The present invention relates to methods and embodiments of bus systems for configurable architectures. The optimization of the configuration and reconfiguration efficiency is taken into account in particular.
A reconfigurable architecture is understood to refer to modules (VPUs) having a configurable function and/or interconnection, in particular integrated modules having a plurality of arithmetic and/or logic and/or analog and/or storing and/or interconnecting modules (hereinafter referred to as PAEs) arranged in one or more dimensions and/or communicative peripheral modules (IO) interconnected directly or via one or more bus systems. PAEs may be of any embodiment or mixture and arranged in any hierarchy. This arrangement is referred to below as a PAE array or PA.
Generic modules of this type include systolic arrays, neural networks, multiprocessor systems, processors having multiple arithmetic units and/or logic cells, interconnecting and network modules such as crossbar switches, as well as known modules of the types FPGA, DPGA, XPUTER, etc. In this context, reference is made in particular to the following patents and applications by the present applicant: P 44 16 881.0-53, DE 197 81 412.3, DE 197 81 483.2, DE 196 54 846.2-53, DE 196 54 593.5-53, DE 197 04 044.6-53; DE 198 80 129.7, DE 198 61 088.2-53, DE 199 80 312.9, PCT/DE 00/08169, DE 100 36 627.9-33, DE 100 28 397.7, DE 101 10 530.4, DE 101 11 014.6, PCT/EP 00/10516, EP 01 102 674.7, PACT02, PACT04, PACT05, PACT08, PACT10, PACT11, PACT13, PACT21, PACT13, PACT18, PACT19, PACT16, PACT25, PACT27, PACT26/US, which are herewith incorporated to the full extent for the purpose of disclosure.
a-3b show a bus system in various states of configuration, and the use of switches for connecting an input of a processing element, according to an example embodiment of the present invention.
a-4b show a bus system in various states of configuration, and the use of switches and RdyHold stages for connecting an output of a processing element, according to an example embodiment of the present invention.
a-5c show examples of processing elements with differently configured interconnections, and signal propagation in the case of branching or loops.
a shows a conventional bus design.
b shows a bus design according to an example embodiment of the present invention.
a and 8b illustrate how to respond to a SyncReconfig before a configuration is not yet completely configured, according to example embodiments of the present invention.
The architecture indicated above is used as an example for illustration and is referred to below as a VPU. This architecture has any number of arithmetic or logic cells (including memories) and/or memory cells and/or interconnection cells and/or communicative/peripheral (IO) cells (PAEs), which may be arranged to form a one-dimensional or multidimensional matrix (PA), which may have different cells of any configuration. Bus systems are also understood to be cells. The matrix as a whole or parts thereof are assigned a configuration unit (CT), which influences the interconnection and function of the PA. Improvements are still possible with such architectures, e.g., with regard to the procedure and/or speed of reconfiguration.
The object of the present invention is to provide a novel approach for commercial use.
The means for achieving this object is claimed independently. Preferred embodiments are characterized in the subclaims.
1. Structure of Bus Systems
Conventional implementation of configuration requires synchronization between the objects. Objects are understood to refer to all data processing modules (PAEs) and, inasmuch as necessary, also the data transferring modules such as bus systems. This synchronization is implemented centrally, e.g., via a FILMO (see PACT04, PACT05, PACT10, PACT17). Therefore, at least as many cycles elapse between the end of an old configuration (reconfig trigger; see PACT08) and the beginning of a new configuration (object again enters the “configured” state) as would correspond to the length of the pipelined CM bus (forward and return; see PACT17).
According to the present invention, two methods are proposed for accelerating this procedure:
For the following considerations, the modules present in a typical reconfigurable architecture are divided into two groups:
Buses: This group includes the connecting line between two segments. It is represented by the segment switch at one end.
Object: This group includes all the objects which have a connection to a bus and/or communicate with its environment, i.e., any PAE (e.g., memory, ALUs), IO, etc.
Typically there are dependencies mainly among all directly adjacent objects, including specifically:
Bus to bus: A bus is represented by the segment switch at the end of a bus.
Object to bus: The object is to be selected freely from FREG, BREG, ALU and RAM. Everything that has a connection is likewise counted as an object in this sense.
Object to object: These are not usually directly adjacent and there is normally a bus in between. There is then no dependence. In the case of a direct connection, the connection behaves according to “bus to bus” and/or “object to bus” depending on the embodiment.
1.1 Bus-to-Bus Dependence
in the related art, longer buses are configured from back to front, for example. An example of the bus design described below is illustrated in
1.2 Bus-to-Object Dependence
According to the related art, an object (e.g., 0601, 0602, 0603) may not be configured until it is ascertained that the buses (0606a, 0606b) used by the object have already been configured. This dependence also exists to ensure that no data is running into a foreign configuration (PAE output) and/or is taken from a foreign configuration (PAE input).
In summary, it may be concluded that there is always a dependence when an object establishes, has established and/or wishes to establish a connection to another object. This takes place by way of the connection mask (0608) which controls the connection of the object inputs and/or outputs onto the buses (e.g., via multiplexers, transmission gates and the like; see also PACT18,
2. Control Over ID Management
The first approach claimed according to the present invention is to store the IQ or array ID currently being used by the object in each object (see PACT10). Therefore, information regarding which task and/or configuration the particular object is being assigned to at the moment is stored. As soon as a connection between two objects is configured (e.g., between a PAE output and a bus), a check is performed in advance to determine whether both objects have the same ID/array ID. If this is not the case, the connection must not be established. Thus a connection is activated and/or allowed, depending on a comparison of identifying information.
Although this method is basically comparatively trivial, it requires a great hardware complexity, because for each possible connection, registers are required for storing the IDs/array IDs and comparators are required for comparing the IDs/array IDs of the two objects to be connected.
3. Control Over the Interconnection Structure
As soon as configuration A is concluded, the bus thus released is occupied by configuration B and configuration B begins to work.
In other words, one basic principle of the method is that each element involved in a data transmission connects itself automatically to the corresponding data source and/or the data transmitter, i.e., it has the control itself of which data transmitter/receiver it is to be connected to according to the configuration.
Bus to PAE Input
The middle bus in
In
Finally, the upper bus in
Bus-PAE Output
This is a connection in which the use of two separate switches is particularly preferred. It may be preferable in the (two) other cases to implement the functionality with one switch which is controlled by two config bits which are interlinked by Boolean logic, preferably by an AND link, to determine the switch state.
The middle bus (0401) in
Now in
In
Result
The reconfiguration performance may be increased substantially with relatively simple hardware. In particular, it is thus even more possible to preload multiple complete configurations into the objects because the objects may then be configured individually per object and independently according to the prevailing data processing status of each without any problems being expected.
After arrival of the reconfiguration signal requesting reconfiguration, each object until it is configured again needs locally only as many cycles as configuration words are necessary when transmission of configuration words in cycles is assumed. The reconfiguration time may be pushed further by using a second register set, approximately toward zero cycles, when configurations are predeposited in the second register set.
In an optimized implementation that is preferred according to the present invention, the additional hardware complexity for buses and PAE inputs may be limited to one additional configuration bit and one AND gate per bus switch and per number of buses×number of PAE inputs. This is depicted in
a shows a left-hand bus (0606a[1]) connected to a right-hand bus (0606a[2]) via the bus switch. A configuration switch is assigned to each bus switch, indicating whether the switch is configured as being open or closed (c[1] for the left-hand bus and c[2] for the right-hand bus). In
The PAE outputs may optionally require slightly more complexity, depending on the implementation, if an additional switch is considered to be necessary for each. In this connection, it should be pointed out that although it is possible to provide the connection to and/or between all objects according to the present invention, this is by no means obligatory. Instead it is possible to implement the ideas according to the present invention only in some objects.
b shows as an example a design of an object and a bus according to the present invention. The basic design corresponds to the related art according to
The basic principle now is that each object and/or each bus independently regulates, i.e., determines, which connections are to be established and/or remain in effect at the moment. It should be pointed out here that this determination is performed by the individual object and/or bus depending on the configuration, i.e., it is by no means arbitrary. Management of the connections is thus more or less delegated to the objects involved. Each bus may regulate which other buses it will be connected to via switches 0607 and 0609 according to the configuration. No bus may now be connected to another (e.g., via 0607) without the other bus allowing this through a corresponding switch setting of its bus switches (e.g., 0609).
It should be pointed out explicitly that switch 0607 according to the related art could also be situated at the output of a bus and switch 0609 is added at the input of the buss accordingly.
