The present invention relates to a bush structure. More particularly, the present invention relates to a bush structure, for example, in an earphone (referred to as a semi-wireless earphone) in which left and right earphone units are connected with a cable and a remote part or a battery part is interposed on the cable, and the bush structure is provided to a part where the cable is led out of the remote part and the like, and can suppress the occurrence of disconnection in the vicinity of the lead-out part.
In recent years, for example, a usage form of an earphone, in which a smart phone and an earphone are used by being connected in conformity with a short-distance wireless communication standard such as Bluetooth (registered trademark), has become widespread.
Examples of earphones using wireless communication include a semi-wireless earphone 50 having left and right earphone units 51 and 52, a cable 53 for physically connecting the left and right earphone units 51 and 52, and a remote part 54 interposed on the cable 53 as illustrated in
Although not illustrated in the drawing, the remote part 54 is provided with a circuit board for a wireless connection with, for example, a smart phone, and a battery. Thus, the remote part 54 is heavier and larger in size than a remote part provided to a wired earphone in the relate art.
Note that, a circuit board and a battery part in some products are separated as disclosed in Japanese Utility Model Registration No. 3209356, but neither the circuit board nor the battery part has been downsized significantly.
When the semi-wireless earphone is received in a bag, a pocket, and the like, generally the cable 53 is wound around the remote part 54, or the cable 53 is bundled in a ring shape as illustrated in
However, winding the cable 53 around the remote part 54 applies a load to bush bodies 55 at both ends of the remote part 54 and causes the cable 53 to be bent in the vicinity of a distal end of the bush body 55, resulting in a problem in that disconnection of the cable 53 easily occurs.
Particularly, as illustrated in a partial cross-sectional view of
More specifically, when the semi-wireless earphone is received in a bag, a pocket, and the like, the shape of the bush does not change significantly and the cable 53 can be likely to bent at an acute angle as illustrated in
On the other hand, as illustrated in
Furthermore, in order to prevent the cable 53 from being bent at an acute angle in the bush body 55, it is sufficient if the lead-out part of the cable has, for example, a bellows structure such that the bush body 55 is bent flexibly. However, in such a case, there is a problem in that the size of the bush body 55 needs to be further increased and the degree of freedom in designing the remote part 54 and the like is greatly reduced.
An object of the present invention is to solve the problem described above and to provide a bush structure in an earphone in which left and right earphone units are connected with a cable and a remote part or a battery part is interposed on the cable, and the bush structure is provided to a part where the cable is led out of the remote part and the like, and can suppress the occurrence of disconnection in the vicinity of the lead-out part.
In order to solve the aforementioned problems, the bush structure according to the present invention is a bush structure provided to a lead-out part of a cable and includes a bush body provided to the lead-out part and formed with a first through hole. The first through hole is a through hole where the cable is inserted, and gradually increases in diameter toward a lead-out direction of the cable.
Note that, preferably, an inner peripheral surface of the first through hole is formed to have a convex R shaped cross-section.
Furthermore, the bush structure according to the present invention includes a retaining part connected below the bush body. Preferably, the retaining part includes a second through hole, which communicates with the first through hole and into which the cable is inserted and fitted, and a locking part locked to the lead-out part.
Furthermore, preferably, the retaining part is made of a material harder than the bush body. For example, the bush body is made of thermoplastic elastomer and the retaining part is made of polypropylene.
As described above, in the bush structure according to the present invention, the lead-out part of the cable includes the through hole formed in a mortar shape with a diameter larger than the cable diameter and gradually increasing around the cable axis toward the lead-out direction of the cable.
Therefore, for example, when a user of a wireless earphone holds the remote part with one hand and winds the cable around the remote part with the other hand, the cable in the vicinity of the lead-out part comes into contact with the inner peripheral surface of the mortar-shaped first through hole with a long line width. Consequently, a load applied to the cable in the vicinity of the lead-out part is distributed, so that the disconnection of the cable is prevented. Furthermore, particularly, since the inner peripheral surface of the first through hole is formed to have a convex R shaped cross-section, the cable is led out in a loosely curved state, so that sharp bending of the cable is suppressed.
Furthermore, the shape of the bush body is not a convex shape protruding from the lead-out part of the cable, but a concave shape. Therefore, the remote part, to which the bush body is attached, is not subjected to design restrictions such that the lead-out part of the cable has a bellows structure. That is, the degree of freedom in designing the remote part and the like is increased, resulting in the improvement of the design property of a product including the remote part. Moreover, the bush body, which is disposed on a part where the cable is loaded, is formed to be soft, and the retaining part, which is disposed on a part where the cable is not loaded, is formed to be hard. Thus, the performance of preventing detachment of the bush structure is enhanced and the bush body absorbs a load applied to the cable.
According to the present invention, a bush structure capable of suppressing the occurrence of disconnection in the vicinity of a lead-out part of a cable can be provided.
Embodiments of a bush structure according to the present invention will now be described with reference to the attached drawings.
As illustrated in
The bush body 2 has a cylindrical part 2a with a through hole 2a2 (first through hole) as illustrated in
The inner peripheral surface 2a1 of the through hole 2a2 (cylindrical part 2a) has a curved surface with a convex R shaped cross-section. For example, when the diameter of the cable 4 (sheath) is set to 2 mm, the curvature of the convex cross-section R is 1.57 mm.
Furthermore, a dimension of the mortar-shaped through hole 2a2 having a minimum diameter substantially coincides with the diameter of the cable 4.
