A burnthrough protection system is provided for use as thermal and acoustical insulation systems, such as, but not limited to, those used in commercial aircraft.
The Federal Aviation Administration (FAA) has promulgated regulations, contained in 14 C.F.R. §25.856(a) and (b), requiring thermal and acoustical insulation blanket systems in commercial aircraft to provide improved burnthrough protection and flame propagation resistance. These conventional thermal and acoustical insulation systems typically include thermal and acoustical insulation blankets encapsulated within a film covering or bag. As the thermal and acoustical insulation systems are conventionally constructed, the burnthrough regulations primarily affect the contents of the insulation systems' bags and the flame propagation resistance regulations primarily affect the film coverings used to fabricate the bags. Conventional film coverings typically are used as a layer or covering, for example, laid over or laid behind layers of thermal and acoustical insulation material, or as a covering or bag for partially or totally encapsulating one or more layers of thermal and acoustical insulation material.
A burnthrough protection system is provided which may be used as a thermal and acoustical insulation system, such as, but not limited to, those used in commercial aircraft. The burnthrough protection system comprises a fire barrier layer, a foam insulation material, and a distinct buffer layer disposed between the fire barrier layer and the foam insulation material, wherein the buffer layer is adapted to prevent adhesion between the fire barrier layer and the foam insulation at elevated temperature.
The subject burnthrough protection system solves problems previously associated with the use of conventional thermal-acoustic insulation systems which include foam insulation materials encapsulated in fire barrier layers. In these conventional systems, the foam insulation is typically in direct contact with the fire barrier layer.
Without wishing to be limited by theory, it is thought that one possible failure mode of these conventional foam insulation-based thermal-acoustic insulation systems occurs when the interface between the foam insulation material and the fire barrier layer is heated to the point where at least one of the engaged materials begin to melt. When the materials begin to melt, adhesion between the foam insulation material and the fire barrier layer may occur, causing tears or other defects in the fire barrier layer. These tears or other defects allow heat and/or flames to pass through the fire barrier layer, whereas when these same fire barrier layers are utilized in insulation systems which do not utilize foam insulation, they provide adequate protection against flame propagation and burnthrough. Other failure modes are possible, which are alleviated by the subject burnthrough protection system.
Incorporation of the present distinct buffer layer has been shown to substantially stop the foam insulation material from adhering to the fire barrier layer. Thus, the fire barrier layer is able to retain its physical integrity.
The subject burnthrough protection system provides a light basis weight insulation system with surprising resistance to damage associated with handling and use along with the ability to resist flame propagation and flame penetration as defined in 14 C.F.R. §25.856(a) and (b). The term “basis weight” is defined as the weight per unit area, typically defined in grams per square meter (gsm). The subject system is useful in providing fire burnthrough protection for thermal and acoustical insulation structures for commercial aircraft fuselages. The subject buffer layer may have a basis weight of from about 2 gsm to about 50 gsm, and in certain embodiments from about 6 gsm to about 10 gsm.
The buffer layer may comprise a non-intumescent material and/or an intumescent material, and may optionally include a binder. The buffer layer comprising an intumescent material may be capable of expanding when the buffer layer experiences a temperature of from about 200° F. (93.3° C.) to about 1,950° F. (1,066° C.). Regardless of the buffer layer's ability to expand in the presence of heat, the buffer layer will be able to prevent adhesion between the foam insulation material and the fire barrier layer when the system is exposed to heat and/or flame.
The buffer layer may comprise at least one platelet and/or non-platelet material, which material may comprise at least one of boron nitride, vermiculite, mica, graphite or talc. The platelet material may be present in the buffer layer in an amount of from about 5 weight percent to about 95 weight percent, in certain embodiments from about 40 weight percent to about 60 weight percent, based on the total weight of the buffer layer.
In embodiments in which the buffer layer comprises a platelet material, it is believed (without wishing to be limited by theory) that the individual platelets of the buffer layer interact with each other and/or with the surface with which they are in contact in order to prevent adhesion between the foam insulation material and the fire barrier layer.
