This application claims priority of Taiwanese Application No. 090215659 filed on Sep. 12, 2001.
1. Field of the Invention
This invention relates to an electrical connector, more particularly to a bus cable connector including an insulative body molded over a set of terminals and having an end face formed with parallel grooves and ribs.
2. Description of the Related Art
With the fast development of the information industry, use of a large amount of storage devices is becoming popular. The transmission and communication of data in the hardware requires use of bus cable connectors.
An object of the present invention is to provide a cable connector having two rows of terminals with soldering sections aligned in a same plane for electrical connection with wires of a cable, thus eliminating the need to separate paired wires of a cable into two rows.
Another object of the present invention is to provide one form of insulative body which can be insert-molded over either one of two types of terminals sets for producing two different terminal modules, thereby permitting the use of a common mold for producing different terminal modules.
According to one aspect of the present invention, a cable connector comprises: a cable having a plurality of wires; a connector housing; and a terminal module mountable on the connector housing to establish an electrical connection with the wires, the terminal module including an insulative body having two opposed first and second faces, and a plurality of spaced apart parallel ribs formed in the first face and confining grooves therebetween, the insulative body being molded over two rows of terminals, the terminals each including a retention section surrounded by the insulative body, and a tail section extending out of the insulative housing through the first face, the parallel ribs and grooves extending between the tail sections of the two rows, the grooves having first ends on the same side and second ends opposite to the first ends, wherein the tail sections of the terminals include bent sections extending respectively from the retention sections, and soldering sections extending respectively from the bent sections and being coplanar with each other in a same plane, the soldering sections being soldered respectively to the wires, the bent sections having proximal ends adjacent to the first face and distal ends extending away from the first face and connected to the soldering sections, all of the bent sections converging from the proximal ends to the plane of the soldering sections, the proximal ends of the bent sections in one of the rows and the proximal ends of the bent sections in the other one of the rows alternately passing through the first and second ends of the grooves, every other one of the first ends of the grooves receiving one of the proximal ends of the terminals of one of the rows, every other one of the second ends of the grooves receiving one of the proximal ends of the terminals in the other row, the proximal ends of the bent sections being spaced from each other by the ribs.
In another aspect of the present invention, a cable connector comprises a terminal module which includes a terminals set and an insulative body molded over the terminals set through an insert molding process, the insulative body having two opposed first and second faces, and a plurality of spaced apart parallel ribs formed in the first face and confining grooves therebetween, the terminals set being selected from a group consisting of a first terminals set and a second terminals set, each of the first and second terminals sets having two rows of terminals, the terminals including retention sections surrounded by the insulative body, and tail sections respectively extending from the retention sections, the tail sections extending out of the insulative body from the first face, the parallel ribs and grooves extending between the two rows of the tail sections, the grooves having first ends on the same side and second ends opposite to the first ends; wherein the tail sections of the first terminal set include bent sections extending respectively from the retention sections, and soldering sections extending respectively from the bent sections and being coplanar with each other in a same plane, the bent sections having proximal ends adjacent to the first face and distal ends extending away from the first face and connected to the soldering sections, all of the bent sections converging from the proximal ends to the plane of the soldering sections, the proximal ends of the bent sections in one of the rows and the proximal ends of the bent sections in the other one of the rows alternately passing through the first and second ends of the grooves, every other one of the first ends of the grooves receiving one of the proximal ends of the terminals of one of the rows, every other one of the second ends of the grooves receiving one of the proximal ends of the terminals of the other row, the proximal ends of the bent sections being spaced from each other by the ribs, wherein the two rows of the tail sections of the second terminals set are bent substantially at right angles and are alternatively received in the grooves.
Other features and advantages of the present invention will become apparent in the following detailed description of the preferred embodiments of the invention, with reference to the accompanying drawings, in which:
Before the present invention is described in greater detail, it should be noted that same reference numerals have been used to denote like elements throughout the specification.
Referring to
Referring again to
The bent sections 34 have respective proximal ends 341 adjacent to the first face 20A of the insulative body 20, and respective distal ends 342 extending away from the first face 20A and connected to the respective soldering sections 35. The bent sections 34 of the terminals 30 in one row are staggered with respect to the bent sections 34 in the other row along a direction transverse to the directions of the rows of the terminals 30. The bent sections 34 converge from the proximal ends 341 to the plane of the soldering sections 35. As best shown in
Referring again to
Each terminal 30′ has a contact section 31′, a retention section (not shown) retained within the insulative body 20 and a tail section 34′ extending out of the insulative body 20 from the first face 20A of the insulative body 20. Ribs 21 and grooves 22 extend between two rows of the tail sections 34′ of the terminals 30′. The tail sections 34′ are staggered with respect to each other along a direction transverse to the direction of the rows of the tail sections 34′.
Referring to
As described above, the insulative body 20 of the terminal module (D) shown in
An example of a process for fabricating the insulative bodies 20 of the terminal modules (B) and (D) by using a common mold is described hereunder. As shown in
In view of the aforesaid, the insulative body 20 the present invention can be used to produce the terminal modules (B) and (D) of the cable connectors (A) and (C). In other words, the present invention permits production of two different types of cable connectors by using a common mold, thereby reducing the production costs for manufacturing two types of cable connectors.
While the present invention has been described in connection with what is considered the most practical and preferred embodiments, it is understood that this invention is not limited to the disclosed embodiments but is intended to cover various arrangements included within the spirit and scope of the broadest interpretations and equivalent arrangements.
Number | Date | Country | Kind |
---|---|---|---|
090215659 | Sep 2001 | TW | national |
This application is also a continuation-in-part of U.S. patent application Ser. No. 09/991,677 filed by the applicant on Nov. 26, 2001 abandoned, the entire disclosure of which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3907396 | Huber | Sep 1975 | A |
4035050 | Volinskie | Jul 1977 | A |
4094564 | Cacolici | Jun 1978 | A |
4278314 | Moser et al. | Jul 1981 | A |
4311356 | Levitt | Jan 1982 | A |
4323295 | Davis, Jr. | Apr 1982 | A |
4508403 | Weltman et al. | Apr 1985 | A |
Number | Date | Country | |
---|---|---|---|
20030181094 A1 | Sep 2003 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09991677 | Nov 2001 | US |
Child | 10418153 | US |