Switches 0610 are preferably also double switches, one switch being controlled by the PAE object and the other switch being controlled by the particular bus system 0606a and/or 0606b. It should be pointed out in particular that one switch is merely indicated with dashed lines. This is the switch controlled by bus 0606a and/or 0606b and it may be implemented “virtually” by the setting of the connection mask (0608).
5. Reconfiguration Control
Control of the reconfiguration is triggered in the VPU technology by signals (Reconfig) which are usually propagated with the data packets and/or trigger packets over the bus systems and indicate that a certain resource may or should be reconfigured and, if necessary, the new configuration is selected at the same time (see PACT08, PACT13).
If a reconfigurable module is to be only partially reconfigured, then Reconfig must be interrupted at certain locations according to the algorithm. This interruption, which prevents forwarding of Reconfig, is referred to as ReconfigBlock.
ReconfigBlocks are usually introduced at the boundary of one configuration with the next to separate them from one another.
Different strategies for sending Reconfig signals are selected as requested by the algorithm.
Now three possible and preferred embodiments will be described; these embodiments may be used individually and/or combined and they have different behaviors. It is regarded as inventive in comparison with the related art that it is possible to select between such embodiments in pairs.
a) ForcedReconfig: The simplest strategy is to send the Reconfig signal via all interfaces of an object, i.e., it propagates along the data paths and/or trigger paths belonging to a certain configuration while other configurations remain unaffected. This ensures that all interconnected objects in the PA receive the signal. For the sake of restriction, the signal must be blocked at suitable locations. This method, i.e., signal, ensures that a configuration is removed completely. The signal is referred to below as ForcedReconfig. This signal should be used only after all data in the particular objects has been processed and removed because there is no synchronization with data processing. Although all objects belonging to a certain configuration within an array are thus forced to allow reconfiguration, other configurations running simultaneously on other objects of the same array remain unaffected.
b) SyncReconfig: A Reconfig is sent together with the corresponding data and/or triggers. It is sent only together with active data packets and/or trigger packets. The signal is preferably relayed together with the last data packet and/or trigger packet to be processed and indicates the end of the data processing after this data/trigger packet. If a PAE requires multiple cycles for processing, the forwarding of SyncReconfig is delayed until the trigger packet and/or data packet has in fact been sent. This signal is thus synchronized with the last data processing. As described below, this synchronized reconfiguration according to the present invention may be blocked at certain locations.
c) ArrayReset: ArrayReset may be used as an extension of ForcedReconfig which cannot be blocked and results in reconfiguration of the complete array. This method is particularly appropriate when, for example, an application is terminated or an illegal opcode (see PACT19) and/or timeout of a configuration has occurred and proper termination of the configuration cannot be ensured with other strategies. This is important for a power-on reset, or the like, in particular.
5.1 SyncReconfig
When SyncReconfig is propagated, it always contains valid active data or triggers.
Problems occur when, in the case of branching, the signal is propagated only in the active branch (
To solve this problem, the semantics of SyncReconfig is defined as follows: The signal indicates that after receiving and completely processing the data/triggers, all the data/trigger sources (sources) and buses leading to the input of an object which has received the SyncReconfig signal are reconfigured. A ReconfigEcho signal may be introduced for this purpose. After the arrival of SyncReconfig at a destination object, a ReconfigEcho is generated by it, preferably only and as soon as the destination object has completely processed the data arriving with the SyncReconfig signal. This generated ReconfigEcho is then sent to all sources connected to the object, i.e., its inputs, and results in reconfiguration, i.e., reconfigurability of the sources and/or the bus systems transmitting data and/or triggers.
If an object receives a ReconfigEcho, this signal is transmitted further upstream, i.e., it is transmitted via the buses to its sources via all the inputs having bus switches still closed. After being generated, ReconfigEcho is thus sent to the data and/or trigger sources that feed into an object, and the signals are forwarded from there. Inputs/outputs that have already received a SyncReconfig preferably become passive due to its arrival, i.e., they no longer execute any data/trigger transfers. Depending on the embodiment, a SyncReconfig may only induce passivation of the input at which the signal has arrived or passivation of all inputs of the PAE.
A ReconfigEcho usually arrives at the outputs of PAEs. This causes the ReconfigEcho to be relayed via the inputs of the PAE if they have not already been passivated by a received SyncReconfig.
In some cases, e.g., in
5.2 Trigger Having Reconfig Semantics
In some cases (e.g.,
For the required explicit transmission of any Reconfig signals, the trigger system according to PACT08 may be used, to which end the trigger semantics is extended accordingly. Triggers may thus transmit any status signals and control signals (e.g., carry, zero, overflow, STEP, STOP, GO; see PACT08, PACT13, PACT18), as well as the implicit Reconfig signals. In addition, a trigger may assume the SyncReconfig, ReconfigEcho, or ForcedReconfig semantics.
5.3 Blocking
At each interface which sends a SyncReconfig, it is possible to set whether sending or relaying is to take place. Suppressing propagation results in stopping a reconfiguration wave that would otherwise propagate over the array and/or the configuration affected by it. However, regardless of the blockades to be set up for certain locations during configuration in a self-modifying or data-dependent manner and/or under or for certain conditions, it should be mentioned that data and/or trigger signals may continue to run over a blocked position, in order to be processed further as before, as provided with the protected configuration and/or a protected configuration part.
If necessary, it would also be possible to locally suppress the response to the reconfiguration request, i.e., to ignore the reconfiguration request locally but nevertheless send a signal indicative of the arrival of a locally ignored reconfiguration request signal to downstream objects, whether blocked or unblocked.
As a rule, however, when individual objects of a configuration are to be blocked, it is preferable to send the reconfiguration request signal over separate buses, bus segments or lines to downstream objects past a blocking object. The normally preferred case in which the reconfiguration request signal must penetrate into the object is then easier to maintain, i.e., not only peripherally relayed in forward or reverse registers, if provided, and thus sent past the actual cell. It is then preferable that, in the case of blocking of a reconfiguration request signal (or a certain reconfiguration request signal of a plurality of differentiable reconfiguration request signals), this blocked reconfiguration request signal “dies” in the particular object, i.e., is not to be forwarded.
If the acceptance of SyncReconfig at the receiving interface is blocked, then the receiving object switches the interface receiving SyncReconfig to passive (i.e., the interface no longer sends and/or receives any data); otherwise the object does not respond to the signal but it may send back the ReconfigEcho to permit the release of the transmitting bus system.
In addition, it is possible to block ReconfigEcho either independently of and/or jointly with a ReconfigBlock.
5.4 Effect of SyncReconfig and ForcedReconfig on Bus Systems
To ensure that, after transmission of a SyncReconfig over a bus, no subsequent data and/or triggers which originate from a following configuration, for example, and would thus be processed incorrectly are transmitted, SyncReconfig preferably blocks the sending of the handshake signals RDY/ACK (see PACT02), which indicate the presence of valid data on the bus and control the data transmission, over the bus. The bus connections per se, i.e., the data and/or trigger network, are not interrupted to permit resending of ReconfigEcho over the bus system. The bus is dismantled and reconfigured only with the transmission of ReconfigEcho.
In other more general terms, the occurrence of SyncReconfig first prevents data and/or triggers from being relayed over a bus—except for ReconfigEcho—e.g., by blocking the handshake protocols and ReconfigEcho subsequently induces the release and reconfiguration of the bus.
Other methods having an equivalent effect may be used; for example, data and trigger connections may be interrupted even in a run-through of SyncReconfig, whereas the ReconfigEcho connection is dismantled only on occurrence of ReconfigEcho.
This ensures that data and triggers of different configurations which do not belong together will not be exchanged incorrectly via the configurations.
a illustrates a branching such as that which may occur, for example due to an IF-THEN-ELSE construct in a program. After a PAE, the data is branched into two paths (0510, 0511), only one of which is always active. In the case depicted here, a last data packet is transmitted together with SyncReconfig, branch 0510 is not active and therefore does not relay either the data or SyncReconfig. Branch 0511 is active and relays the data and SyncReconfig. The transmitting bus system may preferably be switched to inactive immediately after the transmission and is then able to transmit back only ReconfigEcho. PAE 0501b receives SyncReconfig and sends it to PAE 0501c, which sends ReconfigEcho back to 0501a, whereupon 0501a and the bus system between 0501a and 0501b are reconfigured. The transmission between 0501b and 0501c takes place accordingly.