The buffer layer may include inorganic binders. Without limitation, suitable inorganic binders include colloidal dispersions of alumina, silica, zirconia, and mixtures thereof. The inorganic binders, if present, may be used in amounts ranging from 0 to about 90 percent by weight, in some embodiments from 40 to about 60 weight percent, based upon the total weight of the buffer layer.
The buffer layer may further include one or more organic binders. The organic binder(s) may be provided as a solid, a liquid, a solution, a dispersion, a latex, or similar form. Examples of suitable organic binders include, but are not limited to, acrylic latex, (meth)acrylic latex, phenolic resins, copolymers of styrene and butadiene, vinylpyridine, acrylonitrile, copolymers of acrylonitrile and styrene, vinyl chloride, polyurethane, copolymers of vinyl acetate and ethylene, polyamides, organic silicones, organofunctional silanes, unsaturated polyesters, epoxy resins, polyvinyl esters (such as polyvinylacetate or polyvinylbutyrate latexes) and the like.
The organic binder, if present, may be included in the buffer layer in an amount of from 0 to about 90 weight percent, in some embodiments from 30 to about 60 weight percent, based upon the total weight of the fire barrier layer.
Solvents for the binders, if needed, can include water or a suitable organic solvent, such as acetone, for the binder utilized. Solution strength of the binder in the solvent (if used) can be determined by conventional methods based on the binder loading desired and the workability of the binder system (viscosity, solids content, etc.).
The buffer layer may additionally comprise at least one functional filler. The functional filler(s) may include, but not be limited to, clays, fumed silica, cordierite and the like. According to certain embodiments, the functional fillers may include finely divided metal oxides, which may comprise at least one of pyrogenic silicas, arc silicas, low-alkali precipitated silicas, fumed silica, silicon dioxide aerogels, aluminum oxides, titania, calcia, magnesia, potassia, or mixtures thereof.
In certain embodiments, the functional filler may comprise endothermic fillers such as alumina trihydrate, magnesium carbonate, and other hydrated inorganic materials including cements, hydrated zinc borate, calcium sulfate (gypsum), magnesium ammonium phosphate, magnesium hydroxide or combinations thereof. In further embodiments, the functional filler(s) may include lithium-containing minerals. In still further embodiments, the functional fillers(s) may include fluxing agents and/or fusing agents.
In certain embodiments, the functional filler may comprise fire retardant fillers such as antimony compounds, magnesium hydroxide, hydrated alumina compounds, borates, carbonates, bicarbonates, inorganic halides, phosphates, sulfates, organic halogens or organic phosphates. In certain embodiments, functional fillers may preserve or enhance the flame propagation resistance of the foam insulation materials.
The buffer layer is engaged with a foam insulation material, such as by coating the buffer layer onto the foam insulation or otherwise disposing a distinct buffer layer between the foam insulation and the fire barrier layer. The buffer layer may be coated onto the foam insulation material, for example, without limitation, by roll or reverse roll coating, gravure or reverse gravure coating, transfer coating, spray coating, brush coating, dip coating, tape casting, doctor blading, slot-die coating or deposition coating. In certain embodiments, the buffer layer is coated onto the foam insulation material as a slurry of the ingredients in a solvent, such as water, and is allowed to dry prior to incorporation into the burnthrough protection system. The buffer layer may be created as a single layer or coating, thus utilizing a single pass, or may be created by utilizing multiple passes, layers or coatings. By utilizing multiple passes, the potential for formation of defects in the buffer layer is reduced. If multiple passes are desired, the second and possible subsequent passes may be formed onto the first pass while the first pass is still substantially wet, i.e. prior to drying, such that the first and subsequent passes are able to form a single unitary buffer layer upon drying.