Furthermore, as illustrated in
Furthermore, the retaining part 3 includes flange receiving parts 3b (locking parts) in which the flange parts 2b of the bush body 2 are disposed.
Note that, as illustrated in
Then, the cable 4 is inserted and fitted into the through hole 2a2 of the bush body 2 and the through hole 3a of the retaining part 3. The flange part 2b is locked to a circular opening edge part 5b formed on the lead-out part 5a of the remote part 5 (a casing lid part of the remote part 5 is not illustrated in
Note that the reason why the through hole 2a2 of the bush body 2 is formed in a mortar shape as described above is because the contact range of the cable 4 with respect to the inner peripheral surface 2a1 of the through hole 2a2 becomes longer in the axial direction of the cable 4 as indicated with the broken line in
For example, as illustrated in
Furthermore, in the present embodiment in which the through hole 2a2 of the bush structure 1, which serves as the lead-out part of the cable 4, is in a mortar shape, the bush structure 1 includes two members of the bush body 2 and the retaining part 3. This is because insert-molding the mortar-shaped through hole 2a2 only in the bush body 2 is easier than integrally insert-molding the entire bush structure 1 into a mortar shape, in view of the structure of a mold.
Furthermore, the bush body 2 can be made of a material different from that of the retaining part 3, since the bush structure 1 is provided with two members. That is, for example, the bush body 2 is made of thermoplastic elastomer (TPE) and the retaining part 3 is made of polypropylene (PP). In such a case, the bush body 2, which is disposed in a part where the cable 4 is loaded, is soft, and the retaining part 3, which is disposed in a part where the cable 4 is not loaded, is hard. Therefore, the performance of preventing the bush structure 1 from being detached from the remote part 5 is enhanced, and the bush body 2 absorbs a load applied to the cable 4.
In the remote part 5 using the bush structure 1 configured as described above, for example, when the cable 4 is bent in the direction of an arrow as illustrated in
That is, the contact range of the cable 4 with respect to the inner peripheral surface 2a1 of the through hole 2a2 becomes longer in the axial direction of the cable 4. Therefore, the disconnection of the cable 4 due to the concentration of the contact points of the cable 4 with respect to the bush body 2 at one point is prevented.
Furthermore, when the cable 4 is strongly wound around the remote part 5, even though the cable 4 is along the casing of the remote part 5 as illustrated in
According to the embodiment described above, the bush structure 1 according to the present invention includes the through hole 2a2 formed in a mortar shape with a diameter larger than the cable diameter and gradually increasing around the cable axis toward the lead-out direction of the cable 4 (upward in
Therefore, for example, when a user of a wireless earphone holds the remote part 5 with one hand and winds the cable 4 around the remote part 5 with the other hand, the cable 4 in the vicinity of the lead-out part 5a comes into contact with the inner peripheral surface 2a1 of the mortar-shaped through hole 2a2 of the bush structure 1 with a long line width. Accordingly, a load applied to the cable 4 in the vicinity of the lead-out part 5a is distributed, so that the disconnection of the cable 4 is prevented. Furthermore, particularly, since the inner peripheral surface 2a1 of the through hole 2a2 is formed to have a convex R shaped cross-section, the cable 4 is led out in a loosely curved state, and consequently sharp bending of the cable 4 is suppressed.
Furthermore, the shape of the bush structure 1 is not a convex shape protruding from the lead-out part 5a of the cable 4, but a concave shape. Therefore, the remote part 5, to which the bush structure 1 is attached, is not subjected to design restrictions such that the lead-out part 5a of the cable 4 has a bellows structure. That is, the degree of freedom in designing the remote part 5 and the like is increased, resulting in the improvement of the design property of a product including the remote part 5.
Moreover, the bush body 2, which is disposed in a part where the cable 4 is loaded, is formed to be soft, so that the bush body 2 absorbs a load applied to the cable 4. Furthermore, the retaining part 3, which is disposed in a part where the cable 4 is not loaded, is formed to be hard, so that the performance of preventing the bush structure 1 from being detached from the remote part 5 is enhanced.
Although the embodiment described above has a configuration in which the bush structure 1 is disposed in the lead-out parts 5a at both ends of the remote part 5, the bush structure according to the present invention is not limited to such a configuration. For example, in a case where a cable is led out of a battery part of a semi-wireless earphone and the like, the bush structure according to the present invention can be applied to the lead-out part.
Furthermore, although the embodiment described above is an example in which the bush structure according to the present invention is applied to a semi-wireless earphone, the application scene of the bush structure according to the present invention is not limited thereto and the bush structure according to the present invention can be applied to a lead-out part of a cable of any product, from which the cable is led out, regardless of genre.
Number | Date | Country | Kind |
---|---|---|---|
JP2019-122720 | Jul 2019 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
4077636 | Langford | Mar 1978 | A |
4079950 | Langford | Mar 1978 | A |
5071143 | Byerly | Dec 1991 | A |
5639993 | Ideno | Jun 1997 | A |
6051795 | Fisher | Apr 2000 | A |
6519828 | Cook | Feb 2003 | B1 |
7992876 | Akturk | Aug 2011 | B2 |
8661614 | Allen | Mar 2014 | B2 |
10032545 | Urbaniak | Jul 2018 | B2 |
20050076469 | Tisbo | Apr 2005 | A1 |
20050232568 | Maurin | Oct 2005 | A1 |
Number | Date | Country |
---|---|---|
3209356 | Mar 2017 | JP |
Number | Date | Country | |
---|---|---|---|
20210005359 A1 | Jan 2021 | US |