0501
e has also received SyncReconfig from 0501a but the branch is not active. Therefore 0501e does not respond, i.e., 0501e does not send SyncReconfig to 0501f nor does it send the ReconfigEcho back to 0501a.
0501
c processes the incoming data and forwards SyncReconfig to 0501d. This sequence initially corresponds to the transmission from 0501a to 0501b. After processing the data, 0501d generates a ReconfigEcho which is also sent to 0501f because the branches are combined. Although 0501f has not performed a data operation, the unit is reconfigured and sends the ReconfigEcho to 0501e which is then also reconfigured—without new data processing having taken place.
ReconfigEcho transmitted from 0501b to 0501a may also be transmitted in a preferred embodiment to 0501e where it arrives at an input. This results in passivation of the input and to passivation of all inputs in an expanded embodiment, which may also be reconfigurable.
To impart a local character to the examples in
b is largely identical to
c shows the exemplary embodiment of a loop. This loop runs over PAEs 0501m, . . . , 0501r. The transmissions between PAEs 0501m, . . . , 0501r are evidently equivalent here according to the preceding discussion, in particular regarding the transmissions between 0501b and 0501c.
The transmission between 0501r and 0501m deserves special attention. When ReconfigEcho appears at 0501m, the bus (0508) between 0501m and 0501r is reconfigured by the transmission of ReconfigEcho. ReconfigEcho is blocked at the output of 0501r. Therefore 0501r is not reconfigured but the particular output is switched to passive on arrival of ReconfigEcho, i.e., 0501r no longer sends any results on the bus. Therefore the bus may be used by any other configuration.
As soon as 0501r receives ReconfigEcho from 0501q, 0501r is reconfigured at the end of the data processing. The ReconfigBlock and/or the passivation of the bus connection to 0501m (0508) prevents forwarding toward 0501m. Meanwhile 0501m and 0508 may be used by another configuration.
6.0 SyncReconfig II
Another optional method for controlling the SyncReconfig protocol is described below; this method may be preferred, depending on the application, the area of use and/or embodiment of the semiconductor or system.
This method is defined as follows:
1. SyncReconfig is transmitted in principle over all connected buses of a PAE (data buses and/or trigger buses), even over the buses which are not currently (in the current cycle) transmitting any data and/or triggers.
2. In order for a PAE to relay SyncReconfig according to paragraph 1, first all the connected inputs of the PAE must have received SyncReconfig.
2a. Feedback in the data structure (e.g., loops) requires an exception to the postulate according to paragraph 2. Feedback coupling is excepted, i.e., it is sufficient if all the connected inputs of a PAE except those in a feedback loop have received SyncReconfig so that it is forwarded.
3. If a PAE is processing data (under some circumstances even in multiple cycles, e.g., division), then a SyncReconfig (if this is applied to the inputs according to 2 and 2a) is relayed to the receiver(s) at the point in time when the calculation and forwarding of the data and/or triggers is completed. In other words, SyncReconfig does not overtake data processing.
4. If a PAE is not processing any data (e.g., because no data is queued up at the inputs and/or there is no corresponding trigger for enabling data processing (see PACT08)) but it has received SyncReconfig at all configured inputs, then the PAE forwards SyncReconfig via all configured outputs. No data processing takes place (there is no queued-up input data and/or no enable trigger (PACT08) is queued up) and accordingly no data is transmitted further. In other words: PAEs that are not processing data relay SyncReconfig further immediately to the connected receivers but with the cycles synchronized, if necessary.
SyncReconfig is preferably transmitted together with handshake signals (e.g., RDY/ACK=reaDY/ACKnowledge). A PAE sending a SyncReconfig does not enter the reconfigurable state until all receivers have acknowledged receipt of SyncReconfig for confirmation by an ACK(nowledge).
In this method, the basic question arises as to what happens when a configuration is not yet completely configured but is already to be reconfigured again. Apart from the consideration as to whether such behavior of an application does not require better programming, the problem is solved as follows: if a PAE attempts to forward SyncReconfig to a PAE that is not yet configured, it will not receive an ACK until the PAE is configured and acknowledges SyncReconfig. This might result in a loss of performance because of waiting until the configuration of the configuration to be deleted is completed before deleting it. On the other hand, however, this is a very rare case which occurs only under unusual circumstances.
a shows the basic method to be used. SyncReconfig 0805 arrives at PAE 0806, which forwards a signal at the end of data processing together with data 0807. Connections that have been configured but not used during the data processing also forward the data (0808).
Although SyncReconfig arrives from 0806 via 0807 in the case of PAE 0809, SyncReconfig is still outstanding for the second input. Therefore, 0809 does not forward SyncReconfig. PAE 0810 receives SyncReconfig via 0808 but does not receive any data. Via the second input 0810 likewise receives a SyncReconfig. Although no data processing is taking place in 0810 (the data via 0808 is still outstanding), 0810 relays SyncReconfig without any result data.
b shows the processing of a loop. During the data processing, data is fed back (0824) from PAE 0822 to PAE 0821. At 0821 a SyncReconfig arrives via 0820. This is relayed to the downstream PAEs in the loop as far as 0822. PAE 0822 relays (0823) SyncReconfig to downstream PAEs not belonging to the loop. Neither SyncReconfig nor data is transmitted via loop feedback 0824 (see explanation 0803).
0801 means that no SyncReconfig has been transmitted on this bus at the point in time depicted as an example. 0801 implies no information regarding whether data/triggers have been transmitted.
0802 means that a SyncReconfig has been transmitted on this bus at the point in time depicted as an example. 0802 does not imply any statement regarding whether data/triggers have been transmitted.
0803 means that in the case of occurrence of a SyncReconfig at the data transmitter (in this example 0822), no SyncReconfig is transmitted on this bus (regardless of the point in time). 0802 implies that no data/triggers are transmitted.
7. Alternative Protocoling
A protocol is described below as an alternative to the known RDY/ACK data flow control protocol. It secures data streams even when registers are inserted between the transmitter and receiver at high clock frequencies. To this end, suitable hardware modules are also provided.
Reusable transmitter and receiver units are extracted for these modules, in particular for the communication between an XPP processor field and an XPP configuration controller. These modules and their code are also described below. It should be pointed out that these modules may in part replace and/or supplement XPP-FILMO modules such as those which have been used previously.
The architecture using the RDY/ACK protocol is shown in
The transmitter must wait for pending ACKs before a RDY signal is assigned. This means that the longest path which determines the frequency of such a system is the path from the receiver to the transmitter, specifically via the logic of the transmitter and back to the receiver and its register enable logic.
An inserted register at the input of the transmitter as shown in
A second problem occurs when the protocol is used on the PINS or the I/O interface of an XPU. The XPU may be correctly configured and may send a data packet outward. This means that it sends a RDY. Under the assumption that the connected circuit is not in a position to receive data because it is not connected or is not completely programmed, the RDY will be lost and the XPU will be stopped. Later when the connected circuit outside of the XPU is in a position to receive data, it will not respond because it will not send an ACK without having received a RDY.
8. First Approach Using the Credit FIFO Principle
The Credit FIFO idea presented here solves the problem of the reduced throughput with a FIFO in the receiver input. The transmitter is always allowed to send another packet if at least one ACK is pending.
This means that when the transmission begins the first time, two packets are sent without knowing whether or not they will be confirmed (acknowledged). Thus the second problem mentioned in the preceding section still exists.
According to another novel proposal, the semantics of the ACK signal is changed to the meaning of “would issue an ACK,” i.e., it shows the ability to receive data. Therefore these signals are called “ABLE” signals.
The transmitter may always send data in the direction of the receiver if allowed by the ABLE signal. This protocol may then disable the second register in the receiver part if it is certain that the transmitter is holding the transmitted data in a stable stall situation until the receiver signals “ABLE” again.
9.1 Protocol Evaluation—Credit System Semantics
The credit system has the following semantics: Transmitter: “I am allowed here to send two data packets and as many additional packets as I receive acknowledgments for. If I am not allowed to send another packet, then the last data value must remain valid on the BUS.”
Receiver: “Each received packet will be acknowledged as soon as I am able to receive others.”
9.2 RDY-ABLE Semantics
The RDY-ABLE protocol has the following semantics: Transmitter: “If the ABLE signal is “high,” I am allowed to send a data packet which is also valid, with a ready signal being on the connection bus during the entire next cycle. If the ABLE signal is “low,” then I must ensure that the instantaneous data will remain on the bus for another cycle.”