The buffer layer may be present on the foam insulation material or otherwise present in the burnthrough protection system in an amount of from about 2 gsm to about 50 gsm, in certain embodiments from about 2 gsm to about 40 gsm, in further embodiments from about 2 gsm to about 30 gsm, in still further embodiments from about 2 gsm to about 20 gsm, and in other embodiments from about 6 gsm to about 10 gsm. In embodiments in which the buffer layer comprises a platelet material, the platelet material may be present on the foam insulation material in an amount of from about 0.2 gsm to about 50 gsm, in certain embodiments from about 0.2 gsm to about 40 gsm, in further embodiments from about 0.2 gsm to about 30 gsm, in still further embodiments from about 0.2 gsm to about 20 gsm, and in other embodiments from about 0.6 gsm to about 10 gsm.
In certain embodiments, the distinct buffer layer may be a separate interleaf layer between the fire barrier layer and the foam insulation material. By interleaf, it is meant that the distinct buffer layer is prepared as a separate layer or film and engaged between the fire barrier layer and the foam insulation material.
The foam insulation material may comprise at least one of polyimide foam, melamine foam or silicone foam.
The fire barrier layer may comprise at least one fire-blocking layer comprising a paper or coating comprising a fibrous or non-fibrous material. The non-fibrous material may comprise a mineral material, such as at least one of mica or vermiculite. The mica or vermiculite may be exfoliated, and may further be defoliated. By exfoliation, it is meant that the mica or vermiculite is chemically or thermally expanded. By defoliation, it is meant that the exfoliated mica or vermiculite is processed in order to reduce the mica or vermiculite to substantially a platelet form. Suitable micas may include, without limitation, muscovite, phlogopite, biotite, lepidolite, glauconite, paragonite or zinnwaldite, and may include synthetic micas such as fluorophlogopite.
While the fire-blocking layer of the fire barrier layer and the distinct buffer layer may comprise similar materials, the materials are selected according to different desired properties. The fire-blocking layer of the fire barrier layer will comprise a material which will, at least in part, assist in providing the desired flame propagation and burnthrough resistance of the resulting burnthrough protection system. The distinct buffer layer will comprise a material which will at least partially prevent adhesion between the fire barrier layer and the foam insulation when the burnthrough protection system is exposed to elevated temperatures associated with exposure to heat and/or flame. Thus, while flame propagation resistance and burnthrough resistance are desirable properties of the buffer layer, the material selected for the buffer layer need not possess these properties.
As shown in
The insulating layer 13 may alternatively comprise MICROLITE AA® Premium NR fiberglass insulation (available from Johns Manville International, Inc.), and there may be two or more insulation layers, comprising a combination of foam and fiberglass insulation layers. The exteriorly facing layer 16 and the inboard film 18 may be heat sealed with an adhesive 12 to at least partially envelop or encapsulate the insulation layers 13, 14. Flames 20 are shown proximate to the exteriorly facing fire protection layer 16.
The following examples are set forth merely to further illustrate the subject burnthrough protection system. The illustrative examples should not be construed as limiting the burnthrough protection system in any manner.
Various buffer layers were prepared with different platelet materials and additives. Coating 1 was prepared by combining 161.8 g silicone elastomer and 54.1 g expandable graphite having a nominal size of greater than about 300 μm and a carbon content greater than about 95%. Coating 2 was prepared by combining 162.4 g silicone elastomer Additive and 54 g boron nitride having a mean particle diameter of about 30 μm, a surface area of about 1 m2/g and a tapped density of about 0.6 g/cm3. Coating 3 was prepared by combining 60.9 g silanol-functional silicone resin, 26.6 g toluene, and 61.2 g boron nitride having a mean particle diameter of about 30 μm, a surface area of about 1 m2/g and a tapped density of about 0.6 g/cm3. The following examples were prepared by spraying one of Coatings 1 through 3 in an amount as shown in Table 1 onto 1″ thick polyimide foam (SOLIMIDE AC-530, Evonik-Degussa Corp.).
