner cooling jacket compartment 17A, via openings 20 in block 11, downstream compartment 17B, opening 30, flow path 29 in front face 21, outer cooling jacket compartment 18B, openings 20 in block 11, and outer compartment 18A to a coolant discharge.
The burner 1 of
During operation of the above described burner for the gasification of carbonaceous fuel, e.g., pulverized coal by means of oxygen-containing gas, said coal suspended in a carrier fluid, such as, e.g., nitrogen or carbon dioxide, is passed through the central channel to outlet for introducing the coal into the combustion zone of a reactor arranged downstream of the burner. Simultaneously, oxygen-containing gas is passed through the coaxial channel to its outlet so that the coal and oxygen-containing gas reactants will be intensively mixed in the reactor space. The mixing of the reactants can be further promoted by a swirling motion imparted to one or both streams by a swirl body of baffles in the appropriate channel.
Number | Date | Country | Kind |
---|---|---|---|
07113849 | Aug 2007 | EP | regional |
The present application claims priority to European Patent Application 07113849.9 filed 6 Aug. 2007 and U.S. Provisional Patent Application 60/954,330 filed 7 Aug. 2007.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2008/060280 | 8/5/2008 | WO | 00 | 5/19/2011 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2009/019272 | 2/12/2009 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3255966 | Hoffert et al. | Jun 1966 | A |
3563683 | Hess | Feb 1971 | A |
3697058 | Chaikin et al. | Oct 1972 | A |
4216908 | Sakurai et al. | Aug 1980 | A |
4322033 | Rymarchyk et al. | Mar 1982 | A |
4421476 | Gulden et al. | Dec 1983 | A |
4666397 | Wenning et al. | May 1987 | A |
4858538 | Kuypers et al. | Aug 1989 | A |
4865542 | Hasenack et al. | Sep 1989 | A |
4887962 | Hasenack et al. | Dec 1989 | A |
5615833 | Robillard et al. | Apr 1997 | A |
5947716 | Bellamy et al. | Sep 1999 | A |
5954491 | Helton et al. | Sep 1999 | A |
6010330 | Helton et al. | Jan 2000 | A |
6284324 | Whittaker | Sep 2001 | B1 |
7993131 | Douglas | Aug 2011 | B2 |
20030056439 | Wilhelm et al. | Mar 2003 | A1 |
20030196576 | Whittaker et al. | Oct 2003 | A1 |
20040067461 | Ranke et al. | Apr 2004 | A1 |
20090049747 | Von Kossak-Glowczewski et al. | Feb 2009 | A1 |
20120100496 | Boer et al. | Apr 2012 | A1 |
Number | Date | Country |
---|---|---|
2129878 | Apr 1993 | CN |
2506879 | Aug 2002 | CN |
1916493 | Feb 2007 | CN |
201228965 | Apr 2009 | CN |
20123307 | May 2009 | CN |
19729089 | Jan 1999 | DE |
108427 | May 1984 | EP |
0127273 | Dec 1984 | EP |
0268432 | May 1988 | EP |
328794 | Aug 1989 | EP |
437698 | Jul 1991 | EP |
0582521 | Feb 1994 | EP |
652276 | May 1995 | EP |
1577414 | Sep 2005 | EP |
1027041 | Apr 1966 | GB |
1135411 | Dec 1968 | GB |
1229802 | Apr 1971 | GB |
2151348 | Jul 1985 | GB |
S59227977 | Dec 1984 | JP |
H02008603 | Jan 1990 | JP |
02-133524 | Nov 1990 | JP |
H06201112 | Jul 1994 | JP |
2004-510938 | Apr 2004 | JP |
2005-281855 | Oct 2005 | JP |
2006-274312 | Oct 2006 | JP |
2007-516150 | Jun 2007 | JP |
0181825 | Nov 2001 | WO |
2005000749 | Jan 2005 | WO |
WO 2009019271 | Feb 2009 | WO |
Number | Date | Country | |
---|---|---|---|
20110217661 A1 | Sep 2011 | US |
Number | Date | Country | |
---|---|---|---|
60954330 | Aug 2007 | US |