Receiver: “ABLE will always be assigned to the connecting bus for the entire next cycle if I am certain that no incoming data packet is lost.”
There may be a number of variants for implementing the RDY-ABLE protocol, e.g., pulsed RDY-ABLE or RDY-ABLE having pulsed data. The meanings of high and low may be the opposite of those described above. For pulse-like protocols, each data packet must be valid for only one cycle. This variant needs one more input register in the receiver and may be useful if the bus between the transmitter and receiver is used by more than one connection or possibly is used bidirectionally. Certain IO additions to XPU architectures may be one example of this.
Comparison
In situations where the number of credits is not known to the transmitter the credit system is more stable, whereas RDY-ABLE has the advantage that data is not sent until the receiver is in a position to receive data. RDY has an ACK-time curve with a credit system.
Four cases are outlined:
To make the communication bus free for other users more frequently, the pulsed RDY-ABLE protocol may be used. However, it is not the standard when simpler hardware is desired because it increases the hardware complexity by the addition of one register. Reference may be made to
The hardware for RDY (
A module must contain not only a receiver and a transmitter, but in many cases multiple receivers and one or more transmitters will be provided in one module, e.g., and arithmetic logic unit or a dual-ported ram. This is advisable when data is generated in different ways or when data is received via another protocol. Examples may include configurable counters (without receivers) or displays (no forwarding).
Insertion of simple registers:
If the bus must have simple register stages between the transmitter and receiver, then the receiver must be increased by two registers per inserted stage. An example for this need is to provide register stages at chip boundaries, e.g., connection pieces provided with registers.
Addendum
Receiver and transmitter for AMBA interfaces:
For external units with the CM interface of an XPP core, the use of two modules is recommended.
The reception of data functions as follows: when the receiver module displays a 1 (HIGH) on recv_valid, then data has been received and it is instantaneously available at the recv_data output. If the surrounding module is able to receive this data, it assigns a 1 (HIGH) to recv_able. The data is then available only until the end of the same cycle. The data received next is then presented, if available.
For some circuits it may be beneficial to use the recv_rdy signal which shows that data is currently being taken from the receiver. It is an AND logic result from recv_valid and recv_able.
Transmitters in External Units
If this module and the XPP are directly connected, the signals send_req and n_back may both be set at 0 (LOW). The n_back and n_oe are not used. Data is transmitted as follows: When the transmitter module shows a 1 (HIGH) at send_able, the send_rdy signal may be set at 1 (HIGH) namely with valid data at the send_data input. All this takes place in the same cycle. If new data is available in the next cycle, the send_rdy may be set again at 1 (HIGH), otherwise it is to be enabled; send_data need not be valid in any cycle in which send_rdy is 0 (LOW).
Number | Date | Country | Kind |
---|---|---|---|
102 06 857 | Feb 2002 | DE | national |
102 40 000 | Aug 2002 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/DE03/00489 | 2/18/2003 | WO | 00 | 7/14/2006 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO03/071432 | 8/28/2003 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2067477 | Cooper | Jan 1937 | A |
3242998 | Gubbins | Mar 1966 | A |
3564506 | Bee et al. | Feb 1971 | A |
3681578 | Stevens | Aug 1972 | A |
3753008 | Guarnaschelli | Aug 1973 | A |
3757608 | Willner | Sep 1973 | A |
3855577 | Vandierendonck | Dec 1974 | A |
4151611 | Sugawara et al. | Apr 1979 | A |
4233667 | Devine et al. | Nov 1980 | A |
4414547 | Knapp et al. | Nov 1983 | A |
4498134 | Hansen et al. | Feb 1985 | A |
4498172 | Bhavsar | Feb 1985 | A |
4566102 | Hefner | Jan 1986 | A |
4571736 | Agrawal et al. | Feb 1986 | A |
4590583 | Miller | May 1986 | A |
4591979 | Iwashita | May 1986 | A |
4594682 | Drimak | Jun 1986 | A |
4663706 | Allen et al. | May 1987 | A |
4667190 | Fant et al. | May 1987 | A |
4682284 | Schrofer | Jul 1987 | A |
4706216 | Carter | Nov 1987 | A |
4720778 | Hall et al. | Jan 1988 | A |
4720780 | Dolecek | Jan 1988 | A |
4739474 | Holsztynski | Apr 1988 | A |
4761755 | Ardini et al. | Aug 1988 | A |
4791603 | Henry | Dec 1988 | A |
4811214 | Nosenchuck et al. | Mar 1989 | A |
4852043 | Guest | Jul 1989 | A |
4852048 | Morton | Jul 1989 | A |
4860201 | Miranker et al. | Aug 1989 | A |
4870302 | Freeman | Sep 1989 | A |
4873666 | Lefebvre et al. | Oct 1989 | A |
4882687 | Gordon | Nov 1989 | A |
4884231 | Mor et al. | Nov 1989 | A |
4891810 | de Corlieu et al. | Jan 1990 | A |
4901268 | Judd | Feb 1990 | A |
4910665 | Mattheyses et al. | Mar 1990 | A |
4918440 | Furtek et al. | Apr 1990 | A |
4939641 | Schwartz et al. | Jul 1990 | A |
4967340 | Dawes | Oct 1990 | A |
4972314 | Getzinger et al. | Nov 1990 | A |
4992933 | Taylor | Feb 1991 | A |
5010401 | Murakami et al. | Apr 1991 | A |
5014193 | Garner et al. | May 1991 | A |
5015884 | Agrawal et al. | May 1991 | A |
5021947 | Campbell et al. | Jun 1991 | A |
5023775 | Poret | Jun 1991 | A |
5034914 | Osterlund | Jul 1991 | A |
5036473 | Butts et al. | Jul 1991 | A |
5036493 | Nielsen | Jul 1991 | A |
5041924 | Blackborow et al. | Aug 1991 | A |
5043978 | Nagler et al. | Aug 1991 | A |
5047924 | Matsubara et al. | Sep 1991 | A |
5055997 | Sluijter et al. | Oct 1991 | A |
5065308 | Evans | Nov 1991 | A |
5072178 | Matsumoto | Dec 1991 | A |
5081375 | Pickett et al. | Jan 1992 | A |
5099447 | Myszewski | Mar 1992 | A |
5103311 | Sluijter et al. | Apr 1992 | A |