The burnthrough protection system described herein may be capable of passing the flame propagation and burnthrough resistance test protocols of 14 C.F.R. §25.856(a) and (b), Appendix F, Parts VI and VII. The burnthrough protection system may be disposed between the exterior skin and the interior liner of an aircraft, such as between the exterior skin and the interior cabin liner or the interior hold liner.
The burnthrough protection systems described above were tested according to the protocols of 14 C.F.R. §25.856(a) and (b), Appendix F, Parts VI and VII, which are incorporated herein in their entirety, as if fully written out below.
14C.F.R. §25.856(a) and (b) provide in pertinent part:
Appendix F Part VI provides, in pertinent part:
Appendix F Part VII provides, in pertinent part:
In a first embodiment, a subject burnthrough protection system may comprise a fire barrier layer, a foam insulation material, and a distinct buffer layer disposed between the fire barrier layer and the foam insulation material, wherein the buffer layer is adapted to prevent adhesion between the fire barrier layer and the foam insulation at elevated temperature.
The burnthrough protection system of the first embodiment may further include that the buffer layer comprises a non-intumescent material and optionally a binder.
The burnthrough protection system of the first embodiment may further include that the buffer layer comprises an intumescent material and optionally a binder. The buffer layer may be capable of expanding when the buffer layer experiences a temperature of from about 200° F. to about 1,950° F.
The burnthrough protection system of any of the first or subsequent embodiments may further include that the buffer layer comprises at least one of boron nitride, vermiculite, mica, graphite or talc. The buffer layer further may comprise at least one functional filler.
The burnthrough protection system of any of the first or subsequent embodiments may further include that the buffer layer is engaged with the foam insulation material.
The burnthrough protection system of any of the first or subsequent embodiments may further include that the buffer layer is coated onto the foam insulation material. The buffer layer may be present on the foam insulation material in an amount of from about 2 gsm to about 50 gsm. The buffer layer may comprise a platelet material, wherein the platelet material is present on the foam insulation material in an amount of from about 0.2 gsm to about 50 gsm.
The burnthrough protection system of any of the first or subsequent embodiments may further include that the distinct buffer layer is a separate interleaf layer between the fire barrier layer and the foam insulation material.
The burnthrough protection system of any of the first or subsequent embodiments may further include that the buffer layer comprises from about 5 weight percent to about 95 weight percent of a platelet material, in certain embodiments, from about 40 weight percent to about 60 weight percent of the platelet material. The platelet material may comprise at least one of boron nitride, vermiculite, mica, graphite or talc.
The burnthrough protection system of any of the first or subsequent embodiments may further include that the foam insulation comprises at least one of polyimide foam, melamine foam or silicone foam.
The burnthrough protection system of any of the first or subsequent embodiments may further include that the fire barrier layer comprises at least one fire-blocking layer comprising a paper or coating comprising a fibrous or non-fibrous material, optionally wherein the non-fibrous material comprises a mineral material. The mineral material may comprise at least one of mica or vermiculite. The mica or vermiculite may be exfoliated and defoliated.
The burnthrough protection system of any of the first or subsequent embodiments may further be capable of passing the flame propagation and burnthrough resistance test protocols of 14 C.F.R. §25.856(a) and (b), Appendix F, Parts VI and VII.
In a second embodiment, a subject aircraft may comprise an exterior skin, an interior liner, and the burnthrough protection system of any of the first or subsequent embodiments disposed between the exterior skin and the interior liner.
It will be understood that the embodiments described herein are merely exemplary, and that one skilled in the art may make variations and modifications without departing from the spirit and scope of the invention. All such variations and modifications are intended to be included within the scope of the invention as described hereinabove. Further, all embodiments disclosed are not necessarily in the alternative, as various embodiments of the invention may be combined to provide the desired result.
This application claims the benefit of the filing date under 35 U.S.C. 119(e) from U.S. Provisional Application For Patent Ser. No. 61/480,730 filed on Apr. 29, 2011.
Number | Date | Country | |
---|---|---|---|
61480730 | Apr 2011 | US |