5109503 | Cruickshank et al. | Apr 1992 | A |
5113498 | Evan et al. | May 1992 | A |
5115510 | Okamoto et al. | May 1992 | A |
5119290 | Loo et al. | Jun 1992 | A |
5123109 | Hillis | Jun 1992 | A |
5125801 | Nabity et al. | Jun 1992 | A |
5128559 | Steele | Jul 1992 | A |
5142469 | Weisenborn | Aug 1992 | A |
5144166 | Camarota et al. | Sep 1992 | A |
5193202 | Jackson et al. | Mar 1993 | A |
5203005 | Horst | Apr 1993 | A |
5204935 | Mihara et al. | Apr 1993 | A |
5208491 | Ebeling et al. | May 1993 | A |
5212716 | Ferraiolo et al. | May 1993 | A |
5212777 | Gove et al. | May 1993 | A |
5218302 | Loewe et al. | Jun 1993 | A |
5226122 | Thayer et al. | Jul 1993 | A |
RE34363 | Freeman | Aug 1993 | E |
5233539 | Agrawal et al. | Aug 1993 | A |
5237686 | Asano et al. | Aug 1993 | A |
5243238 | Kean | Sep 1993 | A |
5247689 | Ewert | Sep 1993 | A |
RE34444 | Kaplinsky | Nov 1993 | E |
5274593 | Proebsting | Dec 1993 | A |
5276836 | Fukumaru et al. | Jan 1994 | A |
5287472 | Horst | Feb 1994 | A |
5287511 | Robinson et al. | Feb 1994 | A |
5287532 | Hunt | Feb 1994 | A |
5294119 | Vincent et al. | Mar 1994 | A |
5301284 | Estes et al. | Apr 1994 | A |
5301344 | Kolchinsky | Apr 1994 | A |
5303172 | Magar et al. | Apr 1994 | A |
5311079 | Ditlow et al. | May 1994 | A |
5327125 | Iwase et al. | Jul 1994 | A |
5336950 | Popli et al. | Aug 1994 | A |
5343406 | Freeman et al. | Aug 1994 | A |
5347639 | Rechtschaffen et al. | Sep 1994 | A |
5349193 | Mott et al. | Sep 1994 | A |
5353432 | Richek et al. | Oct 1994 | A |
5355508 | Kan | Oct 1994 | A |
5361373 | Gilson | Nov 1994 | A |
5365125 | Goetting et al. | Nov 1994 | A |
5379444 | Mumme | Jan 1995 | A |
5386154 | Goetting et al. | Jan 1995 | A |
5386518 | Reagle et al. | Jan 1995 | A |
5392437 | Matter et al. | Feb 1995 | A |
5410723 | Schmidt et al. | Apr 1995 | A |
5412795 | Larson | May 1995 | A |
5418952 | Morley et al. | May 1995 | A |
5418953 | Hunt et al. | May 1995 | A |
5421019 | Holsztynski et al. | May 1995 | A |
5422823 | Agrawal et al. | Jun 1995 | A |
5425036 | Liu et al. | Jun 1995 | A |
5426378 | Ong | Jun 1995 | A |
5428526 | Flood et al. | Jun 1995 | A |
5430687 | Hung et al. | Jul 1995 | A |
5435000 | Boothroyd et al. | Jul 1995 | A |
5440245 | Galbraith et al. | Aug 1995 | A |
5440538 | Olsen et al. | Aug 1995 | A |
5442790 | Nosenchuck | Aug 1995 | A |
5444394 | Watson et al. | Aug 1995 | A |
5448186 | Kawata | Sep 1995 | A |
5450022 | New | Sep 1995 | A |
5455525 | Ho et al. | Oct 1995 | A |
5457644 | McCollum | Oct 1995 | A |
5465375 | Thepaut et al. | Nov 1995 | A |
5469003 | Kean | Nov 1995 | A |
5473266 | Ahanin et al. | Dec 1995 | A |
5473267 | Stansfield | Dec 1995 | A |
5475583 | Bock et al. | Dec 1995 | A |
5475803 | Stearns et al. | Dec 1995 | A |
5475856 | Kogge | Dec 1995 | A |
5483620 | Pechanek et al. | Jan 1996 | A |
5485103 | Pedersen et al. | Jan 1996 | A |
5485104 | Agrawal et al. | Jan 1996 | A |
5489857 | Agrawal et al. | Feb 1996 | A |
5491353 | Kean | Feb 1996 | A |
5493239 | Zlotnick | Feb 1996 | A |
5493663 | Parikh | Feb 1996 | A |
5497498 | Taylor | Mar 1996 | A |
5504439 | Tavana | Apr 1996 | A |
5506998 | Kato et al. | Apr 1996 | A |
5510730 | El Gamal et al. | Apr 1996 | A |
5511173 | Yamaura et al. | Apr 1996 | A |
5513366 | Agarwal et al. | Apr 1996 | A |
5521837 | Frankle et al. | May 1996 | A |
5522083 | Gove et al. | May 1996 | A |
5525971 | Flynn | Jun 1996 | A |
5530873 | Takano | Jun 1996 | A |
5530946 | Bouvier et al. | Jun 1996 | A |
5532693 | Winters et al. | Jul 1996 | A |
5532957 | Malhi | Jul 1996 | A |
5535406 | Kolchinsky | Jul 1996 | A |
5537057 | Leong et al. | Jul 1996 | A |
5537580 | Giomi et al. | Jul 1996 | A |
5537601 | Kimura et al. | Jul 1996 | A |
5541530 | Cliff et al. | Jul 1996 | A |
5544336 | Kato et al. | Aug 1996 | A |
5548773 | Kemeny et al. | Aug 1996 | A |
5550782 | Cliff et al. | Aug 1996 | A |
5555434 | Carlstedt | Sep 1996 | A |
5559450 | Ngai et al. | Sep 1996 | A |
5561738 | Kinerk et al. | Oct 1996 | A |
5568624 | Sites et al. | Oct 1996 | A |
5570040 | Lytle et al. | Oct 1996 | A |
5572710 | Asano et al. | Nov 1996 | A |
5574927 | Scantlin | Nov 1996 | A |
5574930 | Halverson, Jr. et al. | Nov 1996 | A |
5581731 | King et al. | Dec 1996 | A |
5581734 | DiBrino et al. | Dec 1996 | A |
5583450 | Trimberger et al. | Dec 1996 | A |
5584013 | Cheong et al. | Dec 1996 | A |
5586044 | Agrawal et al. | Dec 1996 | A |
5587921 | Agrawal et al. | Dec 1996 | A |
5588152 | Dapp et al. | Dec 1996 | A |
5590345 | Barker et al. | Dec 1996 | A |
5590348 | Phillips et al. | Dec 1996 | A |
5596742 | Agarwal et al. | Jan 1997 | A |
5600265 | El Gamal Abbas et al. | Feb 1997 | A |
5600597 | Kean et al. | Feb 1997 | A |
5600845 | Gilson | Feb 1997 | A |
5606698 | Powell | Feb 1997 | A |
5608342 | Trimberger | Mar 1997 | A |
5611049 | Pitts | Mar 1997 | A |
5617547 | Feeney et al. | Apr 1997 | A |
5617577 | Barker et al. | Apr 1997 | A |
5619720 | Garde et al. | Apr 1997 | A |
5625806 | Kromer | Apr 1997 | A |
5625836 | Barker et al. | Apr 1997 | A |
5634131 | Matter et al. | May 1997 | A |
5635851 | Tavana | Jun 1997 | A |
5642058 | Trimberger et al. | Jun 1997 | A |
5646544 | Iadanza | Jul 1997 | A |
5646545 | Trimberger et al. | Jul 1997 | A |
5649176 | Selvidge et al. | Jul 1997 | A |
5649179 | Steenstra et al. | Jul 1997 | A |
5652529 | Gould et al. | Jul 1997 | A |
5652894 | Hu et al. | Jul 1997 | A |
5655069 | Ogawara et al. | Aug 1997 | A |
5655124 | Lin | Aug 1997 | A |
5656950 | Duong et al. | Aug 1997 | A |
5657330 | Matsumoto | Aug 1997 | A |
5658797 | Zanveld et al. | Aug 1997 | A |
5659785 | Pechanek et al. | Aug 1997 | A |
5659797 | Zandveld et al. | Aug 1997 | A |
5675262 | Duong et al. | Oct 1997 | A |
5675743 | Mavity | Oct 1997 | A |
5675777 | Glickman | Oct 1997 | A |
5680583 | Kuijsten | Oct 1997 | A |
5682491 | Pechanek et al. | Oct 1997 | A |
5687325 | Chang | Nov 1997 | A |
5694602 | Smith | Dec 1997 | A |
5696976 | Nizar et al. | Dec 1997 | A |
5701091 | Kean | Dec 1997 | A |
5705938 | Kean | Jan 1998 | A |
5713037 | Wilkinson et al. | Jan 1998 | A |
5717890 | Ichida et al. | Feb 1998 | A |
5717943 | Barker et al. | Feb 1998 | A |
5732209 | Vigil et al. | Mar 1998 | A |
5734869 | Chen | Mar 1998 | A |
5734921 | Dapp et al. | Mar 1998 | A |
5737516 | Circello et al. | Apr 1998 | A |
5737565 | Mayfield | Apr 1998 | A |
5742180 | Detton et al. | Apr 1998 | A |
5748872 | Norman | May 1998 | A |
5748979 | Trimberger | May 1998 | A |
5752035 | Trimberger | May 1998 | A |
5754459 | Telikepalli | May 1998 | A |
5754820 | Yamagami | May 1998 | A |
5754827 | Barbier et al. | May 1998 | A |
5754871 | Wilkinson et al. | May 1998 | A |
5760602 | Tan | Jun 1998 | A |
5761484 | Agarwal et al. | Jun 1998 | A |
5773994 | Jones | Jun 1998 | A |
5778439 | Trimberger et al. | Jul 1998 | A |
5781756 | Hung | Jul 1998 | A |
5784630 | Saito et al. | Jul 1998 | A |
5784636 | Rupp | Jul 1998 | A |
5794059 | Barker et al. | Aug 1998 | A |
5794062 | Baxter | Aug 1998 | A |
5801547 | Kean | Sep 1998 | A |
5801715 | Norman | Sep 1998 | A |
5801958 | Dangelo et al. | Sep 1998 | A |
5802290 | Casselman | Sep 1998 | A |
5815004 | Trimberger et al. | Sep 1998 | A |
5815715 | Kayhan | Sep 1998 | A |
5821774 | Veytsman et al. | Oct 1998 | A |
5828229 | Cliff et al. | Oct 1998 | A |
5828858 | Athanas et al. | Oct 1998 | A |
5831448 | Kean | Nov 1998 | A |
5832288 | Wong | Nov 1998 | A |
5838165 | Chatter | Nov 1998 | A |
5838988 | Panwar et al. | Nov 1998 | A |
5841973 | Kessler et al. | Nov 1998 | A |
5844422 | Trimberger et al. | Dec 1998 | A |
5844888 | Markkula, Jr. et al. | Dec 1998 | A |
5848238 | Shimomura et al. | Dec 1998 | A |
5854918 | Baxter | Dec 1998 | A |
5857097 | Henzinger et al. | Jan 1999 | A |
5857109 | Taylor | Jan 1999 | A |
5859544 | Norman | Jan 1999 | A |
5862403 | Kanai et al. | Jan 1999 | A |
5865239 | Carr | Feb 1999 | A |
5867691 | Shiraishi | Feb 1999 | A |
5867723 | Peters et al. | Feb 1999 | A |
5870620 | Kadosumi et al. | Feb 1999 | A |
5884075 | Hester et al. | Mar 1999 | A |
5887162 | Williams et al. | Mar 1999 | A |
5887165 | Martel et al. | Mar 1999 | A |
5889533 | Lee | Mar 1999 | A |
5889982 | Rodgers et al. | Mar 1999 | A |
5892370 | Eaton et al. | Apr 1999 | A |
5892961 | Trimberger | Apr 1999 | A |
5892962 | Cloutier | Apr 1999 | A |
5894565 | Furtek et al. | Apr 1999 | A |
5898602 | Rothman et al. | Apr 1999 | A |
5901279 | Davis, III | May 1999 | A |
5915099 | Takata et al. | Jun 1999 | A |
5915123 | Mirsky et al. | Jun 1999 | A |
5924119 | Sindhu et al. | Jul 1999 | A |
5926638 | Inoue | Jul 1999 | A |
5927423 | Wada et al. | Jul 1999 | A |
5933023 | Young | Aug 1999 | A |
5933642 | Baxter et al. | Aug 1999 | A |
5936424 | Young et al. | Aug 1999 | A |
5943242 | Vorbach et al. | Aug 1999 | A |
5956518 | DeHon et al. | Sep 1999 | A |
5960193 | Guttag et al. | Sep 1999 | A |
5960200 | Eager et al. | Sep 1999 | A |
5966143 | Breternitz, Jr. | Oct 1999 | A |
5966534 | Cooke et al. | Oct 1999 | A |
5970254 | Cooke et al. | Oct 1999 | A |
5978260 | Trimberger et al. | Nov 1999 | A |
5978583 | Ekanadham et al. | Nov 1999 | A |
5996048 | Cherabuddi et al. | Nov 1999 | A |
5996083 | Gupta et al. | Nov 1999 | A |
5999990 | Sharrit et al. | Dec 1999 | A |
6003143 | Kim et al. | Dec 1999 | A |
6011407 | New | Jan 2000 | A |
6014509 | Furtek et al. | Jan 2000 | A |
6020758 | Patel et al. | Feb 2000 | A |
6020760 | Sample et al. | Feb 2000 | A |
6021490 | Vorbach et al. | Feb 2000 | A |
6023564 | Trimberger | Feb 2000 | A |
6023742 | Ebeling et al. | Feb 2000 | A |
6026481 | New et al. | Feb 2000 | A |
6034538 | Abramovici | Mar 2000 | A |
6035371 | Magloire | Mar 2000 | A |
6038650 | Vorbach et al. | Mar 2000 | A |
6038656 | Cummings et al. | Mar 2000 | A |
6044030 | Zheng et al. | Mar 2000 | A |
6047115 | Mohan et al. | Apr 2000 | A |
6049222 | Lawman | Apr 2000 | A |
6052773 | DeHon et al. | Apr 2000 | A |
6054873 | Laramie | Apr 2000 | A |
6058469 | Baxter | May 2000 | A |
6077315 | Greenbaum et al. | Jun 2000 | A |
6078736 | Guccione | Jun 2000 | A |
6081903 | Vorbach et al. | Jun 2000 | A |
6084429 | Trimberger | Jul 2000 | A |
6085317 | Smith | Jul 2000 | A |
6086628 | Dave et al. | Jul 2000 | A |
6088795 | Vorbach et al. | Jul 2000 | A |
6092174 | Roussakov | Jul 2000 | A |
6096091 | Hartmann | Aug 2000 | A |
6105105 | Trimberger | Aug 2000 | A |
6105106 | Manning | Aug 2000 | A |
6108760 | Mirsky et al. | Aug 2000 | A |
6119181 | Vorbach et al. | Sep 2000 | A |
6122719 | Mirsky et al. | Sep 2000 | A |
6125408 | McGee et al. | Sep 2000 | A |
6127908 | Bozler et al. | Oct 2000 | A |
6128720 | Pechanek et al. | Oct 2000 | A |
6131149 | Nguyen | Oct 2000 | A |
6134166 | Lytle et al. | Oct 2000 | A |
6137307 | Iwanczuk et al. | Oct 2000 | A |
6145072 | Shams et al. | Nov 2000 | A |
6150837 | Beal et al. | Nov 2000 | A |
6150839 | New et al. | Nov 2000 | A |
6154048 | Iwanczuk et al. | Nov 2000 | A |
6154049 | New | Nov 2000 | A |
6154826 | Wulf et al. | Nov 2000 | A |
6157214 | Marshall | Dec 2000 | A |
6170051 | Dowling | Jan 2001 | B1 |
6172520 | Lawman et al. | Jan 2001 | B1 |
6173419 | Barnett | Jan 2001 | B1 |
6173434 | Wirthlin et al. | Jan 2001 | B1 |
6178494 | Casselman | Jan 2001 | B1 |
6185256 | Saito et al. | Feb 2001 | B1 |
6185731 | Maeda et al. | Feb 2001 | B1 |
6188240 | Nakaya | Feb 2001 | B1 |
6198304 | Sasaki | Mar 2001 | B1 |
6201406 | Iwanczuk et al. | Mar 2001 | B1 |
6202182 | Abramovici et al. | Mar 2001 | B1 |
6204687 | Schultz et al. | Mar 2001 | B1 |
6211697 | Lien et al. | Apr 2001 | B1 |
6212544 | Borkenhagen et al. | Apr 2001 | B1 |
6212650 | Guccione | Apr 2001 | B1 |
6215326 | Jefferson et al. | Apr 2001 | B1 |
6216223 | Revilla et al. | Apr 2001 | B1 |
6219833 | Solomon et al. | Apr 2001 | B1 |
RE37195 | Kean | May 2001 | E |
6230307 | Davis et al. | May 2001 | B1 |
6240502 | Panwar et al. | May 2001 | B1 |
6243808 | Wang | Jun 2001 | B1 |
6252792 | Marshall et al. | Jun 2001 | B1 |
6256724 | Hocevar et al. | Jul 2001 | B1 |
6260114 | Schug | Jul 2001 | B1 |
6260179 | Ohsawa et al. | Jul 2001 | B1 |
6262908 | Marshall et al. | Jul 2001 | B1 |
6263430 | Trimberger et al. | Jul 2001 | B1 |
6266760 | DeHon et al. | Jul 2001 | B1 |
6279077 | Nasserbakht et al. | Aug 2001 | B1 |
6282627 | Wong et al. | Aug 2001 | B1 |
6282701 | Wygodny et al. | Aug 2001 | B1 |
6285624 | Chen | Sep 2001 | B1 |
6286134 | Click, Jr. et al. | Sep 2001 | B1 |
6288566 | Hanrahan et al. | Sep 2001 | B1 |
6289440 | Casselman | Sep 2001 | B1 |
6298043 | Mauger et al. | Oct 2001 | B1 |
6298396 | Loyer et al. | Oct 2001 | B1 |
6298472 | Phillips et al. | Oct 2001 | B1 |
6301706 | Maslennikov et al. | Oct 2001 | B1 |
6311200 | Hanrahan et al. | Oct 2001 | B1 |
6311265 | Beckerle et al. | Oct 2001 | B1 |
6321298 | Hubis | Nov 2001 | B1 |
6321366 | Tseng et al. | Nov 2001 | B1 |
6321373 | Ekanadham et al. | Nov 2001 | B1 |
6338106 | Vorbach et al. | Jan 2002 | B1 |
6339840 | Kothari et al. | Jan 2002 | B1 |
6341318 | Dakhil | Jan 2002 | B1 |
6347346 | Taylor | Feb 2002 | B1 |
6349346 | Hanrahan et al. | Feb 2002 | B1 |
6353841 | Marshall et al. | Mar 2002 | B1 |
6362650 | New et al. | Mar 2002 | B1 |
6370596 | Dakhil | Apr 2002 | B1 |
6373779 | Pang et al. | Apr 2002 | B1 |
6374286 | Gee | Apr 2002 | B1 |
6378068 | Foster et al. | Apr 2002 | B1 |
6381624 | Colon-Bonet et al. | Apr 2002 | B1 |
6389379 | Lin et al. | May 2002 | B1 |
6389579 | Phillips et al. | May 2002 | B1 |
6392912 | Hanrahan et al. | May 2002 | B1 |
6398383 | Huang | Jun 2002 | B1 |
6400601 | Sudo et al. | Jun 2002 | B1 |
6404224 | Azegami et al. | Jun 2002 | B1 |
6405185 | Pechanek et al. | Jun 2002 | B1 |
6405299 | Vorbach et al. | Jun 2002 | B1 |
6421808 | McGeer et al. | Jul 2002 | B1 |
6421809 | Wuytack et al. | Jul 2002 | B1 |
6421817 | Mohan et al. | Jul 2002 | B1 |
6425054 | Nguyen | Jul 2002 | B1 |
6425068 | Vorbach et al. | Jul 2002 | B1 |
6427156 | Chapman et al. | Jul 2002 | B1 |
6430309 | Pressman et al. | Aug 2002 | B1 |
6434642 | Camilleri et al. | Aug 2002 | B1 |
6434672 | Gaither | Aug 2002 | B1 |
6434695 | Esfahani et al. | Aug 2002 | B1 |
6434699 | Jones et al. | Aug 2002 | B1 |
6437441 | Yamamoto | Aug 2002 | B1 |
6438747 | Schreiber et al. | Aug 2002 | B1 |
6449283 | Chao et al. | Sep 2002 | B1 |
6457116 | Mirsky et al. | Sep 2002 | B1 |
6476634 | Bilski | Nov 2002 | B1 |
6477643 | Vorbach et al. | Nov 2002 | B1 |
6480937 | Vorbach et al. | Nov 2002 | B1 |
6480954 | Trimberger et al. | Nov 2002 | B2 |
6487709 | Keller et al. | Nov 2002 | B1 |
6490695 | Zagorski et al. | Dec 2002 | B1 |
6496902 | Faanes et al. | Dec 2002 | B1 |
6496971 | Lesea et al. | Dec 2002 | B1 |
6504398 | Lien et al. | Jan 2003 | B1 |
6507947 | Schreiber et al. | Jan 2003 | B1 |
6512804 | Johnson et al. | Jan 2003 | B1 |
6513077 | Vorbach et al. | Jan 2003 | B2 |
6516382 | Manning | Feb 2003 | B2 |
6518787 | Allegrucci et al. | Feb 2003 | B1 |
6519674 | Lam et al. | Feb 2003 | B1 |
6523107 | Stansfield et al. | Feb 2003 | B1 |
6525678 | Veenstra et al. | Feb 2003 | B1 |
6526520 | Vorbach et al. | Feb 2003 | B1 |
6538468 | Moore | Mar 2003 | B1 |
6539415 | Mercs | Mar 2003 | B1 |
6539438 | Ledzius et al. | Mar 2003 | B1 |
6539477 | Seawright | Mar 2003 | B1 |
6542394 | Marshall et al. | Apr 2003 | B2 |
6542844 | Hanna | Apr 2003 | B1 |
6542998 | Vorbach et al. | Apr 2003 | B1 |
6553395 | Marshall et al. | Apr 2003 | B2 |
6567834 | Marshall et al. | May 2003 | B1 |
6571381 | Vorbach et al. | May 2003 | B1 |
6587939 | Takano | Jul 2003 | B1 |
6606704 | Adiletta et al. | Aug 2003 | B1 |
6624819 | Lewis | Sep 2003 | B1 |
6631487 | Abramovici et al. | Oct 2003 | B1 |
6633181 | Rupp | Oct 2003 | B1 |
6657457 | Hanrahan et al. | Dec 2003 | B1 |
6658564 | Smith et al. | Dec 2003 | B1 |
6668237 | Guccione et al. | Dec 2003 | B1 |
6681388 | Sato et al. | Jan 2004 | B1 |
6687788 | Vorbach et al. | Feb 2004 | B2 |
6697979 | Vorbach et al. | Feb 2004 | B1 |
6704816 | Burke | Mar 2004 | B1 |
6708325 | Cooke et al. | Mar 2004 | B2 |
6717436 | Kress et al. | Apr 2004 | B2 |
6721830 | Vorbach et al. | Apr 2004 | B2 |
6725334 | Barroso et al. | Apr 2004 | B2 |
6728871 | Vorbach et al. | Apr 2004 | B1 |
6754805 | Juan | Jun 2004 | B1 |
6757847 | Farkash et al. | Jun 2004 | B1 |
6757892 | Gokhale et al. | Jun 2004 | B1 |
6782445 | Olgiati et al. | Aug 2004 | B1 |
6785826 | Durham et al. | Aug 2004 | B1 |
6803787 | Wicker, Jr. | Oct 2004 | B1 |
6804752 | Patterson et al. | Oct 2004 | B2 |
6820188 | Stansfield et al. | Nov 2004 | B2 |
6829697 | Davis et al. | Dec 2004 | B1 |
6836842 | Guccione et al. | Dec 2004 | B1 |
6847370 | Baldwin et al. | Jan 2005 | B2 |
6859869 | Vorbach | Feb 2005 | B1 |
6868476 | Rosenbluth et al. | Mar 2005 | B2 |
6871341 | Shyr | Mar 2005 | B1 |
6874108 | Abramovici et al. | Mar 2005 | B1 |
6886092 | Douglass et al. | Apr 2005 | B1 |
6901502 | Yano et al. | May 2005 | B2 |
6928523 | Yamada | Aug 2005 | B2 |
6961924 | Bates et al. | Nov 2005 | B2 |
6975138 | Pani et al. | Dec 2005 | B2 |
6977649 | Baldwin et al. | Dec 2005 | B1 |
7000161 | Allen et al. | Feb 2006 | B1 |
7007096 | Lisitsa et al. | Feb 2006 | B1 |
7010687 | Ichimura | Mar 2006 | B2 |
7036114 | McWilliams et al. | Apr 2006 | B2 |
7038952 | Zack et al. | May 2006 | B1 |
7210129 | May et al. | Apr 2007 | B2 |
7216204 | Rosenbluth et al. | May 2007 | B2 |
7237087 | Vorbach et al. | Jun 2007 | B2 |
7249351 | Songer et al. | Jul 2007 | B1 |
7254649 | Subramanian et al. | Aug 2007 | B2 |
7340596 | Crosland et al. | Mar 2008 | B1 |
7350178 | Crosland et al. | Mar 2008 | B1 |
7382156 | Pani et al. | Jun 2008 | B2 |
7657877 | Vorbach et al. | Feb 2010 | B2 |
7759968 | Hussein et al. | Jul 2010 | B1 |
7873811 | Wolinski et al. | Jan 2011 | B1 |
20010001860 | Beiu | May 2001 | A1 |
20010010074 | Nishihara et al. | Jul 2001 | A1 |
20010018733 | Fujii et al. | Aug 2001 | A1 |
20010032305 | Barry | Oct 2001 | A1 |
20020010853 | Trimberger et al. | Jan 2002 | A1 |
20020013861 | Adiletta et al. | Jan 2002 | A1 |
20020038414 | Taylor et al. | Mar 2002 | A1 |
20020045952 | Blemel | Apr 2002 | A1 |
20020073282 | Chauvel et al. | Jun 2002 | A1 |
20020083308 | Pereira et al. | Jun 2002 | A1 |
20020099759 | Gootherts | Jul 2002 | A1 |
20020103839 | Ozawa | Aug 2002 | A1 |
20020124238 | Metzgen | Sep 2002 | A1 |
20020138716 | Master et al. | Sep 2002 | A1 |
20020143505 | Drusinsky | Oct 2002 | A1 |
20020144229 | Hanrahan | Oct 2002 | A1 |
20020152060 | Tseng | Oct 2002 | A1 |
20020165886 | Lam | Nov 2002 | A1 |
20030001615 | Sueyoshi et al. | Jan 2003 | A1 |
20030014743 | Cooke et al. | Jan 2003 | A1 |
20030046607 | Vorbach | Mar 2003 | A1 |
20030052711 | Taylor et al. | Mar 2003 | A1 |
20030055861 | Lai et al. | Mar 2003 | A1 |
20030056062 | Prabhu | Mar 2003 | A1 |
20030056085 | Vorbach | Mar 2003 | A1 |
20030056091 | Greenberg | Mar 2003 | A1 |
20030056202 | Vorbach | Mar 2003 | A1 |
20030061542 | Bates et al. | Mar 2003 | A1 |
20030062922 | Douglass et al. | Apr 2003 | A1 |
20030070059 | Dally et al. | Apr 2003 | A1 |
20030086300 | Noyes et al. | May 2003 | A1 |
20030093662 | Vorbach et al. | May 2003 | A1 |
20030097513 | Vorbach et al. | May 2003 | A1 |
20030123579 | Safavi et al. | Jul 2003 | A1 |
20030135686 | Vorbach et al. | Jul 2003 | A1 |
20030154349 | Berg et al. | Aug 2003 | A1 |
20030192032 | Andrade et al. | Oct 2003 | A1 |
20040015899 | May et al. | Jan 2004 | A1 |
20040025005 | Vorbach et al. | Feb 2004 | A1 |
20040039880 | Pentkovski et al. | Feb 2004 | A1 |
20040168099 | Vorbach et al. | Aug 2004 | A1 |
20040199688 | Vorbach et al. | Oct 2004 | A1 |
20050066213 | Vorbach et al. | Mar 2005 | A1 |
20050091468 | Morita et al. | Apr 2005 | A1 |
20050144210 | Simkins et al. | Jun 2005 | A1 |
20050144212 | Simkins et al. | Jun 2005 | A1 |
20050144215 | Simkins et al. | Jun 2005 | A1 |
20060036988 | Allen et al. | Feb 2006 | A1 |
20060230094 | Simkins et al. | Oct 2006 | A1 |
20060230096 | Thendean et al. | Oct 2006 | A1 |
20070083730 | Vorbach et al. | Apr 2007 | A1 |
20080313383 | Morita et al. | Dec 2008 | A1 |
20090193384 | Sima et al. | Jul 2009 | A1 |
20100306602 | Kamiya et al. | Dec 2010 | A1 |
Number | Date | Country |
---|---|---|
42 21 278 | Jan 1994 | DE |
44 16 881 | Nov 1994 | DE |
38 55 673 | Nov 1996 | DE |
196 51 075 | Jun 1998 | DE |
196 54 593 | Jul 1998 | DE |
196 54 595 | Jul 1998 | DE |
196 54 846 | Jul 1998 | DE |
197 04 044 | Aug 1998 | DE |
197 04 728 | Aug 1998 | DE |
197 04 742 | Sep 1998 | DE |
198 22 776 | Mar 1999 | DE |
198 07 872 | Aug 1999 | DE |
198 61 088 | Feb 2000 | DE |
199 26 538 | Dec 2000 | DE |
100 28 397 | Dec 2001 | DE |
100 36 627 | Feb 2002 | DE |
101 29 237 | Apr 2002 | DE |
102 04 044 | Aug 2003 | DE |
0 208 457 | Jan 1986 | EP |
0 221 360 | May 1987 | EP |
0 398 552 | Nov 1990 | EP |
0 428 327 | May 1991 | EP |
0 463 721 | Jan 1992 | EP |
0 477 809 | Apr 1992 | EP |
0 485 690 | May 1992 | EP |
0 497 029 | Aug 1992 | EP |
0 539 595 | May 1993 | EP |
0 638 867 | Aug 1994 | EP |
0 628 917 | Dec 1994 | EP |
0 678 985 | Oct 1995 | EP |
0 686 915 | Dec 1995 | EP |
0 707 269 | Apr 1996 | EP |
0 735 685 | Oct 1996 | EP |
0 835 685 | Oct 1996 | EP |
0 746 106 | Dec 1996 | EP |
0 748 051 | Dec 1996 | EP |
0 726 532 | Jul 1998 | EP |
0 926 594 | Jun 1999 | EP |
1 102 674 | Jul 1999 | EP |
1 061 439 | Dec 2000 | EP |
1 115 204 | Jul 2001 | EP |
1 146 432 | Oct 2001 | EP |
0 696 001 | Dec 2001 | EP |
1 669 885 | Jun 2006 | EP |
2 752 466 | Feb 1998 | FR |
2 304 438 | Mar 1997 | GB |
58-58672 | Apr 1983 | JP |
10-44571 | Feb 1989 | JP |
01-229378 | Sep 1989 | JP |
2-130023 | May 1990 | JP |
2-226423 | Sep 1990 | JP |
5-276007 | Oct 1993 | JP |
6-266605 | Sep 1994 | JP |
07-086921 | Mar 1995 | JP |
7-154242 | Jun 1995 | JP |
8-148989 | Jun 1995 | JP |
7-182160 | Jul 1995 | JP |
7-182167 | Jul 1995 | JP |
8-44581 | Feb 1996 | JP |
08069447 | Mar 1996 | JP |
08-101761 | Apr 1996 | JP |
8-102492 | Apr 1996 | JP |
8-106443 | Apr 1996 | JP |
8-221164 | Aug 1996 | JP |
8-250685 | Sep 1996 | JP |
9-27745 | Jan 1997 | JP |
9-237284 | Sep 1997 | JP |
09-294069 | Nov 1997 | JP |
11-046187 | Feb 1999 | JP |
11-307725 | Nov 1999 | JP |
2000-076066 | Mar 2000 | JP |
2000-181566 | Jun 2000 | JP |
2000-201066 | Jul 2000 | JP |
2000-311156 | Nov 2000 | JP |
2001-500682 | Jan 2001 | JP |
2001-510650 | Jul 2001 | JP |
2001-236221 | Aug 2001 | JP |
2002-0033457 | Jan 2002 | JP |
05-509184 | Dec 2003 | JP |
3-961028 | Aug 2007 | JP |
WO9004835 | May 1990 | WO |
WO9011648 | Oct 1990 | WO |
WO9201987 | Feb 1992 | WO |
WO9311503 | Jun 1993 | WO |
WO9406077 | Mar 1994 | WO |
WO9408399 | Apr 1994 | WO |
WO9500161 | Jan 1995 | WO |
WO9526001 | Sep 1995 | WO |
WO9810517 | Mar 1998 | WO |
WO9826356 | Jun 1998 | WO |
WO9828697 | Jul 1998 | WO |
WO9829952 | Jul 1998 | WO |
WO9831102 | Jul 1998 | WO |
WO9835294 | Aug 1998 | WO |
WO9835299 | Aug 1998 | WO |
WO 9835294 | Aug 1998 | WO |
WO9900731 | Jan 1999 | WO |
WO9900739 | Jan 1999 | WO |
WO9912111 | Mar 1999 | WO |
WO9932975 | Jul 1999 | WO |
WO9940522 | Aug 1999 | WO |
WO9944120 | Sep 1999 | WO |
WO9944147 | Sep 1999 | WO |
WO0017771 | Mar 2000 | WO |
WO0038087 | Jun 2000 | WO |
0045282 | Aug 2000 | WO |
WO0049496 | Aug 2000 | WO |
WO0077652 | Dec 2000 | WO |
WO0155917 | Aug 2001 | WO |
WO0213000 | Feb 2002 | WO |
WO0221010 | Mar 2002 | WO |
WO0229600 | Apr 2002 | WO |
WO0250665 | Jun 2002 | WO |
WO02071196 | Sep 2002 | WO |
WO02071248 | Sep 2002 | WO |
WO02071249 | Sep 2002 | WO |
WO02103532 | Dec 2002 | WO |
WO03017095 | Feb 2003 | WO |
WO03023616 | Mar 2003 | WO |
WO03025781 | Mar 2003 | WO |
WO03032975 | Apr 2003 | WO |
WO03036507 | May 2003 | WO |
WO2004053718 | Jun 2004 | WO |
WO2004114128 | Dec 2004 | WO |
WO2005045692 | May 2005 | WO |
WO 2007030395 | Mar 2007 | WO |
Number | Date | Country | |
---|---|---|---|
20070150637 A1 | Jun 2007 | US |